quinta-feira, 16 de abril de 2015

As galáxias gigantes morrem de dentro para fora

Astrônomos mostraram pela primeira vez como é que a formação estelar em galáxias “mortas” se desligou há bilhões de anos atrás.

galáxia elíptica IC 2006

© Hubble (galáxia elíptica IC 2006)

O Very Large Telescope (VLT) do ESO e o telescópio espacial Hubble da NASA/ESA revelaram que três bilhões de anos após o Big Bang, estas galáxias ainda formavam estrelas nas suas periferias, mas isso já não acontecia nos seus interiores. O desligar da formação estelar parece ter-se iniciado nos núcleos das galáxias, espalhando-se depois para as regiões mais externas.

Um dos principais mistérios da astrofísica prende-se com o fato de saber como é que as galáxias elípticas massivas adormecidas, bastante comuns no Universo atual, extinguiram as suas antes intensas taxas de formação estelar. Tais galáxias colossais, muitas vezes também chamadas esferóides devido à sua forma, possuem tipicamente dez vezes mais estrelas nas suas regiões centrais do que as que tem a nossa galáxia, a Via Láctea, e contêm também cerca de dez vezes mais massa.
Os astrônomos referem-se a estas galáxias como sendo vermelhas e mortas, uma vez que possuem uma enorme abundância de estrelas vermelhas velhas, mas falta-lhes estrelas azuis jovens, e não mostram sinais de formação estelar recente. As idades estimadas das estrelas vermelhas sugerem que as suas galáxias hospedeiras deixaram de formar novas estrelas há cerca de dez bilhões de anos atrás. Este desligar da formação estelar começou logo após o pico de formação estelar no Universo, quando muitas galáxias ainda estavam formando estrelas a uma taxa cerca de vinte vezes maior do que atualmente.
“Estas galáxias esferóides muito massivas contêm cerca de metade de todas as estrelas que o Universo produziu durante toda a sua vida”, disse Sandro Tacchella do ETH Zurich na Suíça, autor principal do artigo que descreve estes resultados. “Não podemos dizer que compreendemos como é que o Universo evoluiu e se tornou no que hoje é, se não compreendermos primeiro como é que estas galáxias evoluíram”.
Tacchella e colegas observaram um total de 22 galáxias de massas diferentes, numa época que corresponde a cerca de três bilhões de anos depois do Big Bang. O instrumento SINFONI montado no VLT coletou radiação desta amostra de galáxias, mostrando de modo preciso onde é que se encontravam as estrelas recém formadas. O SINFONI pode fazer estas medições detalhadas de galáxias distantes graças ao seu sistema de ótica adaptativa, que consegue cancelar a maior parte dos efeitos de distorção da atmosfera terrestre.
Os pesquisadores apontaram também o telescópio espacial Hubble à mesma amostra de galáxias, tirando partido da posição do telescópio no espaço, acima da atmosfera do nosso planeta. A câmara WFC3 do Hubble obteve imagens no infravermelho próximo, revelando a distribuição espacial das estrelas mais velhas nestas galáxias.
“O que é extraordinário é que o sistema de ótica adaptativa do SINFONI pode contrabalançar em grande parte os efeitos atmosféricos e nos dizer onde é que as novas estrelas estão nascendo, fazendo-o com a mesma precisão com que o Hubble nos dá a distribuição de massas estelares”, comenta Marcella Carollo, também do ETH Zurich e co-autora do estudo.

as galáxias morrem de dentro para fora

© ESO (as galáxias morrem de dentro para fora)

De acordo com os novos dados, as galáxias mais massivas da amostra mantiveram uma produção estável de novas estrelas nas suas periferias. Contudo, nos seus centros densamente povoados, a formação estelar já se encontrava desligada nesta época.
“Esta interrupção da formação estelar ocorrendo de dentro para fora em galáxias massivas, agora demonstrada, deverá ajudar-nos a compreender os mecanismos subjacentes envolvidos, os quais têm sido extensivamente debatidos desde há muito tempo na comunidade astronômica“, diz Alvio Renzini, do Observatório de Pádua, Instituto Nacional de Astrofísica italiano.
Uma teoria promissora para explicar este fenômeno é que os materiais necessários à formação das estrelas são espalhados por enxurradas de energia liberadas pelo buraco negro supermassivo central da galáxia, à medida que este devora enormes quantidades de matéria. Outra ideia diz que o gás deixa de fluir para o interior da galáxia, deixando-a sem combustível para formar novas estrelas e transformando-a num esferóide vermelho e morto.
“Há muitas sugestões teóricas diferentes para explicar os mecanismos físicos que levaram à morte destes esferóides massivos”, diz a co-autora Natascha Förster Schreiber, do Max-Planck-Institut für extraterrestrische Physik em Garching, Alemanha. “Descobrir que a extinção da formação estelar começou nos centros, tendo depois progredido para o exterior da galáxia é um passo muito importante para compreender como é que o Universo se transformou no que hoje é”.

Estes resultados serão publicados amanhã na revista Science.

Fonte: ESO

Descoberto exoplaneta gigante gasoso através de lente gravitacional

Astrônomos usando o telescópio espacial Spitzer da NASA e o telescópio polonês Optical Gravitational Lensing Experiment (OGLE) no Observatório de Las Campanas no Chile descobriram um dos mais distantes exoplanetas conhecidos, um planeta gigante gasoso localizado a aproximadamente 13.000 anos-luz de distância e chamado de OGLE-2014-BLG-0124LB.

ilustração de um exoplaneta massivo

© CfA/Christine Pulliam (ilustração de um exoplaneta massivo)

O efeito de microlente é uma forma de lente gravitacional na qual a luz de uma fonte de fundo é curvada pelo campo gravitacional de uma lente de primeiro plano para criar imagens distorcidas.

A técnica como um todo já foi responsável por descobrir três dezenas de planetas, com o mais distante localizado a 25.000 anos-luz de distância, o OGLE-2008-BLG-092LAb. Contudo, metade desses exoplanetas não podem ter sua localização precisamente definida.

Nesse ponto é onde o telescópio Spitzer pode ajudar os astrônomos, graças à sua órbita. O telescópio circula o nosso Sol, e está atualmente a cerca de 207 milhões de quilômetros da Terra.

Quando o Spitzer observa um evento de microlente simultaneamente com um telescópio na Terra, ele vê a estrela brilhando num tempo diferente, devido à grande distância entre os dois telescópios e seus pontos de vista único. Essa técnica recebe o nome de paralaxe.

“O Spitzer é o primeiro telescópio espacial a fazer medidas de paralaxe para microlentes para um planeta. Técnicas de paralaxe tradicionais que empregam telescópios em Terra não são tão efetivas como quando empregadas à grandes distâncias”, disse Jennifer Yee, do Harvard-Smithsonian Center for Astrophysics (CfA).

No caso do OGLE-2014-BLG-0124Lb, a duração do evento de microlente acontece com 150 dias de comprimento. Tanto o OGLE como o Spitzer detectaram o aumento do exoplaneta, com o Spitzer observando 20 dias antes. Esse tempo de intervalo entre a observação do evento pelos telescópios foi usado para calcular a distância para estrela e para o exoplaneta.

Sabendo a distância pode-se então determinar a massa do OGLE-2014-BLG-0124Lb, que tem cerca metade da massa de Júpiter.

De acordo com os astrônomos, o planeta com massa de 0,5 vezes a massa de Júpiter orbita uma estrela com massa de 0,7 vezes a massa do Sol, a uma distância de 3,1 UA.

O estudo foi publicado no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Galáxia espiral com um único braço

Enquanto a maior parte das galáxias, incluindo a nossa Via Láctea, possuem dois ou mais braços espirais, a NGC 4725 possui apenas um.

NGC 4725

© Martin Pugh (NGC 4725)

Nessa imagem composta e colorida, a galáxia de um único braço parece ter sido soprada de um anel proeminente de aglomerados de estrelas recém-nascidas, azulado e de regiões de formação de estrelas avermelhadas. A estranha galáxia também apresenta linhas de poeira escuras e uma barra central amarelada composta de uma população estelar mais velha. A NGC 4725 tem mais de 100 mil anos-luz de diâmetro e localiza-se a cerca de 41 milhões de anos-luz de distância da Terra na constelação de Coma Berenices. Simulações computacionais da formação de braços espirais únicos sugerem que eles podem estar tanto à direita como à esquerda com relação à rotação da galáxia. Na imagem também pode-se observar uma galáxia espiral mais distante, ostentando uma aparência visivelmente mais tradicional.

Fonte: NASA

quarta-feira, 15 de abril de 2015

Primeiros sinais de matéria escura se interagindo?

Pela primeira vez, a matéria escura pode ter sido observada interagindo consigo mesma de uma maneira que não é através da força da gravidade.

aglomerado de galáxias Abell 3827

© ESO (aglomerado de galáxias Abell 3827)

Observações de galáxias em colisão obtidas com o Very Large Telescope (VLT) do ESO deram as primeiras pistas intrigantes acerca da natureza desta misteriosa componente do Universo.

Com o auxílio do instrumento MUSE montado no VLT do ESO, no Chile, e de imagens do telescópio espacial Hubble, uma equipe de astrônomos estudou a colisão simultânea de quatro galáxias do aglomerado de galáxias Abell 3827. A equipe pôde traçar onde é que a massa se encontra no sistema e comparar a distribuição de matéria escura com as posições das galáxias luminosas.
Embora a matéria escura não possa ser observada, a equipe pôde deduzir a sua localização usando uma técnica chamada lente gravitacional. A colisão ocorreu, por mero acaso, em frente de uma fonte muito mais distante, sem relação nenhuma com estes objetos. A massa da matéria escura em torno das galáxias em colisão distorceu fortemente o espaço-tempo, fazendo desviar o caminho percorrido pelos raios de luz emitidos pela galáxia distante que se encontra no campo de fundo, e distorcendo por isso a sua imagem em formatos de arcos.
O que sabemos atualmente é que as galáxias existem em meio a aglomerações de matéria escura. Sem o efeito confinante da gravidade da matéria escura, galáxias como a Via Láctea se despedaçariam à medida que giram. Para que isso não aconteça, 85% da massa do Universo deve existir sob a forma de matéria escura, no entanto a sua verdadeira natureza permanece ainda um mistério. Os astrônomos descobriram que o conteúdo total massa/energia do Universo está separado segundo as seguintes proporções: 68% de energia escura, 27% de matéria escura e 5% de matéria dita normal. Por isso, se descartarmos a energia escura, 85% do total de matéria (sendo o total de matéria 27% + 5%) estará relacionado com a fração de matéria dita escura (já que 27/32 ~ 0,85).
Neste estudo, os astrônomos observaram as quatro galáxias em colisão e descobriram que uma das aglomerações de matéria escura parece estar ficando para trás da galáxia que rodeia. A matéria escura encontra-se atualmente a 5.000 anos-luz (50.000 trilhões de quilômetros) atrás da galáxia; a sonda espacial Voyager da NASA levaria 90 milhões de anos para chegar a uma tal distância da Via Láctea.
Um desvio entre a matéria escura e a sua galáxia associada é algo que se prevê que possa acontecer durante colisões se a matéria escura interagir consigo própria, mesmo que de forma sutil, através de forças que não a gravidade. No entanto, nunca se observou anteriormente matéria escura interagindo de outro modo sem ser por ação da força da gravidade. Simulações de computador mostram que o atrito extra da colisão faria com que a matéria escura se movesse mais devagar. A natureza dessa interação é desconhecida; poderia ser causada por efeitos bem conhecidos ou por alguma força exótica desconhecida. Tudo o que podemos dizer nesta fase é que não se trata da gravidade. As quatro galáxias podem ter sido separadas da sua matéria escura. No entanto, temos apenas uma boa medida para uma delas, já que, devido a um alinhamento casual, o objeto está sofrendo o efeito de lente gravitacional. No caso das outras três galáxias, as imagens afetadas pela lente gravitacional estão mais afastadas, e por isso os limites relativos à localização da sua matéria escura são demasiado amplos para que se possam tirar conclusões significativas.
O autor principal do estudo Richard Massey, da Universidade de Durham, explica: “Pensávamos que a matéria escura estava apenas ali, não interagindo de outra forma que não fosse pelo efeito da gravidade. No entanto, se a matéria escura está ficando lentamente atrasada durante esta colisão, isto pode ser a primeira evidência de uma rica física no setor escuro, ou seja, no Universo escondido que nos rodeia”.
Os pesquisadores dizem que precisam investigar outros efeitos que poderiam também dar origem a este atraso. Terão que ser feitas observações semelhantes de outras galáxias e simulações de computador de colisões de galáxias.
Liliya Williams, membro da equipe da Universidade de Minnesota, acrescenta: “Sabemos que a matéria escura existe devido ao modo como interage gravitacionalmente, ajudando a moldar o Universo, mas sabemos ainda muito pouco sobre o que ela realmente é. As nossas observações sugerem que a matéria escura pode interagir através de forças sem ser a gravidade, o que significa que poderemos excluir algumas teorias chave sobre a sua natureza”.
Este resultado dá sequência a um resultado recente desta equipe, que observou 72 colisões de aglomerados de galáxias e descobriu que a matéria escura interage muito pouco consigo própria.

O novo trabalho, no entanto, diz respeito ao movimento das galáxias individuais, em vez de tratar dos aglomerados de galáxias como um todo. Os pesquisadores dizem que a colisão entre estas galáxias poderia ter durado mais tempo do que as colisões observadas no estudo anterior, permitindo que os efeitos de uma força de atrito minúscula crescessem com o tempo, dando origem a um desvio possível de ser medido. A principal incerteza no resultado é a duração da colisão: o atrito que atrasou a matéria escura pode ter sido exercida por uma força muito fraca que atuou durante cerca de um bilhão de anos ou alternativamente por uma força relativamente mais forte que atuou “apenas” durante 100 milhões de anos.
Em conjunto, estes dois resultados limitam o comportamento da matéria escura pela primeira vez. Massey acrescenta: “Estamos finalmente chegando na matéria escura, vindos de cima e de baixo, ou seja, vamos confinando o nosso conhecimento nas duas direções”.

Fonte: ESO

terça-feira, 14 de abril de 2015

Erupções solares podem ter efeitos profundos em planetas desprotegidos

Apesar de ainda não conhecermos tudo o que é necessário para construir um planeta propício à vida, é sabido que a interação entre o Sol e a Terra é essencial para tornar o nosso planeta habitável, um equilíbrio entre uma estrela que fornece energia e um planeta que pode proteger-se das mais duras emissões solares.

ejeção de massa coronal

© ESA/NASA/SOHO/JHelioviewer (ejeção de massa coronal)

Uma relativamente pequena nuvem de material solar pode ser vista na imagem acima escapando do Sol na parte superior esquerda deste filme capturado pela sonda SOHO no dia 19 de Dezembro de 2006.

O nosso Sol emite constantemente luz, energia e um fluxo de partículas chamado vento solar que banha os planetas à medida que viaja pelo espaço. Também ocorrem ejeções de massa coronal, ou EMC, as maiores erupções de material solar que podem perturbar a atmosfera em torno de um planeta. Na Terra, parte do impacto destas EMC é desviado por uma bolha magnética natural chamada magnetosfera.

Mas alguns planetas, como Vênus, não têm magnetosferas protetivas e isso pode assinalar más notícias. No dia 19 de dezembro de 2006, o Sol libertou uma pequena e lenta nuvem de material solar. No entanto, quatro dias depois, esta EMC foi poderosa o suficiente para arrancar quantidades significativas de oxigênio da atmosfera de Vênus e enviá-lo para o espaço, onde se perdeu para sempre.

Aprender porque é que uma EMC pequena teve um impacto tão forte pode ter consequências profundas para entender o que faz com que um planeta seja propício à vida.

"E se a Terra não tivesse essa magnetosfera protetora?", pergunta Glyn Collinson, autor principal do estudo, do Goddard Space Flight Center da NASA. "Será que a magnetosfera é um pré-requisito para um planeta que sustente vida? Ainda não sabemos, mas podemos estudar estas questões ao observar planetas sem magnetosferas, como Vênus."

O trabalho de Collinson começou com dados da sonda Venus Express da ESA, que chegou a Vênus em 2006 e realizou uma missão de oito anos. Estudando dados do seu primeiro ano, Collinson notou que no dia 23 de dezembro de 2006, a atmosfera de Vênus perdeu oxigênio a um ritmo incrível. Ao mesmo tempo que as partículas escapavam, os dados também mostravam que algo invulgar estava acontecendo ao vento solar que passava pelo planeta.

Para saber mais, Collinson trabalhou com Lan Jian, uma cientista espacial do Goddard Space Flight Center, especializada em identificar eventos no vento solar. Usando dados da Venus Express, Jian tentou descobrir o que tinha atingido o planeta. Parecia ser uma EMC, por isso olhou então para observações da sonda SOHO (Solar and Heliospheric Observatory) da ESA e da NASA. Identificaram uma EMC fraca no dia 19 de dezembro, candidata provável para o que avistaram quatro dias depois perto de Vênus. Ao medir o tempo que levou a chegar a Vênus, estabeleceram que movia-se a mais de 320 km/s, o que é extremamente lento para os padrões das EMC, mais ou menos a mesma velocidade do próprio vento solar.

Os cientistas dividem as EMC em duas grandes categorias: aquelas rápidas o suficiente para conduzir uma onda de choque à sua frente enquanto afastam-se do Sol, e aquelas que se movem muito mais lentamente, como a chegada do nevoeiro. As EMC rápidas já foram observadas em outros planetas e sabe-se que afetam a fuga atmosférica, mas ninguém tinha ainda observado os efeitos de uma EMC lenta.

"O Sol expeliu uma EMC nada impressionante," afirma Collinson. "Mas o planeta reagiu como se tivesse sido atingido por algo enorme. Ao que parece, é como a diferença entre colocar uma lagosta em água fervendo, contra colocando-a em água fria e aquecendo a água lentamente. De qualquer das maneiras, a lagosta está em maus lençóis."

Da mesma forma, os efeitos da EMC pequena acumularam-se ao longo do tempo, arrancando parte da atmosfera de Vênus e puxando-a para o espaço. Esta observação não prova que cada EMC pequena tem um efeito semelhante, mas deixa claro que tal é possível. Por sua vez, isto sugere que, sem uma magnetosfera, a atmosfera de um planeta é intensamente vulnerável aos eventos meteorológicos do Sol.

Vênus é um planeta particularmente inóspito: é 10 vezes mais quente que a Terra com uma atmosfera tão espessa que o máximo que um módulo de aterrissagem sobreviveu, à superfície, antes de ser esmagado, foi pouco mais de duas horas. Talvez estas vulnerabilidades às tempestades solares tenham contribuído para este ambiente. Independentemente disso, a compreensão exata do efeito que a falta de uma magnetosfera tem num planeta como Vênus pode ajudar-nos a perceber mais sobre a habitabilidade de outros planetas que descobrimos além do nosso Sistema Solar.

Os pesquisadores examinaram detalhadamente os seus dados para ver se conseguiam determinar o mecanismo que expulsava a atmosfera. A EMC tinha claramente empurrado o arco de choque da atmosfera em torno de Vênus. Os cientistas também observaram ondas dentro do arco de choque 100 vezes mais poderosas do que aquelas normalmente presentes.

"É como aquilo que vemos em frente de uma rocha durante uma tempestade à medida que passa uma onda," afirma Collinson. "O espaço em frente de Vênus tornou-se muito turbulento."

A equipe desenvolveu três hipóteses para o mecanismo que empurrou o oxigênio para o espaço. Em primeiro lugar, até uma EMC lenta aumenta a pressão do vento solar, que pode ter interrompido o fluxo normal da atmosfera ao redor do planeta da frente para trás, ao invés forçando-a para o espaço. A segunda possibilidade é que os campos magnéticos que viajam com a EMC mudaram os campos magnéticos normalmente induzidos em torno de Vênus pelo vento solar para uma configuração que pode provocar fuga atmosférica. Ou, em terceiro lugar, as ondas dentro do arco de choque de Vênus podem ter transportado partículas à medida que se moviam.

Collinson diz que vai continuar estudando os oito anos de dados da Venus Express em busca de mais informações, mas ressalta que é preciso sorte para encontrar outra EMC perto de outro planeta. Perto da Terra, temos várias sondas espaciais que podem observar uma EMC a deixar o Sol e os seus efeitos perto da Terra, mas é difícil seguir estes eventos perto de outros planetas.

Esta foi uma observação rara de uma EMC que fornece informações cruciais sobre um planeta tão diferente do nosso, e por sua vez sobre a Terra. Quanto mais aprendemos sobre outros mundos, mais aprendemos sobre a história do nosso próprio planeta e o que o tornou tão favorável à vida.

Estes resultados foram publicados na revista Journal of Geophysical Research.

Fonte: Goddard Space Flight Center

sábado, 11 de abril de 2015

O Sistema Solar está inundado de água

As missões científicas exploram o nosso Sistema Solar e procuram novos mundos, e estão encontrando água em lugares surpreendentes.

ilustração do Sistema Solar e além

© NASA (ilustração do Sistema Solar e além)

A água é apenas parte da nossa busca por planetas habitáveis e vida para além da Terra, mas a água une muitos mundos, aparentemente sem relação, de forma inesperada.

"As atividades científicas facultaram uma onda de descobertas surpreendentes relacionadas com a água nos últimos anos, que nos inspiram a continuar investigando as nossas origens e as possibilidades fascinantes para outros mundos, e vida, no Universo," afirma Ellen Stofan, cientista-chefe da agência espacial.

Os elementos químicos na água, hidrogênio e oxigênio, são os elementos mais abundantes no Universo. Os astrônomos vêm a assinatura da água em nuvens moleculares gigantes entre as estrelas, em discos de material que representam sistemas planetários recém-nascidos e nas atmosferas dos planetas gigantes que orbitam outras estrelas.

Existem vários mundos que se pensa possuírem água líquida por baixo da superfície, e muitos mais que têm água sob a forma de gelo ou vapor. A água pode ser encontrada em corpos primitivos como cometas e asteroides, e em planetas anões como Ceres. Pensa-se que as atmosferas e interiores dos quatro planetas gigantes, Júpiter, Saturno, Úrano e Neptuno, contenham quantidades enormes de material molhado, e as suas luas e anéis têm grandes quantidades de água gelada.

Talvez os mundos de água mais surpreendentes sejam as cinco luas geladas de Júpiter e Saturno que mostram fortes evidências de oceanos por baixo da superfície: Ganimedes, Europa e Calisto em Júpiter, e Encélado e Titã em Saturno.

Através do telescópio espacial Hubble recentemente foi possível coletar evidências poderosas de que Ganimedes tem um oceano subsuperficial de água salgada, provavelmente entre duas camadas de gelo.

Pensa-se que Europa e Encélado tenham um oceano de água líquida por baixo da superfície em contato com rochas ricas em minerais, e que tenham os três ingredientes necessários para a vida como a conhecemos: água líquida, elementos químicos essenciais para os processos biológicos e fontes de energia que podem ser usadas por seres vivos. A missão Cassini da NASA revelou que Encélado é um mundo ativo de geysers de gelo. Pesquisas recentes sugerem que pode ter atividade hidrotermal no fundo do seu oceano, um ambiente potencialmente adequado aos organismos vivos.

Outras missões da NASA também encontraram sinais de água em crateras permanentemente à sombra em Mercúrio e na Lua, que mantêm um registo de impactos gelados ao longo dos tempos, como uma espécie de lembranças criogênicas.

Apesar do nosso Sistema Solar parecer estar inundado em alguns lugares, outros parecem ter perdido grandes quantidades de água.

Em Marte, sondas da NASA descobriram evidências claras de que o Planeta Vermelho teve água à sua superfície durante longos períodos do seu passado distante. O rover Curiosity descobriu um leito antigo que existia no meio de condições favoráveis para a vida como a conhecemos.

Mais recentemente, cientistas da NASA que usavam telescópios terrestres foram capazes de estimar a quantidade de água que Marte perdeu ao longo do tempo. Concluíram que o planeta já teve água líquida suficiente para formar um oceano que ocupava quase metade do hemisfério norte de Marte, em algumas regiões atingindo profundidades superiores a 1,6 km. Mas para onde foi a água?

Claro, parte está nas calotes polares de Marte e por baixo da superfície. Também pensamos que grande parte da atmosfera primitiva de Marte foi arrancada pelo vento de partículas carregadas que provém do Sol, fazendo com que o planeta secasse. A missão MAVEN da NASA está seguindo esta pista a partir da órbita marciana.

A história de como Marte secou está intimamente ligada à forma como a atmosfera do Planeta Vermelho interage com o vento solar. Os dados das missões solares incluindo a STEREO, SDO (Solar Dynamics Observatory) e a planejada Solar Probe Plus são vitais para ajudar a compreender melhor o que aconteceu.

A compreensão da distribuição da água no nosso Sistema Solar diz-nos muito sobre como os planetas, luas, cometas e outros corpos formaram-se há 4,5 bilhões de anos atrás a partir do disco de gás e poeira que rodeava o nosso Sol. O espaço mais perto do Sol era mais quente e seco do que o espaço mais longe do Sol, que era frio o suficiente para a água condensar. A linha divisória, chamada "linha de neve", situava-se mais ou menos na órbita atual de Júpiter. Ainda hoje, essa é a distância aproximada do Sol a partir da qual o gelo na maioria dos cometas começa a derreter e estes se tornam"ativos. O seu jato brilhante liberta água gelada, vapor, poeira e outros produtos químicos, que se pensa formarem os alicerces da maioria dos mundos do Sistema Solar exterior.

Os cientistas pensam que, no início, o Sistema Solar era demasiado quente para a água condensar em líquido ou gelo nos planetas interiores, por isso teve que ser obtida possivelmente por cometas e asteroides. A missão Dawn da NASA está atualmente estudando Ceres, o maior corpo do cinturão de asteroides entre Marte e Júpiter. Os pesquisadores pensam que Ceres pode ter uma composição rica em água parecida com alguns dos corpos que trouxeram água aos três planetas rochosos e interiores, incluindo a Terra.

A água do planeta gigante Júpiter possui uma peça crítica do quebra-cabeça da formação do Sistema Solar. Júpiter foi provavelmente o primeiro planeta a ser formado e contém a maioria do material que não foi incorporado no Sol. As principais teorias sobre a sua formação dependem da quantidade de água que o planeta absorveu. Para ajudar a resolver este mistério, a missão Juno da NASA vai medir esta quantidade importante em meados de 2016.

Olhando mais longe, a observação da formação de outros sistemas planetários é como um vislumbre das imagens do Sistema Solar quando este era jovem, e a água desempenha um papel muito importante nessa história. Por exemplo, o telescópio espacial Spitzer da NASA observou sinais de uma chuva de cometas ricos em água num sistema jovem, semelhante ao bombardeamento que os planetas do nosso Sistema Solar sofreram durante a sua juventude.

Com o estudo dos exoplanetas será possível descobrir se existem outros mundos ricos em água como o nosso. Na verdade, o nosso conceito básico do que torna um planeta adequado à vida está intimamente ligado com a água: cada estrela tem uma zona habitável, o intervalo de distâncias em torno da qual as temperaturas não são nem demasiado quentes nem demasiado frias para a água existir no estado líquido. A missão Kepler da NASA foi desenhada com isto em mente. O Kepler procura planetas na zona habitável ao redor de muitos tipos de estrelas.

Tendo recentemente verificado o seu milésimo planeta, os dados do Kepler confirmam que os tamanhos mais comuns para planetas são apenas um pouco maiores do que a Terra. Os astrônomos pensam que muitos desses mundos podem estar cobertos inteiramente por oceanos profundos. O sucessor da missão principal do Kepler, a missão K2, continua observando as diminuições de brilho estelar a fim de descobrir novos mundos.

A futura missão da agência espacial, TESS (Transiting Exoplanet Survey Satellite), vai procurar exoplanetas do tamanho terrestre e super-Terras em torno de estrelas brilhantes da vizinhança solar. Alguns dos planetas que o TESS descobrir podem ter água e o próximo grande observatório espacial da NASA, o telescópio espacial James Webb, vai examinar em grande detalhe a atmosfera desses mundos especiais.

"É fácil esquecermo-nos que a história da água da Terra, desde os aguaceiros ligeiros até aos rios furiosos, está intimamente ligada à maior história do nosso Sistema Solar e além. Mas a nossa água veio de algum outro lugar, cada mundo no nosso Sistema Solar partilha da mesma fonte de água. Assim sendo, vale a pena considerar que o próximo copo de água que bebermos pode facilmente ter sido parte de um cometa ou de um asteroide, ou do oceano de uma lua, ou do há muito desaparecido mar à superfície de Marte. E note que o céu noturno está repleto de exoplanetas formados por processos semelhantes aos que formaram o nosso planeta natal, onde ondas delicadas alcançam as margens dos mares alienígenas", disse Preston Dyches.

Fonte: Jet Propulsion Laboratory

sexta-feira, 10 de abril de 2015

Novas evidências sobre a formação da Lua

A formação da Lua por muito tempo tem sido um mistério para a astronomia, mas novos estudos estão suportando a teoria de que a Lua foi formada a partir de detritos deixados para trás de uma colisão entre a Terra recém-nascida e uma rocha do tamanho de Marte, com uma camada superficial de meteoritos cobrindo ambos os corpos após a colisão.

ilustração da colisão que formou a Terra e a Lua

© Hagai Perets (ilustração da colisão que formou a Terra e a Lua)

A Terra nasceu a cerca de 4,5 bilhões de anos atrás, e acreditam-se que a Lua nasceu pouco tempo depois. A explicação mais aceita atualmente para a origem da Lua, conhecida como a hipótese do impacto gigante, foi proposta pela primeira vez na década de 1970. Ela sugere que a Lua resultou da colisão de dois protoplanetas, ou mundos embrionários. Um desses mundos era a Terra recém-formada e o outro um objeto do tamanho de Marte, conhecido como Theia. A Lua então, depois da colisão, se formou a partir dos detritos.

Os desafios dessa explicação estão relacionados à química da Lua. A maior parte dos modelos da teoria do impacto gigante, diz que mais de 60% da Lua deveria ser feita de material originado de Theia. O problema é que a maior parte dos corpos no Sistema Solar possuem uma química única, e a Terra, Theia e consequentemente a Lua também deveriam ter. Contudo, amostras de rochas da Lua revelaram que ela é mais similar com a Terra do que os modelos previam.

“Em termos de composição, a Terra e a Lua são quase gêmeas, suas composições diferem em poucas parte em um milhão”, disse a principal autora do estudo Alessandra Mastrobuono-Battisti, uma astrofísica no Instituto Israel de Tecnologia em Haifa. “Essa contradição tem criado uma grande sombra sobre o modelo do impacto gigante”.

Para iluminar esse mistério, Mastrobuono-Battisti e seus colegas simularam colisões no início do Sistema Solar entre 85 a 90 protoplanetas, cada um deles com cerca de 10% da massa da Terra, e entre 1.000 a 2.000 corpos menores, chamados de planetesimais. Cada um desses últimos com uma massa de cerca de 0,25% a massa da Terra.

Os pesquisadores simularam as colisões levando em consideração um padrão de disco que se estendia de 0,5 UA até 4,5 UA (Unidade Astronômica) de distância do Sol.

Os cientistas descobriram que entre 100 milhões a 200 milhões de anos depois dos modelos terem começados a rodar, cada simulação tipicamente produziu entre três e quatro planetas rochosos, com o maior deles com uma massa comporável à massa da Terra. Esses mundos eram compostos de material que era distinto um dos outros. Contudo, eles também encontraram que entre 20% a 40% do tempo, a composição de um dos planetas era muito similar à composição do último protoplaneta que tinha colidido com ele. Essa semelhança é cerca de 10 vezes maior do que as estimativas anteriores.

“O aspecto mais surpreendente e animador foi encontrar a possibilidade de termos novas ideias que podem iluminar um mistério de mais de 30 anos”, disse o co-autor do estudo Hagai Perets, um astrofísico do Instituto de Tecnologia de Haifa. “Pares de planetas e corpos impactantes não são tão raros assim”.

A razão para essa similaridade na composição tem sido feita com as órbitas ocupadas por esses corpos em colisão. A composição desses objetos variava de acordo com a quantidade de calor que eles recebiam; por exemplo, quanto mais distante um protoplaneta estava do Sol, mais frio ele era, e assim, ele teria uma probabilidade maior de reter um isótopo relativamente pesado do oxigênio. Os cientistas descobriram que para cada planeta formado, o último protoplaneta a colidir com ele provavelmente compartilhava uma órbita similar. Assim, os protoplanetas que compartilharam locais de nascimento similares, podem também compartilhar uma composição similar.

Essas descobertas sugerem que a composição similar da Terra e da Lua poderia ser uma consequência natural de um impacto gigante. Essa teoria também explica por que suas composições diferem daquelas de outros corpos no Sistema Solar, dizem os pesquisadores.

Outro desafio para entender  como a Lua e a Terra se formaram tem relação com o tungstênio. Esse metal tem características altamente siderófilas significando que ele se liga fortemente com o ferro, e poderia ter uma forte tendência para se mover para o núcleo da Terra rico em ferro. Contudo, a crosta da Terra e o manto, possui um excesso de elementos siderófilos como o tungstênio.

Pesquisas anteriores sugerem que os elementos ligados ao ferro agora vistos na Terra, vieram de um uma camada superficial de material do espaço que se acumulou em ambos os corpos depois do impacto gigante que formou a Lua e depois formou o núcleo da Terra. Se essa teoria for verdadeira, então os níveis de isótopos de tungstênio da Terra deveriam ser diferentes daqueles encontrados na Lua. Agora, outros dois estudos independentes revelaram que de fato existe essa diferença prevista entre a quantidade de isótopos de tungstênio na Terra e na Lua.

Os cientistas analisaram as rochas lunares e descobriram um excesso na abundância do isótopo tungstênio-182 na Lua se comparado com a quantidade presente no núcleo da Terra atualmente. “Essa é a primeira vez que nós podemos resolver essas pequenas diferenças”, disse o cosmoquímico Thomas Kruijer na Universidade de Münster na Alemanha, principal autor de um dos dois estudos. “Definir esse valor com precisão é um passo muito importante para os estudos posteriores”.

Essa diferença é melhor explicada pela teoria sobre as diferentes proporções de tungstênio-182 que se acumularam em cada corpo depois do impacto gigante que formou a Lua.

Fonte: Nature

quinta-feira, 9 de abril de 2015

Descobertas moléculas orgânicas complexas num sistema estelar jovem

Astrônomos detectaram pela primeira vez a presença de moléculas orgânicas complexas, os blocos constituintes da vida, num disco protoplanetário que rodeia uma estrela jovem.

ilustração do disco protoplanetário que rodeia a jovem estrela MWC 480

© NRAO/B. Saxton (ilustração do disco protoplanetário que rodeia a jovem estrela MWC 480)

A descoberta, feita com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), confirma que as condições que deram origem à Terra e ao Sol não são únicas no Universo.

As novas observações do ALMA revelam que o disco protoplanetário que rodeia a estrela jovem MWC 480 contém enormes quantidades de cianeto de metila ou acetonitrila (CH3CN), uma molécula complexa baseada no carbono. Encontrou-se em torno de MWC 480 cianeto de metila em quantidade suficiente para encher todos os oceanos da Terra. Esta estrela tem apenas um milhão de anos. Em termos de comparação, o Sol tem mais de quatro bilhões de anos de idade. O nome MWC 480 faz referência ao Catálogo do Mount Wilson de estrelas B e A com linhas brilhantes de hidrogênio nos seus espectros.
Tanto esta molécula como a sua prima mais simples, o cianeto de hidrogênio (HCN), foram encontradas nas regiões periféricas mais frias do disco recém formado da estrela, numa região que os astrônomos pensam ser análoga ao Cinturão de Kuiper, o reino dos planetesimais gelados e dos cometas no nosso Sistema Solar, situado depois da órbita de Netuno.
Os cometas retêm informação inalterada da química primordial do Sistema Solar, do período da formação planetária. Pensa-se que os cometas e asteroides do Sistema Solar exterior trouxeram para a jovem Terra água e moléculas orgânicas, o que ajudou a preparar o terreno para o desenvolvimento da vida primordial.
“Os estudos de cometas e asteroides mostram que a nebulosa que deu origem ao Sol e aos planetas era rica em água e componentes orgânicos complexos”, diz Karin Öberg, astrônoma no Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, EUA e autora principal de um artigo científico que descreve estes resultados.
“Temos agora mais evidências de que a mesma química existe em outros lugares do Universo, em regiões que poderão eventualmente formar sistemas solares parecidos ao nosso”. Isto é particularmente intrigante, diz Öberg, uma vez que as moléculas encontradas em MWC 480 têm concentrações semelhantes às dos cometas do Sistema Solar.
A estrela MWC 480, que tem cerca de duas vezes a massa do Sol, situa-se a 455 anos-luz de distância na região de formação estelar do Touro. O disco que a rodeia encontra-se numa fase inicial de evolução, tendo coalescido recentemente a partir de uma nebulosa fria e escura de gás e poeira. Estudos feitos com o ALMA e com outros telescópios ainda não detectaram nenhum sinal óbvio de formação planetária no disco, embora observações a resoluções mais elevadas possam eventualmente revelar estruturas semelhantes às da estrela HL Tauri, a qual é essencialmente da mesma idade.
Os astrônomos sabem já há algum tempo que as nuvens interestelares frias e escuras são fábricas muito eficientes de formação de moléculas orgânicas complexas, incluindo um grupo de moléculas conhecidas por cianetos. Os cianetos, e mais particularmente o cianeto de metila, são importantes porque contêm ligações carbono-nitrogênio, as quais são essenciais à formação de aminoácidos, a base das proteínas e os blocos constituintes da vida.
Até agora, não era evidente se estas mesmas moléculas orgânicas complexas se formariam de forma natural e sobreviveriam ao ambiente energético de um novo sistema estelar em formação, onde choques e radiação podem facilmente quebrar as ligações químicas.
Tirando o máximo partido da sensibilidade do ALMA, os astrônomos puderam verificar nestas últimas observações que estas moléculas não só sobrevivem nestes ambientes como também prosperam.
O ALMA consegue detectar a fraca radiação milimétrica emitida de forma natural pelas moléculas no espaço. Para estas observações mais recentes os astrônomos utilizaram apenas uma parte das 66 antenas do ALMA, numa época em que o telescópio estava na sua configuração de mais baixa resolução. Estudos posteriores deste e de outros discos protoplanetários com o ALMA nas suas capacidades máximas revelarão pormenores adicionais acerca da evolução química e estrutural de estrelas e planetas.

Um aspecto importante é que as moléculas detectadas pelo ALMA são muito mais abundantes do que as descobertas em nuvens interestelares. Este fato mostra que os discos protoplanetários são extremamente eficientes na formação de moléculas orgânicas complexas e que as conseguem formar em escalas de tempo relativamente curtas. Esta formação rápida é essencial para superar as forças que, de outro modo, quebrariam as moléculas. Adicionalmente, estas moléculas foram detectadas numa parte relativamente calma do disco, numa região que vai de 4,5 a 15 bilhões de quilômetros de distância da estrela central. Apesar de muito distante quando comparada ao tamanho do nosso Sistema Solar, esta região corresponde à zona de formação de cometas nas dimensões de MWC 480.
À medida que o sistema continua evoluindo, os astrônomos pensam que é provável que as moléculas orgânicas existentes nos cometas e em outros corpos gelados sejam levadas para meios mais propícios ao desenvolvimento de vida.
“A partir do estudo de exoplanetas, sabemos que o Sistema Solar não é único no seu número de planetas ou em abundância de água”, conclui Öberg. “Sabemos agora que não somos únicos em química orgânica. Uma vez mais, aprendemos que não somos especiais. Do ponto de vista da vida no Universo, isto são excelentes notícias”.

Este trabalho foi descrito no artigo científico intitulado “The Cometary Composition of a Protoplanetary Disk as Revealed by Complex Cyanides” de K.I. Öberg et al., cujos resultados foram publicados hoje na revista Nature.

Fonte: ESO

quarta-feira, 8 de abril de 2015

O ALMA obtém imagens espectaculares na sua configuração máxima

O Atacama Large  Millimeter/submillimeter Array (ALMA) captou recentemente imagens de nitidez sem precedentes que mostram o quase perfeito anel gravitacional de Einstein de uma galáxia distante e a superfície do asteroide Juno.

galáxia SDP.81 afetada por lente gravitacional

© ALMA/B. Saxton (galáxia SDP.81 afetada por lente gravitacional)

A região central alaranjada e brilhante do anel revela a poeira resplandescente na distante galáxia SDP.81. As regiões de menor resolução que circundam o anel traçam a radiação milimétrica emitida por dióxido de carbono e por moléculas de água.

Estas imagens extraordinárias foram obtidas no final de 2014 no âmbito da Campanha de Linha de Base Longa do ALMA, que foi testada com sucesso, tendo-se verificado a capacidade do telescópio para observar os menores detalhes. Este efeito é conseguido quando as antenas se encontram na sua separação máxima: até 15 quilômetros de distância entre si.
Foram selecionados cinco alvos de estudo durante a Campanha de Linha de Base Longa do ALMA, os quais incluíram o disco protoplanetário de HL Tauri, a galáxia afetada por lente gravitacional SDP.81, o asteroide Juno, a estrela Mira e o quasar 3C138.

A SDP.81 é uma galáxia com formação estelar ativa observada quando o Universo tinha apenas 15% da sua idade atual. Está sofrendo o efeito de lente gravitacional devido a uma galáxia massiva que se encontra comparativamente mais perto, a uns quatro bilhões de anos-luz de distância. A lente gravitacional deu origem a um anel de Einstein quase perfeito. A resolução do ALMA para este objeto, utilizando linhas de base longas, excedeu a de qualquer outro telescópio que o observou anteriormente, incluindo o telescópio espacial Hubble da NASA/ESA. A imagem obtida revela imenso detalhe na estrutura do anel, detalhe este nunca antes observado.
O segundo alvo está muito mais próximo de nós. Uma série de imagens obtidas com o ALMA deram-nos uma visão sem precedentes da superfície de Juno, um dos maiores membros do cinturão principal de asteroides do Sistema Solar. Compiladas numa pequena animação, estas imagens de alta resolução mostram a rotação do asteroide à medida que brilha nos comprimentos de onda do milímetro.

© ESO/ALMA/NRAO/NAOJ (rotação do asteroide Juno)

A sequência completa das observações ALMA foi executada em quatro horas, quando Juno se encontrava a aproximadamente 295 milhões de quilômetros da Terra. A resolução das novas observações do ALMA é muito melhor do que a de observações feitas anteriormente a comprimentos de onda semelhantes e é suficiente para resolver a forma irregular do asteroide e indicar estruturas proeminentes na sua superfície.
Os cinco objetos foram escolhidos de forma a mostrar o potencial científico do ALMA, o maior observatório terrestre do mundo, na sua configuração mais extensa.

Foram publicados na revista especializada Astrophysical Journal Letters quatro artigos científicos escritos por representantes de toda a equipe internacional do ALMA, detalhando estas observações.

Fonte: ESO

A saga da formação das estrelas maciças

Um par de imagens de uma estrela jovem, separadas por 18 anos, revelaram uma diferença dramática que está fornecendo aos astrônomos um olhar único e em "tempo real" sobre a forma como as estrelas maciças se desenvolvem durante os primeiros estágios de formação.

ilustração da estrela W75N(B)-VLA2

© NRAO/Bill Saxton (ilustração da estrela W75N(B)-VLA2)

Os astrônomos usaram o VLA (Karl G. Jansky Very Large Array) do NSF (National Science Foundation) para estudar uma estrela jovem e maciça chamada W75N(B)-VLA2, a cerca de 4.200 anos-luz da Terra. Compararam uma imagem obtida em 2014 com uma imagem mais antiga obtida em 1996.

"A comparação é notável," afirma Carlos Carrasco-Gonzalez do Centro de Radioastronomia e Astrofísica da Universidade Nacional Autônoma do México, líder da equipe de pesquisa. A imagem obtida em 1996 mostra uma região compacta de ventos quentes e ionizados ejetados pela estrela jovem. A imagem de 2014 mostra que os ventos expulsos deformaram-se num fluxo distintamente alongado.

imagens da estrela W75N(B)-VLA2

© NRAO/Carrasco-Gonzalez (imagens da estrela W75N(B)-VLA2)

As imagens acima mostram a estrela W75N(B)-VLA2 obtidas pelo VLA: topo, 1996; em baixo, 2014.

"Estamos observando esta mudança dramática em tempo real, de modo que este objeto está fornecendo uma excelente oportunidade para assistir, ao longo dos próximos anos, aos estágios iniciais da sua formação," explica Carrasco-Gonzalez.

Os cientistas acreditam que a jovem estrela está se formando num ambiente denso e gasoso, e que está rodeada por um toróide empoeirado e em forma de rosquinha. A estrela tem períodos em que expele ventos ionizados e quentes durante vários anos. Ao início, o vento pode expandir-se em todas as direções e forma assim uma concha esférica ao redor da estrela. Mais tarde, o vento bate no toróide poeirento, diminuindo de velocidade. O vento expande-se para fora nos polos do toróide, onde há menos resistência, move-se mais rapidamente e resulta numa forma alongada de escoamento.

"No espaço de apenas 18 anos, vimos exatamente o que tínhamos previsto," comenta Carrasco-Gonzalez.

Existem modelos teóricos desenvolvidos para explicar por que a expansão quase esférica destes fluxos são observados com estrelas jovens muito mais massivas que o Sol, quando são esperados fluxos mais estreitos e em forma de feixe com base em observações de estrelas parecidas com o Sol, menos maciças e em estágios semelhantes de desenvolvimento. Estima-se que a W75N(B)-VLA2 tenha cerca de 8 vezes a massa do Sol. Os fluxos mais uniformes são vistos em estrelas jovens e maciças durante os primeiros milhares de anos das suas vidas, a fase que se pensa que a estrela W75N(B)-VLA2 está atravessando.

"A nossa compreensão de como as estrelas jovens e maciças se desenvolvem é muito menos completa do que a nossa compreensão de como estrelas semelhantes ao Sol se desenvolvem," afirma Carrasco-Gonzalez. "A observação das mudanças vai ser bastante positiva. Esperamos aprender muito com este objeto," acrescenta.

A pesquisa foi relatada na revista Science.

Fonte: National Radio Astronomy Observatory

terça-feira, 7 de abril de 2015

No coração do Aglomerado de Virgem

O Aglomerado de Virgem é o aglomerado de galáxias mais próximo da nossa Via Láctea.

Aglomerado de Virgem

© R. Colombari/G. Paglioli (Aglomerado de Virgem)

Ele está tão próximo que se estende por mais de 5 graus no céu, cerca de 10 vezes o tamanho angular da Lua cheia. O núcleo deste aglomerado está a cerca de 70 milhões de anos-luz de distância.

O Aglomerado de Virgem contém mais de 2.000 galáxias e tem uma força gravitacional notável nos membros do Grupo Local de galáxias que rodeiam a Via Láctea. Ele não contém apenas galáxias cheias de estrelas, mas também cheias de gás tão quente que brilham em raios X. Os movimentos das galáxias dentro e ao redor dos aglomerados indicam que eles contêm mais matéria escura do que qualquer matéria visível que possamos detectar.

Na foto acima, o coração do Aglomerado de Virgem inclui galáxias tão luminosas como as do catálogo Messier, como os Olhos de Markarian no canto superior esquerdo, M86 logo acima e à direita do centro, M84 na margem direita, bem como a galáxia espiral NGC 4388 na parte inferior à direita.

Fonte: NASA

Um aglomerado de estrelas jovem e brilhante

Estrelas azuis e quentes brilham intensamente no recém-formado e brilhante aglomerado de estrelas NGC 3293.

NGC 3293

© ESO/G. Beccari (NGC 3293)

O aglomerado aberto NGC 3293 está localizado na constelação Carina, a uma distância de cerca de 8.000 anos-luz, e tem uma abundância particularmente elevada dessas jovens estrelas brilhantes.

Um estudo do NGC 3293 mostra que as estrelas azuis têm apenas cerca de 6 milhões de anos de idade, enquanto que as estrelas mais avermelhadas e fracas parecem ter cerca de 20 milhões de anos. Se for verdade, a formação de estrelas neste aglomerado aberto levou pelo menos 15 milhões de anos. No entanto, essa mesma quantidade de tempo é curta quando comparada com os bilhões de anos de idade de estrelas como o nosso Sol, e os mais de dez bilhões de anos de idade de muitas galáxias e nosso Universo.

Na foto, o NGC 3293 aparece logo na frente de uma faixa de poeira densa e do gás hidrogênio brilhante avermelhado que emana da Nebulosa Carina.

Fonte: NASA

domingo, 5 de abril de 2015

Forças de maré e evasão da atmosfera podem gerar mundos habitáveis

Dois fenômenos conhecidos por inibir a habitabilidade potencial de planetas: as forças de maré e a atividade estelar vigorosa, pode em vez disso elucidar a possibilidade de vida em certos planetas que orbitam estrelas de baixa massa.

núcleos evaporados habitáveis

© NASA/Rodrigo Luger (núcleos evaporados habitáveis)

Os astrônomos da Universidade de Washington, o doutorando Rodrigo Luger e o professor assistente de pesquisa Rory Barnes, dizem que as duas forças poderiam se combinar para transformar inabitáveis ​​"mini-Netunos", grandes planetas em órbitas exteriores com núcleos sólidos e atmosferas de hidrogênio espessos, constituindo mundos potencialmente habitáveis.
A maioria das estrelas em nossa galáxia são estrelas de pequena massa, também chamadas de anãs M, que são menores e menos brilhantes que o Sol, sendo bons alvos para encontrar e estudar planetas potencialmente habitáveis. Os astrônomos esperam encontrar planetas semelhantes à Terra em zonas habitáveis ​​destas estrelas nos próximos anos, por isso é importante saber se eles podem realmente suportar a vida.

As Super-Terras são planetas maior em massa que a Terra e menor do que os gigantes gasosos como Netuno e Urano. A zona habitável é a região do espaço em torno de uma estrela que pode permitir que a água líquida na superfície de um planeta rochoso em sua órbita, talvez origine a vida. Por exemplo, a Super-Terra GJ 667Cc recentemente descoberta na zona habitável, possui um período orbital de 28,15 dias e uma massa mínima de 4,5 vezes a da Terra (0,0143 ± 0,0012 MJ ), e dista 0,123 ± 0,02 UA, isto é, 12,3% da distância entre a Terra e o Sol o que compensa o fato da estrela anã vermelha GJ 667 C de classe M ser bem mais tênue que o Sol. A GJ 667 C é uma estrela que reside em um sistema estelar tríplice distante 22 anos-luz da Terra na direção da constelação do Escorpião.

"Há muitos processos que são insignificantes na Terra, mas podem afetar a habitabilidade de planetas de anãs M", disse Luger. "Os dois mais importantes são os fortes efeitos de maré e a atividade estelar vigorosa."

A força de maré é a atração gravitacional de uma estrela em um planeta em órbita, e é mais forte no lado mais próximo do planeta, em frente à estrela hospedeira, do que do outro lado, uma vez que a gravidade enfraquece com a distância. Esta força pode esticar um astro em uma forma elipsoidal ou oval, possivelmente fazendo com que ele se aproximam da sua estrela.

"Esta é a razão pela qual temos marés nos oceanos da Terra, tanto a Lua e como o Sol podem exercer forças de maré sobre os oceanos, criando uma protuberância que experimentamos como uma maré alta", disse Luger. "Felizmente, na Terra é apenas a água nos oceanos que fica distorcida, e apenas por alguns metros. Mas nos planetas nas zonas habitáveis ​​de anãs M, as forças de maré são muito mais fortes."

Este alongamento provoca atrito no interior de um planeta que emite enormes quantidades de energia. Isto pode conduzir ao vulcanismo na superfície e, em alguns casos, até mesmo aquecer o planeta num efeito estufa descontrolado, fervendo seus oceanos e todas as chances de habitabilidade.

A atividade estelar vigorosa também pode destruir qualquer possibilidade de vida em planetas que orbitam estrelas de baixa massa. As anãs M são muito brilhantes quando jovem e emitem grande quantidade de raios X de alta energia e radiação ultravioleta que podem aquecer a atmosfera superior do planeta, gerando ventos fortes que podem deteriorar a atmosfera inteiramente. Em um artigo recente, Luger e Barnes mostrou que toda água de superfície de um planeta pode ser perdido devido a tal atividade estelar durante os primeiros cem milhões de anos após a sua formação.

Usando modelos de computador, os pesquisadores descobriram que as forças de maré e a evasão da atmosfera às vezes podem moldar planetas que começam como mini-Netunos gasosos, mundos potencialmente habitáveis.

Os mini-Netunos tipicamente se formam longe da sua estrela hospedeira, com moléculas de gelo se juntando com os gases hidrogênio e hélio em grandes quantidades para formar núcleos de gelo rochoso cercado por atmosferas gasosas massivas.

Estes planetas nem sempre permanecem neste local inóspito. Ao lado de outros processos, as forças de maré podem induzir a migração do planeta para o interior. Esse processo pode conduzir os mini-Netunos para a zona habitável da sua estrela hospedeira, onde são expostos a níveis muito mais altos de raios X e radiação ultravioleta.

Isto pode levar à perda rápida dos gases da atmosfera para o espaço, às vezes deixando para trás, um mundo rochoso sem hidrogênio na zona habitável. Os pesquisadores chamam tais planetas de ​​"núcleos evaporados habitáveis."

"Neste planeta é provável que tenha água abundante na superfície, uma vez que seu núcleo é rico em água gelada. Uma vez na zona habitável, este gelo pode derreter e formar oceanos", disse Luger.

Barnes e Luger notam que muitas outras condições têm de ser cumpridas para tais planetas serem habitáveis. Um deles é o desenvolvimento de um ambiente propício para a criação e reciclagem de nutrientes em todo o mundo.

Outro aspecto que deve ser considerado é se a perda do hidrogênio e hélio é muito lenta, enquanto um planeta está se formando, um envelope gasoso iria prevalecer e, um mundo rochoso terrestre não poderia se formar. Se o mundo perde hidrogênio muito rapidamente, poderia resultar um efeito estufa descontrolado com toda a água espelida para o espaço.

A pesquisa foi feita através do Virtual Planetary Laboratory, um grupo de pesquisa interdisciplinar baseado na Universidade de Washington, e financiado através do NASA Astrobiology Institute.

Um artigo sobre a pesquisa foi publicado na revista Astrobiology.

Fonte: Universidade de Washington

sábado, 4 de abril de 2015

A causa da morte de uma anã branca

Uma equipe de astrônomos utilizou dados de arquivo do observatório de raios X japonês Suzaku para determinar a massa de uma anã branca que explodiu há milhares de anos numa supernova de tipo Ia.

remanescente de supernova 3C 397

© Suzaku/Chandra (remanescente de supernova 3C 397)

A imagem acima mostra o remanescente de supernova em raios X através dos observatórios Chandra (roxo) e Suzaku (azul).

O estudo suporta um cenário em que a supernova resultou da explosão termonuclear de uma única anã branca e não da colisão de duas anãs brancas num sistema binário. O estudo tem implicações importantes para a compreensão das supernovas de tipo Ia, uma ferramenta fundamental na cosmologia moderna para a compreensão da expansão do Universo e da energia escura.

Estrelas semelhantes ao Sol, ou mesmo um pouco mais maciças, terminam as suas vidas projetando as suas camadas mais exteriores para o espaço, devido a instabilidades internas, deixando para trás um núcleo quente formado por átomos de carbono e oxigênio previamente sintetizados na estrela. A este núcleo, que tem no máximo 1,4 vezes a massa do Sol e é aproximadamente do tamanho da Terra, dá-se o nome de “anã branca”. Este limite de 1,4 massas solares é designado por Limite de Chandrasekhar. Os átomos de carbono e oxigênio numa anã branca encontram-se compactados tanto quanto é permitido pelas leis da mecânica quântica, tornando a anã estável. A densidade do material é enorme: 1 centímetro cúbico tem massa de cerca de 1 tonelada! As anãs brancas isoladas são inertes e estão condenadas a arrefecer gradualmente ao longo de milhares de milhões de anos, até se tornarem invisíveis, tal qual uma brasa se apagando.

No entanto, desde há muitos anos que os astrônomos suspeitam que anãs brancas em sistemas binários, ou seja, uma estrela normal e uma anã branca orbitando um centro de gravidade comum, podem ter um destino diferente se as condições certas se proporcionarem. A anã branca pode capturar material da estrela normal e “engordar” até atingir o limite de 1,4 massas solares, momento em que se dá a ignição da fusão do carbono, provocando uma explosão termonuclear que destrói por completo a estrela. Esta explosão é designada de supernova e é de um tipo especial conhecido por Ia. As elevadíssimas temperaturas a que é submetido o material da estrela durante a explosão e a abundância de partículas livres, especialmente núcleos de hélio e nêutrons, permitem a síntese de novos elementos químicos a partir da matéria prima original de carbono e oxigênio.

Existe um cenário alternativo em que o sistema binário é formado por duas anãs brancas que gradualmente perdem energia orbital, aproximando-se numa espiral fatídica ao longo de milhões de anos. Finalmente, acabam por colidir e é este evento que provoca a ignição da fusão explosiva do carbono e origina a respectiva supernova de tipo Ia. Há cada vez mais evidência de que ambos os cenários podem dar origem a este tipo de supernovas, mas não se sabe qual deles é predominante e qual a fração de eventos correspondente. Para melhor compreender a gênese destas supernovas, com implicações importantes na cosmologia , é possível observar remanescentes de supernovas e tentar deduzir qual o cenário que lhe deu origem. Os dois cenários produzem diferentes abundâncias de elementos pesados, tais como manganês e níquel, que poderão ser observadas no remanescente.

Este cenário foi observado no remanescente de supernova 3C 397, situado a 33 mil anos-luz, na direção da constelação da Águia e com uma idade de poucos milhares de anos. A equipe usou imagens de arquivo obtidas em Outubro de 2010 pelo telescópio de raios X Suzaku, que observou o remanescente durante 19 horas. Os diferentes elementos presentes no remanescente brilham em comprimentos de onda específicos nos raios X, devido à elevada temperatura a que se encontra o material, sendo por isso possível estimar a sua abundância relativa. Conclui-se que as abundâncias observadas de manganês e níquel são consistentes apenas se a supernova que deu origem ao 3C 397 foi devida à explosão termonuclear de uma anã branca, e não à colisão e subsequente explosão de duas dessas estrelas.

“Conseguimos determinar qual dos cenários foi responsável por uma supernova analisando as abundâncias de manganês e níquel no remanescente”, disse o astrofísico Brian Williams, do Goddard Space Flight Center. “Uma explosão provocada por uma anã branca única próximo do limite de Chandrasekhar produzirá estes elementos com abundâncias diferentes dos que seriam observados para um cenário de colisão.”

Fonte: Goddard Space Flight Center

sexta-feira, 3 de abril de 2015

Hubble encontra fantasmas de quasares

O telescópio espacial Hubble capturou um conjunto de imagens enigmáticas de quasares "fantasma", objetos verdes e etéreos que assinalam os túmulos destes astros que despertaram para a vida e que depois desapareceram.

oito estruturas invulgares orbitando suas galáxias hospedeiras

© NASA/ESA/Galaxy Zoo/W. Keel (oito estruturas invulgares orbitando suas galáxias hospedeiras)

As oito estruturas invulgares orbitam as suas galáxias hospedeiras e brilham com tons esverdeados. Fornecem novas informações sobre o passado turbulento destas galáxias. As galáxias em destaque na imagem são, da esquerda para a direita na linha superior: o "Bule de Chá" (conhecida formalmente como 2MASX J14302986+1339117), NGC 5972, 2MASX J15100402+0740370 e UGC 7342, e (da esquerda para a direita na linha inferior) NGC 5252, Mrk 1498, UGC 11185 e 2MASX J22014163+1151237.

Os fios etéreos nestas imagens foram iluminados, talvez por pouco tempo, por uma explosão de radiação oriunda de um quasar, uma região compacta e muito luminosa que rodeia um buraco negro supermassivo no centro de uma galáxia. O material galáctico colapsa em direção ao buraco negro central, crescendo cada vez mais quente, formando um quasar brilhante com jatos poderosos de partículas e irradiando energia acima e abaixo do disco de matéria em queda.

Em cada destas oito imagens o feixe de um quasar fez com que filamentos no espaço profundo, de outra maneira invisíveis, brilhassem através de um processo chamado fotoionização. O oxigênio, hélio, nitrogênio, enxofre e neônio nos filamentos absorvem luz do quasar e reemitem-na lentamente ao longo de muitos milhares de anos. O seu tom esmeralda é provocado pelo oxigênio ionizado, que brilha em cor verde.

Estas estruturas fantasmagóricas estão tão longe do núcleo da galáxia que a luz do quasar teria demorado centenas de milhares de anos até lá chegar e iluminá-las. Assim, embora os próprios quasares estejam desligados, as nuvens verdes vão continuar brilhando por muito mais tempo até que também desvaneçam.

Os filamentos verdes não só estão longe do núcleo das suas galáxias progenitoras, como também têm um tamanho imenso, abrangendo dezenas de milhares de anos-luz. Pensa-se que sejam caudas longas de gás formadas durante uma fusão violenta entre galáxias no passado, este evento teria provocado grandes forças gravitacionais que rasgariam os integrantes galácticos.

Apesar do seu passado turbulento, estes filamentos fantasmagóricos estão agora calmamente orbitando dentro ou em torno das suas galáxias hospedeiras. Estas imagens do Hubble mostram correntes de gás brilhante, trançado e com nós, em alguns casos ligados a faixas torcidas de poeira escura.

As fusões galácticas não alteram apenas a forma das galáxias envolvidas e anteriormente serenas; também desencadeiam fenômenos cósmicos extremos. Uma tal fusão pode provocar o nascimento de um quasar ao derramar material nos buracos negros supermassivos das galáxias.

O primeiro objeto deste tipo foi descoberto em 2007 pela professora holandesa Hanny van Arkel. Ela descobriu a estrutura fantasmagórica no projeto online "Galaxy Zoo", um projeto que conta com a ajuda do público para classificar mais de um milhão de galáxias catalogadas no SDSS (Sloan Digital Sky Survey). A característica bizarra foi apelidada de "Hanny’s Voorwerp" (holandês para Objeto de Hanny).

Estes objetos foram descobertos num derivado do projeto Galaxy Zoo, no qual cerca de 200 voluntários examinaram mais de 16.000 imagens de galáxias do SDSS para identificar as melhores candidatas para a existência de nuvens parecidas a Hanny's Voorwerp. Uma equipe de pesquisadores analisou e encontrou um total de 20 galáxias que tinha gás ionizado por quasares.

Os resultados da descoberta aparecem num artigo da revista The Astronomical Journal.

Fonte: ESA