quinta-feira, 20 de agosto de 2015

M27: Não é um cometa

Enquanto caçava cometas nos céus acima da França do século XVIII, o astrônomo Charles Messier manteve diligentemente uma lista de objetos encontrados que definitivamente não eram cometas.

M27

© Francesco di Biase (M27)

Este é o número 27 em sua agora famosa lista de não-cometas. Na verdade, os astrônomos do século XXI identificariam o objeto como uma nebulosa planetária, mas tampouco é um planeta, embora pareça redondo e lembre um planeta quando visto através de um pequeno telescópio. Messier 27 (M27) é um excelente exemplo de nebulosa de emissão gasosa, criada quando o combustível nuclear de uma estrela tipo sol se exaure em seu núcleo. A nebulosa se forma quando as camadas externas da estrela são expelidas para o espaço, com um brilho visível gerado por átomos excitados pela intensa, mas invisível luz ultravioleta da estrela moribunda. Conhecida pelo nome popular de Nebulosa do Haltere, a bela e simétrica nuvem interestelar de gases tem mais de 2,5 anos-luz de diâmetro e está a cerca de 1.200 anos-luz de distância na constelação de Vulpecula (Raposa). Esta impressionante montagem em cores destaca detalhes na bem estudada região central e também características mais esmaecidas e que são raramente fotografadas no halo exterior da nebulosa. A foto também contém imagens feitas em banda estreita com o uso de filtros sensíveis à emissão de átomos de enxofre, hidrogênio e oxigênio.

Fonte: NASA

quarta-feira, 19 de agosto de 2015

Estrelas irmãs

Os aglomerados estelares abertos como o que se vê nesta imagem não são apenas perfeitos para tirar bonitas fotografias.

o rico aglomerado estelar IC 4651

© ESO (o rico aglomerado estelar IC 4651)

A maioria das estrelas forma-se no seu interior e estes aglomerados podem ser usados pelos astrônomos como laboratórios para estudar como é que as estrelas evoluem e morrem. Esta imagem foi obtida pelo instrumento Wide Field Imager (WFI) montada permanentemente no telescópio MPG/ESO de 2,2 metros no Observatório de La Silla. O instrumento WFI consiste em vários detectores CCD num total de 67 milhões de pixels e pode observar uma área do céu tão grande como a Lua Cheia. Permite fazer observações desde o visível até ao infravermelho próximo, com mais de 40 filtros disponíveis. Para esta imagem apenas foram utilizados três destes filtros.

O salpicado de estrelas que podemos ver nesta nova imagem do ESO é o aglomerado estelar aberto IC 4651, situado na Via Láctea na constelação do Altar, a cerca de 3.000 anos-luz de distância. O aglomerado tem cerca de 1,7 bilhões de anos, o que corresponde à meia-idade em termos de aglomerados. O IC 4651 foi descoberto por Solon Bailey, pioneiro no estabelecimento de observatórios em locais altos e secos nos Andes. Este objeto foi catalogado em 1896 pelo astrônomo dinamarquês-irlandês John Louis Emil Dreyer.
Conhecem-se na Via Láctea mais de mil destes aglomerados abertos, no entanto pensa-se que existam muitos mais. Muitos destes objetos foram já estudados com grande detalhe. Observações de aglomerados estelares como este fizeram avançar o nosso conhecimento sobre a formação e evolução da Via Láctea e das estrelas individuais no seu interior,  e permitem também aos astrônomos testarem modelos de evolução estelar.
As estrelas de IC 4651 formaram-se todas ao mesmo tempo a partir da mesma nuvem de gás. Embora muitas das estrelas captadas nesta imagem pertençam a IC 4651, a maioria das estrelas mais brilhantes encontram-se na realidade entre nós e o aglomerado e muitas das mais fracas estão mais distantes. Estas estrelas irmãs estão ligadas apenas de forma leve pela atração entre si e pelo gás entre elas. À medida que as estrelas do aglomerado interagem com outros aglomerados e com nuvens de gás na galáxia, e à medida que o gás entre as estrelas é utilizado para formar mais estrelas ou é lançado para fora do aglomerado, a estrutura do aglomerado começa a modificar-se. Eventualmente, a massa restante no aglomerado torna-se suficientemente pequena para que as estrelas possam escapar. Observações recentes de IC 4651 mostraram que o aglomerado contém uma massa de 630 vezes a massa solar. Esta quantidade é de fato muito maior que os números obtidos em estudos anteriores, os quais observaram regiões menores, deixando por isso de fora muitas das estrelas do aglomerado que se encontram longe do seu centro. Estima-se que inicialmente teria pelo menos 8.300 estrelas, num total de 5.300 vezes a massa do Sol.

Como este aglomerado é relativamente velho, uma parte desta massa perdida é devida às estrelas mais massivas do aglomerado já terem atingido o final das suas vidas e terem explodido sob a forma de supernovas. No entanto, a maioria das estrelas que se perderam não morreram, mas apenas se deslocaram. Elas teriam sido arrancadas do aglomerado ao passar por uma nuvem gigante de gás ou após um encontro próximo com um aglomerado vizinho, ou simplesmente afastaram-se.
Uma fração destas estrelas perdidas pode estar ainda gravitacionalmente ligada ao aglomerado, estando à volta dele mas a uma grande distância. As outras estrelas perdidas teriam migrado para longe do aglomerado e juntado-se a outros, ou teriam se instalado em outro local qualquer da Via Láctea. Provavelmente, o Sol já fez parte de um aglomerado como IC 4651 até que, tanto a nossa estrela como as suas irmãs, se separaram e gradualmente se espalharam pela Via Láctea.

Fonte: ESO

terça-feira, 18 de agosto de 2015

Um casal cósmico

Aqui vemos o emparelhamento cósmico espetacular da estrela Hen 2-427, mais comumente conhecida como WR 124, e a nebulosa M1-67 que a rodeia.

Hen 2-427 e M1-67

© Hubble/Judy Schmidt (Hen 2-427 e M1-67)

Ambos os objetos, captados pelo telescópio espacial Hubble da NASA/ESA são encontrados na constelação de Sagitário e estão localizados a 15.000 anos-luz de distância.

A estrela Hen 2-427 brilha no centro desta imagem explosiva e ao redor do amontoado de gás quente são ejetados para o espaço com mais de 150.000 quilômetros por hora. Enquanto o Sol perde 10-14 de sua massa durante um ano, uma estrela Wolf-Rayet perde 10-5 massas solares por ano.

A Hen 2-427 é uma estrela Wolf-Rayet, que é uma estrela muito quente com uma temperatura de 35.900K e a caracterizada por uma ejeção de massa violenta.

As estrelas Wolf-Rayet foram descobertas espectroscopicamente em 1867 pelos astrônomos franceses Charles Wolf e Georges Rayet usando espectroscopia visual no Observatório de Paris.

A nebulosa M1-67 possui uma idade estimada de não mais de 10.000 anos, mas apesar de jovem produz uma bela e magnífica vista astronômica.

Fonte: NASA

segunda-feira, 17 de agosto de 2015

Descoberta colisão de galáxias mais próxima da Terra

Uma espetacular colisão de galáxias foi descoberta além da Via Láctea. A descoberta do sistema mais próximo já descoberto foi anunciada por uma equipe de astrônomos liderada pelos professores Quentin Parker da Universidade de Hong Kong e Albert Zijlstra na Universidade de Manchester.

imagem colorida da colisão de galáxias

© Ivan Bojicic (imagem colorida da colisão de galáxias)

A galáxia está a 30 milhões de anos-luz de distância, o que significa que ela é relativamente próxima. Ela foi chamada de Roda de Kathryn, em homenagem à sua semelhança com o famoso fogo de artifício e também em homenagem à esposa do coautor do trabalho.

Esses sistemas são muito raros e nascem da colisão entre duas galáxias de tamanhos similares. As ondas de choque geradas na colisão comprimem o reservatório de gás em cada galáxia e disparam a formação de novas estrelas. Isso cria um espetacular anel de intensa emissão, e ilumina o sistema, do mesmo modo que a Roda Catherine ilumina a noite num show de fogos de artifício.

As galáxias crescem através de colisões, mas é raro registrar esse processo acontecendo, e é extremamente raro ver o anel da colisão em progresso. Pouco mais de 20 sistemas com anéis completos são conhecidos.

A Roda de Kathryn foi descoberta durante uma pesquisa especial de vasto campo da parte sul da Via Láctea realizada com o telescópio Schmidt do Reino Unido, localizado na Austrália. Ele usou uma região restrita de comprimento de onda centrada na chamada linha de emissão H-alpha vermelha do hidrogênio gasoso. Essa joia rara foi descoberta durante uma pesquisa das imagens pelas partes remanescentes de estrelas moribundas na nossa Via Láctea. Os autores ficaram surpresos ao encontrar também esse espetacular anel cósmico, localizada remotamente além da poeira e do gás da Via Láctea na constelação de Ara.

A galáxia de anel recém-descoberta é sete vezes mais próxima do que qualquer outra já descoberta, e quarenta vezes mais próxima do que a famosa galáxia Cartwheel. O anel é localizado atrás de um denso campo estelar e perto de uma estrela brilhante de primeiro plano, e isso é um dos motivos que esse anel não havia sido notado antes. Existem muito poucas galáxias nessa vizinhança, e a detecção de uma colisão numa região assim vazia do espaço é muito complicada.

O Professor Parker, disse, “Esse sistema não é só visualmente impressionante, mas ele é perto o suficiente para que seja considerado um alvo ideal para um estudo detalhado. O anel tem também pouca massa, poucos bilhões de vezes a massa do Sol, ou menos de 1% da massa da Via Láctea; assim, nossa descoberta mostra que os anéis de colisão podem se formar ao redor de galáxias bem menores do que se pensava anteriormente.”

O Professor Zijstra adicionou, “Não é muito frequente você dar um nome para qualquer objeto no céu. Mas eu acho que a Roda de Kathryn se ajusta muito bem ao objeto, lembrando os fogos de artifício e dando continuidade a nomear objetos em homenagem àqueles que amamos.”

Galáxias menores, são mais comuns do que galáxias grandes, implicando que os anéis de colisão poderiam ser dez vezes mais comuns do que se pensava anteriormente. Os autores pretendem realizar estudos mais detalhados usando telescópios maiores já que a galáxia descoberta é atualmente a única desse tipo, perto o suficiente para ser estudada em detalhe.

Um artigo intitulado “Kathryn’s Wheel: A spectacular galaxy collision discovered in the Galactic neighbourhood” aparece no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

sábado, 15 de agosto de 2015

Buraco negro paradoxal numa galáxia anã

Astrônomos usando o observatório de raios X Chandra da NASA e o telescópio Clay de 6,5 metros no Chile, identificaram o menor buraco negro supermassivo já detectado no centro de uma galáxia.

Oxymoronic Black Hole Provides Clues to Growth

© Chandra/SDSS (galáxia anã RGG 118)

A imagem acima foi feita pelo Sloan Digital Sky Survey (SDSS) e o detalhe mostra uma imagem feita pelo Chandra do centro da galáxia. A fonte pontual de raios X, é produzida pelo gás quente que faz um movimento de redemoinho ao redor do buraco negro.

Esse objeto paradoxal poderia fornecer pistas sobre qual o tamanho de buracos negros formados juntos com suas galáxias hospedeiras a 13 bilhões de anos atrás ou mais.

Os astrônomos estimam que esse buraco negro supermassivo tem cerca de 50.000 vezes a massa do Sol. Isso é menos da metade do buraco negro anterior de menor massa encontrado no centro de uma galáxia.

O buraco negro está localizado no centro do disco da galáxia anã, chamada de RGG 118, localizada a cerca de 340 milhões de anos-luz de distância da Terra.

Os pesquisadores estimaram a massa do buraco negro estudando o movimento do gás frio perto do centro da galáxia, usando dados na luz visível obtidos pelo telescópio Clay. Eles usaram os dados do Chandra para descobrir o brilho em raios X do gás quente espiralando na direção do buraco negro. Eles encontraram que a força de empurrão da pressão da radiação desse gás quente é equivalente a cerca de 1% da força da gravidade interna, o que se ajusta bem com as propriedades de outros buracos negros supermassivos.

Anteriormente, uma relação tinha sido notada entre a massa dos buracos negros supermassivos e o intervalo de velocidades das estrelas no centro da galáxia hospedeira. Essa relação também é mantida para a RGG 118 e seu buraco negro.

O buraco negro na RGG 118 é cerca de 100 vezes menos massivo do que o buraco negro supermassivo encontrado no centro da Via Láctea. Ele é também cerca de 200.000 vezes menos massivo do que o buraco negro mais massivo já encontrado no centro de outras galáxias.

Os astrônomos estão tentando entender a formação de buracos negros com bilhões de vezes a massa solar que têm sido detectados a menos de um bilhão de anos depois do Big Bang. O buraco negro na RGG 118 fornece aos astrônomos uma oportunidade de estudar um buraco negro supermassivo, pequeno e próximo, pertencente à primeira geração  de buracos negros que não são detectáveis pela nossa tecnologia atual.

Acredita-se que os buracos negros supermassivos podem se formar quando grandes nuvens de gás, com uma massa entre 10.000 e 100.000 vezes a massa do Sol, colapsa num buraco negro. Muitos desses buracos negros semeiam então fusões para formar buracos negros supermassivos ainda maiores. De maneira alternativa, um buraco negro supermassivo poderia surgir de uma estrela gigante, com cerca de 100 vezes a massa do Sol, que no final da sua vida, depois de consumir todo o seu combustível, colapsa e forma um buraco negro.

Os pesquisadores continuarão observando outros buracos negros supermassivos que são comparáveis em tamanho ou até mesmo menores que esse observado na RGG 118, para ajudar a escolher entre as duas opções mencionadas acima e refinar assim seu entendimento sobre como esses objetos crescem.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 14 de agosto de 2015

Metano e água encobrem exoplaneta parecido com Júpiter

Indo para além da descoberta e fotografando um jovem Júpiter, astrônomos usando o GPI (Gemini Planet Imager) do Observatório Gemini examinaram um mundo recém-descoberto em detalhes sem precedentes.

ilustração do exoplaneta 51 Eridani b

© Danielle Futselaar/Franck Marchis/Instituto SETI (ilustração do exoplaneta 51 Eridani b)

Descobriram um exoplaneta com cerca de duas vezes a massa de Júpiter, o mais parecido com um planeta do Sistema Solar já observado diretamente em torno de outra estrela.

O planeta, conhecido como 51 Eridani b, orbita a sua estrela hospedeira a cerca de 13 vezes a distância Terra-Sol (equivalente a estar entre Saturno e Urano no nosso Sistema Solar). O sistema está localizado a cerca de 100 anos-luz de distância. Os dados do Gemini também fornecem aos cientistas a mais forte deteção espectroscópica de metano na atmosfera de um planeta fora do nosso Sistema Solar, acrescentando às suas semelhanças com os planetas gigantes do nosso Sistema Solar.

"Muitos dos exoplanetas já observados diretamente têm atmosferas que parecem estrelas muito frias," afirma Bruce Macintosh, da Universidade de Stanford, que liderou a construção do GPI e agora lidera a caça de planetas.

"Este excelente resultado é uma demonstração clara das incríveis capacidades espectroscópicas e de imagem do GPI," afirma Chris Davis, da Divisão de Astronomia do NSF (National Science Foundation), que supervisiona o financiamento do Observatório Gemini. "As pesquisas exoplanetárias agora possíveis com o Gemini vão, sem dúvida, levar a uma bastante melhor compreensão do número de gigantes gasosos em órbita de estrelas vizinhas, das características das suas atmosferas e, finalmente, do modo como os planetas gigantes como Júpiter e Saturno são formados."

A descoberta faz parte do esforço mais amplo da equipe em encontrar e caracterizar novos planetas chamado GPIES (GPI Exoplanet Survey). O levantamento espera explorar mais de 600 estrelas que podem hospedar sistemas planetários; até agora observaram quase uma centena de estrelas. "Este é exatamente o tipo de sistema que imaginamos descobrir quando projetamos o GPI," afirma James Graham, professor da Universidade de Berkeley e cientista do projeto GPI.

"O GPI é capaz de dissecar a luz de exoplanetas em detalhes sem precedentes para que possamos agora caracterizar outros mundos como nunca," comenta Christian Marois do NRC (National Research Council) do Canadá. Marois, um dos quase 90 pesquisadores da equipe, foi pioneiro em muitas das estratégias de observação e técnicas de redução de dados que desempenharam um papel fundamental na detecção e análise do novo planeta. A luz do planeta é muito tênue, um milhão de vezes mais fraca que a luz da estrela, mas o GPI consegue vê-lo claramente. "O planeta é tão tênue e está localizado tão perto da sua estrela, que é também o primeiro exoplaneta observado diretamente a ser totalmente compatível com os modelos de formação planetária de sistemas parecidos com o Sistema Solar," explica Marois.

As observações do Gemini também foram acompanhadas pelo Observatório W. M. Keck em Mauna Kea, Havaí, a fim de verificar a descoberta.

Fredrik Rantakyro, cientista do instrumento GPI, acrescenta: "Desde que era criança, sonhava com planetas em torno de outras estrelas e com as vidas que possivelmente poderiam existir lá. Como astrônomo, é normal trabalhar com telescópios avançados mas não é normal o coração bater mais depressa. É exatamente o que aconteceu com este sonho tornado realidade de descobrir um irmão de Júpiter!"

O 51 Eridani é jovem, tem apenas 20 milhões de anos, e é exatamente isso que tornou possível a detecção do planeta. Quando os planetas coalescem, o material que cai para o planeta liberta energia e aquece-o. Ao longo dos próximos cem milhões de anos irradiam essa energia, principalmente no infravermelho, e arrefecem gradualmente.

Além de ser provavelmente o planeta de menor massa já observado diretamente, a sua atmosfera é também muito fria, cerca de -430ºC. Também possui o mais forte sinal espectroscópico para a presença de metano atmosférico, semelhante ao ambiente de metano pesado que domina as atmosferas dos planetas gigantes do nosso Sistema Solar. O espectro do planeta também revelou água.

animação mostra as imagens do GPI da estrela 51 Eridani

© Robert De Rosa/Christian Marois (animação mostra as imagens do GPI da estrela 51 Eridani)

O GPI usa um espectrógrafo de campo integral, um instrumento capaz de obter imagens em vários comprimentos de onda infravermelhos simultaneamente, a fim de procurar novos planetas auto-luminosos ao redor de estrelas próximas. O lado esquerdo da animação mostra as imagens do GPI da estrela 51 Eridani em ordem de aumento de comprimento de onda de 1,5 para 1,8 micrômetros. As imagens foram processadas para suprimir a luz de 51 Eridani, revelando o exoplaneta 51 Eridani b (indicado) que é aproximadamente um milhão de vezes mais tênue que a estrela progenitora. As regiões brilhantes para a esquerda e direita da estrela oculta são artefatos do algoritmo de processamento de imagem e podem ser distinguidos de sinais astrofísicos reais com base no seu brilho e posição como função do comprimento de onda. O espectro de 51 Eridani b, no lado direito da animação, mostra como o brilho do planeta varia em função do comprimento de onda. Caso a atmosfera fosse totalmente transmissiva, o brilho seria aproximadamente constante em função do comprimento de onda. Não é o caso de 51 Eridani b, cuja atmosfera contém água (H2O) e metano (CH4).

Ao longo da gama espectral deste conjunto de dados do GPI, a água absorve fótons entre os 1,5 e 1,6 micrômetros, e o metano absorve entre os 1,6 e 1,8 micrômetros. Isto leva a um pico forte no brilho do exoplaneta aos 1,6 micrômetros, o comprimento de onda em que a absorção de fótons pela água e pelo metano é mais fraca.

O estudo GPIES está atualmente a menos de 20% dos seus 600 alvos previstos para observações durante a campanha de 3 anos. Os alvos foram escolhidos devido à sua juventude e relativa curta distância ao Sistema Solar (até 300 anos-luz). Os resultados deste levantamento serão marcantes, pois estuda um regime de massa e separação exoplanetária nunca antes devidamente investigado. Espera-se que forneça o primeiro censo detalhado e a primeira demografia dos exoplanetas gigantes gasosos, que encontre sistemas multiplanetários e que realize uma caracterização espectral detalhada de muitos novos exoplanetas.

A pesquisa foi publicada esta semana na revista Science.

Fonte: SETI Institute

quinta-feira, 13 de agosto de 2015

Descoberto novo exoplaneta circumbinário na zona habitável

Uma equipe formada por astrônomos de Israel, da Europa, da Coreia e dos EUA, anunciou a descoberta de um exoplaneta gigante gasoso circumbinário na zona habitável de seu par de estrelas, uma ocorrência surpreendentemente comum para os exoplanetas circumbinários descobertos pela missão Kepler/K2 da NASA.

o exoplaneta Kepler-453b orbitando seu par de estrelas

© Mark Garlick (o exoplaneta Kepler-453b orbitando seu par de estrelas)

Lembrando o planeta da ficção, Tatooine, exoplanetas circumbinários orbitam duas estrelas e assim têm dois sóis em seu céu.

O exoplaneta circumbinário recém-descoberto, denominado de Kepler-453b, leva 240,5 dias para orbitar suas estrelas, enquanto as estrelas orbitam uma com relação a outra a cada 27,3 dias.

A estrela maior, a Kepler-453A, é similar ao nosso Sol, contendo 94% da massa do Sol, enquanto que a estrela menor, a Kepler-453B, tem cerca de 20% da massa e é mais fria e mais apagada.

O  sistema binário localiza-se na constelação de Lyra e está a aproximadamente 1.400 anos-luz de distância da Terra. Estima-se que esse sistema tenha entre 1 e 2 bilhões de anos de vida, sendo bem mais novo que o nosso Sistema Solar.

Também conhecido como KIC 9632895b, o Kepler-453b tem um raio 6,2 vezes maior que o da Terra. Sua massa não foi medida nos dados atuais, mas provavelmente ele deve ter cerca de 16 vezes a massa da Terra.

De acordo com os astrônomos, o Kepler-453b, é o terceiro planeta circumbinário da missão Kepler, descoberto na zona habitável de um par de estrelas.

Devido ao seu tamanho e a sua natureza gasosa, o planeta pouco provavelmente deve abrigar a vida como nós a conhecemos. Contudo, ele pode, como os gigantes gasosos do Sistema Solar, ter grandes luas, e essas luas poderiam ser habitáveis. Sua órbita se manterá estável por 10 milhões de anos, aumentando a possibilidade da vida se formar nas suas luas.

Com dez exoplanetas circumbinários conhecidos até agora, os cientistas podem começar a comparar diferentes sistemas e procurar uma tendência. Os sistemas tendem a ser bem compactos e podem aparecer num grande número de configurações.

Uma vez pensados como sendo raros e até mesmo impossíveis de existir, essa e outras descobertas do Kepler, confirmam que esses planetas são comuns na nossa Via Láctea.

“A diversidade e complexidade desses sistemas circumbinários é algo maravilhoso. Cada novo planeta circumbinário, é uma joia, revelando algo inesperado e desafiador”, disse o Prof. William Welsh da Universidade Estadual de San Diego.

Um artigo que descreve a descoberta foi publicado no periódico Astrophysical Journal.

Fonte: NASA

quarta-feira, 12 de agosto de 2015

Mapeando a morte lenta do Universo

Uma equipe internacional de astrônomos estudou mais de 200.000 galáxias e mediu a energia gerada numa enorme região do espaço com a maior precisão até hoje.

imagens de galáxias do rastreio GAMA

© ICRAR/GAMA/ESO (imagens de galáxias do rastreio GAMA)

Este estudo representa a estimativa mais completa de produção de energia no Universo próximo. A equipe confirmou que a energia produzida nesta região do Universo de hoje é apenas cerca de metade da produzida há dois bilhões de anos atrás e descobriu que este enfraquecimento ocorre em todos os comprimentos de onda que vão desde o ultravioleta ao infravermelho longínquo. O Universo está morrendo lentamente.

O estudo envolve muitos dos telescópios mais poderosos do mundo, incluindo o VISTA e o VST, os telescópios de rastreio do ESO, instalados no Observatório do Paranal, no Chile. Observações de suporte foram obtidas por dois telescópios espaciais operados pela NASA (GALEX e WISE) e por um outro pertencente à Agência Espacial Europeia (Herschel). Os telescópios e dados de rastreio usados, por comprimentos de onda crescentes, foram: GALEX, SDSS, VST (rastreio KiDS), AAT, VISTA (rastreio VIKING)/UKIRT, WISE, Herschel (PACS/SPIRE).
Este trabalho realizou-se no âmbito do projeto Galaxy And Mass Assembly (GAMA), o maior rastreio já realizado em múltiplos comprimentos de onda.
“Usamos tantos telescópios terrestres e espaciais quanto nos foi possível para medir a produção de energia de cerca de 200.000 galáxias ao longo do maior intervalo de comprimentos de onda possível,” disse Simon Driver (ICRAR, The University of Western Australia), que lidera a enorme equipe GAMA.
Os dados do rastreio, apresentados aos astrônomos de todo o mundo hoje, incluem medições de produção de energia de cada galáxia em 21 comprimentos de onda, que cobrem a região que vai desde o ultravioleta ao infravermelho longínquo. Esta base de dados ajudará os cientistas a compreender melhor como é que os diferentes tipos de galáxias se formam e evoluem.
Toda a energia do Universo foi criada durante o Big Bang, sendo que uma parte foi criada como massa. As estrelas brilham ao converter massa em energia, tal como descrito na famosa equação de Einstein E=mc2.

Muita da produção de energia do Universo vem da fusão nuclear nas estrelas, quando a massa é lentamente convertida em energia. Outra fonte principal de energia são os discos muito quentes existentes em torno dos buracos negros nos centros das galáxias, onde a energia gravitacional é convertida em radiação eletromagnética nos quasares e outros núcleos ativos de galáxias. Radiação com comprimentos de onda muito maiores tem origem em enormes nuvens de poeira que re-emitem a energia emitida pelas estrelas que se encontram no seu interior.

O estudo GAMA pretendeu mapear e modelizar toda a energia gerada no interior de um enorme volume de espaço, hoje e em diferentes épocas do passado.
“Enquanto a maior parte da energia espalhada pelo Universo surgiu no seguimento do Big Bang, energia adicional está sendo constantemente criada pelas estrelas à medida que estas fusionam elementos como o hidrogênio e o hélio,” disse Simon Driver. “Esta nova energia, ou é absorvida pela poeira à medida que viaja pela sua galáxia hospedeira, ou escapa para o espaço intergalático e viaja até atingir alguma coisa, como por exemplo outra estrela, um planeta ou, muito ocasionalmente, um espelho de telescópio.”
O fato do Universo estar em declínio lento é algo conhecido desde o final da década de 1990, mas este trabalho mostra que este processo está acontecendo em todos os comprimentos de onda desde o ultravioleta ao infravermelho, representando assim a estimativa mais completa de produção de energia no Universo próximo.
“O Universo irá declinar a partir de agora, aproximando-se lentamente da velhice. Basicamente podemos dizer que o Universo se sentou no sofá, cobriu os joelhos com uma manta e está prestes a adormecer, caindo no sono eterno,” conclui Simon Driver.
A equipe de pesquisadores espera poder expandir este trabalho mapeando a produção de energia ao longo de toda a história do Universo, utilizando para isso uma quantidade de novas instalações, incluindo o maior radiotelescópio do mundo, o Square Kilometre Array, o qual será construído na Austrália e na África do Sul durante a próxima década.
A equipe apresentou este trabalho na XXIX Assembleia Geral da União Astronômica Internacional em Honolulu, Havaí, na segunda-feira, dia 10 de agosto de 2015.

Este trabalho foi descrito num artigo intitulado “Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV—far-IR) and the low-z energy budget”, de S. Driver et al., submetido à revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

domingo, 9 de agosto de 2015

HCG 87: um pequeno grupo de galáxias

Eventualmente as galáxias formam grupos. Por exemplo, a nossa galáxia, a Via Láctea, faz parte do Grupo Local de Galáxias.

HCG 87

© Gemini Observatory (HCG 87)

Grupos compactos e pequenos, como o Hickson Compact Group 87 (HCG 87) mostrado acima, são interessantes em parte porque se auto-destroem vagarosamente. As galáxias do HCG 87 estão efetivamente esticando umas às outras gravitacionalmente durante suas órbitas de 100 milhões de anos em volta de um centro comum. A força de atração cria gases em colisão que causam explosões brilhantes de formação estelar e alimenta seus centros galácticos ativos com matéria. O grupo HCG 87 é composto de uma grande galáxia espiral de perfil visível no canto inferior esquerdo, uma galáxia elíptica visível no canto inferior direito e uma galáxia espiral visível perto do topo da imagem. A pequena espiral perto do centro da imagem deve estar bem longe. Várias estrelas da nossa galáxia também podem ser vistas em primeiro plano. O estudo de grupos como o HCG 87 nos permite compreender como todas as galáxias se formam e evoluem.

Fonte: NASA

Descoberta a maior estrutura no Universo

Uma equipe de astrônomos da Hungria e dos EUA descobriram o que parece ser a maior estrutura no Universo observável: um anel de nove explosões de raios gama, cosntituindo galáxias com 5 bilhões de anos-luz de diâmetro.

distribuição de GRBs no céu

© L. Balazs (distribuição de GRBs no céu)

A imagem acima mostra a distribuição de GRBs no céu a uma distância de 7 bilhões de anos-luz, centrada no anel recém-descoberto. As posições dos GRBs são marcados por pontos azuis e a Via Láctea é indicada para referência, percorrendo da esquerda para a direita através da imagem.

As explosões de raios gama (GRBs) são os eventos mais luminosos no Universo, liberando o equivalente à energia que o Sol lança em 10 bilhões de anos em poucos segundos. Acredita-se que elas sejam o resultado do colapso de massivas estrelas em buracos negros. A grande luminosidade desses eventos, ajuda os astrônomos a mapearem o local de distantes galáxias, algo que a equipe explorou.

As GRBs que constituem o recém-descoberto anel foram observadas, usando uma grande variedade de telescópios, tanto em Terra como no espaço. Elas aparecem a uma distância muito similar de nós, cerca de 7 bilhões de anos-luz, num círculo de 36 graus através do nosso céu, ou o equivalente a mais de 70 vezes o diâmetro da Lua Cheia. Isso implica que o anel tem mais de 5 bilhões de anos-luz de diâmetro, e de acordo com o Professor Balazs, existe somente a probabilidade de 1 em 20.000 das GRBs estarem nessa distribuição por coincidência.

Os modelos mais atuais indicam que a estrutura do cosmos é uniforme em grandes escalas. Esse “Princípio Cosmológico” é estabelecido a partir das observações do Universo primordial e da assinatura da radiação de micro-ondas de fundo, observadas pelos satélites WMAP e Planck. Outros resultados recentes e essa nova descoberta desafiam esse princípio, que coloca o limite de 1,2 bilhões de anos-luz para as maiores estruturas. O anel recém-descoberto é quase cinco vezes maior que esse limite.

“Se o anel representa uma estrutura espacial real, então ele é visto quase que de frente, devido à pequena variação nas distâncias das GRBs ao redor do centro do objeto. O anel poderia ser pensado como sendo a projeção de uma esfera, onde as GRBs todas ocorressem dentro de um período de 250 milhões de anos, uma escala de tempo curta comparada com a idade do Universo”.

Uma projeção de um anel esférico espelharia o anel de aglomerados de galáxias vistos ao redor dos vazios no Universo, vazios e formações parecidas com correntes são vistas e previstas por muitos modelos do cosmos. O anel recém-descoberto é contudo, no mínimo dez vezes maior que os vazios conhecidos.

O Prof. Balazs comenta: “Se nós estivermos corretos, essa estrutura contradiz os modelos atuais do Universo. Foi uma grande surpresa encontrar algo tão grande, e nós ainda não entendemos bem como isso possa existir”.

A equipe agora quer descobrir mais sobre o anel, e estabelecer se os processos conhecidos para a formação de galáxias e para a estruturas de grande escala poderiam ter levado à sua criação, ou se os astrônomos precisam revisar radicalmente suas teorias sobre a evolução do cosmos.

Os cientistas, liderados pelo Prof. Lajos Balazs, do Observatório Konkoloy, em Budapeste, reportou seu trabalho num artigo do Montlhy Notices of the Royal Astronomical Socitey.

Fonte: Royal Astronomical Society

sábado, 8 de agosto de 2015

O nascimento de estrelas é regulado por fonte de buracos negros

Astrônomos descobriram um processo único sobre como as maiores galáxias elípticas do Universo continuam gerando estrelas muito tempo depois do anos de pico de nascimentos estelares.

ilustração de um buraco negro central interagindo com gás no halo da galáxia

© P. Jeffries (ilustração de um buraco negro central interagindo com gás no halo da galáxia)

A alta resolução e a sensibilidade à radiação ultravioleta do Hubble, permitiu aos astrônomos observarem nós brilhantes de estrelas azuis, quentes, se formando juntamente com jatos de buracos negros ativos encontrados nos centros das gigantescas galáxias elípticas.

Combinando dados do Huubble com observações feitas por um conjunto de telescópios baseados tanto em Terra como no espaço, duas equipes independentes descobriram que os jatos dos buracos negros, e as estrelas recém-nascidas são todos partes de um ciclo auto-regulado. Jatos de alta energia atirados do buraco negro aquecem um halo de gás circulante, controlando a taxa com a qual o gás esfria e cai na galáxia.

“Pense no gás ao redor da galáxia como uma atmosfera”, explicou o líder do primeiro estudo, Megan Donahue, da Universidade Estadual do Michigan. “Essa atmosfera pode conter material em diferentes estados, do mesmo modo que a nossa atmosfera tem gás, nuvens e chuva. O que nós estamos vendo é um processo parecido com uma tempestade. À medida que os jatos impulsionam o gás para fora do centro da galáxia, parte do gás esfria e precipita em aglomerados frios que caem de volta para o centro da galáxia como gotas de chuvas”.

“As gotas de chuva eventualmente esfriam o suficiente para tornar-se nuvens de formação de estrelas de gás frio molecular, e a capacidade de observar no ultravioleta distante do Hubble, nos permitiu observar diretamente esses chuviscos de formação de estrelas”, explicou o líder do segundo estudo, Grant Tremblay, da Universidade de Yale. “Nós sabemos que esses chuviscos estão ligados com os jatos, pois eles foram encontrados em filamentos que se dobram ao redor dos jatos, ou abraçam as bordas de bolhas gigantes que os jatos inflaram”, disse Tremblay. “E eles terminam fazendo um redemoinho de gás de formação de estrelas ao redor do buraco negro central”.

Mas o que deveria ser uma monção de chuva de gás, é reduzido a uma mera garoa pelo buraco negro. Enquanto que parte do fluxo de gás para fora da galáxia esfriará, o buraco negro aquece o resto do gás ao redor da galáxia, que previne que todo o envelope gasoso esfrie mais rapidamente. O ciclo inteiro é um mecanismo de resposta auto-regulado, como um termostato num sistema de aquecimento e de resfriamento de uma casa, porque a poça de gás ao redor do buraco negro fornece o combustível que energiza os jatos. Se muito resfriamento acontece, os jatos tornam-se  mais poderosos e adiciona mais calor. E se os jatos adicionam muito calor, eles reduzem seu suprimento de combustível e eventualmente enfraquecem.

Essa descoberta explica o mistério de por que muitas galáxias elípticas no atual momento do Universo não possuem uma taxa maior de nascimento de estrelas. Por muitos anos, a questão tinha persistido de por que as galáxias com gás, não transformam todo o gás em estrelas. Modelos teóricos da evolução de galáxias predizem que as galáxias da época atual mais massivas que a Via Láctea deveriam estar explodindo com formação de estrelas, mas esse não é o caso.

Agora os cientistas entendem esse caso do desenvolvimento aprisionado, onde um ciclo de aquecimento e esfriamento mantém o nascimento das estrelas. Uma leve garoa de gás resfriado fornece o combustível suficiente para os jatos do buraco negro central manterem o resto do gás da galáxia quente. Os pesquisadores mostraram que as galáxias não precisam de eventos fantásticos e catastróficos como colisões de galáxias para explicar os chuviscos de nascimento de estrelas.

O estudo liderado por Donahue observou uma grande variedade de galáxias elípticas massivas na luz ultravioleta distante encontradas no Cluster Lensing And Supernova Survey with Hubble (CLASH), que contém galáxias elípticas do Universo distante. Nisso incluem galáxias que chovem e formam estrelas, e outras que não. Por comparação, o estudo feito por Tremblay e seus colegas observou somente as galáxias elípticas do Universo próximo com explosões nos seus centros. Em ambos os casos, os filamentos e nós do nascimento de estrelas pareceram fenômenos muito similares. Um estudo anterior, independente, liderado por Rupal Mital, do Rochester Institute of Technology e do Max Planck Institute for Gravitational Physics, também analisou a taxa de nascimento de estrelas nas mesmas galáxias que as amostras usadas por Tremblay.

comparação das atuais observações com as simulações

© Hubble/M. Donahue/Y. Li (comparação das atuais observações com as simulações)

Os pesquisadores foram ajudados por um novo conjunto de simulações computacionais  da hidrodinâmica dos fluxos de gás, desenvolvido por Yuan Li da Universidade de Michigan. “Essa é a primeira vez que nós temos modelos nas mãos que preveem como essas coisas possam parecer”, explicou Donahue. “E quando se compara os modelos aos dados, existe uma grande similaridade entre os chuviscos de formação de estrelas que nós observamos e aqueles que ocorrem nas simulações. Nós estamos tendo uma ideia física que nós podemos então aplicar os modelos”.

Junto com o Hubble, que mostrou onde as novas e as velhas estrelas estão, os pesquisadores também usaram o Galaxy Evolution Explorer (GALEX), o Herschel Space Observatory, o Spitzer Space Telescope, o Chandra X-Ray Observatory, o X-Ray Multi-Mirror Mission (XMM-Newton), o Jansky Very Large Array (JVLA) do National Radio Astronomy Observatory (NRAO), o telescópio WIYN de 3,5 metros do Kitt Peak do National Optical Astronomy Observatory (NOAO), e o telescópio de 6,5 metros Magellan Baade. Juntas essas observações pintaram uma imagem completa de onde todo gás está, desde os pontos mais quentes até os pontos mais frios. O conjunto de telescópios mostrou como o ecossistema das galáxias funciona, incluindo o buraco negro e a sua influência na galáxia hospedeira e no gás ao redor da galáxia.

O artigo de Donahue foi publicado no Astrophysical Journal de 2 de Junho de 2015. O artigo de Tremblay foi publicado no Monthly Notices of the Royal Astronomical Society de 29 de Junho de 2015.

Fonte: Space Telescope Science Institute

O duelo entre estrelas de nêutrons e buracos negros na produção de jatos

Uma estrela super densa formada depois da explosão de uma supernova está expelindo poderosos jatos de material no espaço, sugerem pesquisas recentes.

ilustração do sistema binário PSR J1023 0038

© ICRAR (ilustração do sistema binário PSR J1023+0038)

Uma equipe de cientistas na Austrália e na Holanda descobriram poderosos jatos sendo expelidos de uma sistema estelar duplo conhecido como PSR J1023+0038.

Pensava-se anteriormente que os únicos objetos no Universo capazes de formar jatos poderosos eram os buracos negros.

O sistema PSR J1023+0038 contém uma estrela extremamente densa que os astrônomos chamam de estrela de nêutrons, numa órbita próxima com uma estrela normal.

Ela foi identificada primeiro como uma estrela de nêutrons em 2009, mas foi somente quando a equipe de pesquisa observou a estrela com o rádio telescópio Very Large Array nos EUA em 2013 e 2014 que eles perceberam que a estrela estava produzindo jatos mais fortes do que se esperava.

Os astrônomos James Miller-Jones, do International Centre for Radio Astronomy Research (ICRAR), disse que as estrelas de nêutrons podem ser pensadas como cadáveres estelares. “Elas são formadas quando uma estrela massiva esgota todo o seu combustível e vira uma supernova, e as partes centrais da estrela colapsam sobre sua própria gravidade”, disse ele. “Esses objetos tem normalmente entre uma vez e meia a massa do Sol e somente entre 10 a 15 km de diâmetro, de modo que são extremamente densas”.

O astrônomo do ASTRON, Adam Deller, que é líder da pesquisa, disse que as estrelas de nêutrons e os buracos negros são algumas vezes encontrados em órbitas próximas a estrelas companheiras.

“O gás pode então fluir da estrela companheira para a estrela de nêutrons ou para o buraco negro, produzindo visões espetaculares quando parte desse material é expelido em poderosos jatos a uma velocidade próxima da velocidade da luz”, disse ele.

“Do que nós temos visto anteriormente, os buracos negros eram anteriormente considerados como reis soberanos na formação de jatos poderosos, mesmo quando eles eram somente alimentados por uma pequena quantidade de material de sua estrela companheira”.

“Em comparação, as estrelas de nêutrons parecem gerar jatos relativamente insignificantes, que só se tornam brilhantes o suficiente para serem observados quando a estrela de nêutrons  obtém gás de sua estrela companheira numa taxa muito alta.

O Dr. Deller disse que quando a equipe observou o sistema PSR J1023+0038 estava somente consumindo um pouco de material e deveria estar produzindo um jato fraco. Mas nossas observações sugerem que esses jatos são quase tão fortes como aqueles observados em buracos negros”, disse ele.

O Dr. Miller-Jones disse que o sistema PSR J1023+0038 é uma estrela de nêutrons transicional, gastando anos sendo energizada principalmente pela rotação da estrela de nêutrons, mas ocasionalmente se transformando num estado ativo, quando ela se torna muito mais brilhante.

“Dois outros sistemas transicionais são agora conhecidos e ambos têm apresentado poderosos jatos”, disse ele.

“Isso está colocando as estrelas de nêutrons numa nova luz e mostrando que de fato elas podem lançar jatos que rivalizam com aqueles emitidos de buracos negros”.

Um artigo intitulado “Radio Imaging Observations of PSR J1023+0038 in an LMXB State” foi publicado no periódico The Astrophysical Journal.

Fonte: International Centre for Radio Astronomy Research

Novo recorde: observatório Keck mede galáxia mais distante

Uma equipe de astrofísicos, usando o observatório W. M. Keck no Havaí, mediu com sucesso a galáxia mais distante já registada e, ainda mais interessante, capturou as suas emissões de hidrogênio quando o Universo tinha menos de 600 milhões de anos.

ilustração do progresso feito nos últimos anos no estudo da história cósmica

© Caltech/Adi Zitrin (ilustração do progresso feito nos últimos anos no estudo da história cósmica)

Além disso, o método de detecção da galáxia, apelidada de EGSY8p7, fornece dados importantes sobre como as primeiras estrelas no Universo iluminaram-se após o Big Bang.

Usando o poderoso espectrógrafo infravermelho do observatório Keck, chamado MOSFIRE, a equipe datou a galáxia através da detecção da sua linha Lyman-alpha de emissão, uma assinatura de hidrogênio gasoso e quente, aquecido pela forte emissão de raios ultravioleta proveniente de estrelas recém-nascidas. Embora esta seja uma assinatura detectada frequentemente em galáxias próximas, a detecção da emissão Lyman-alpha a distâncias tão grandes é inesperada, uma vez que é facilmente absorvida pelos inúmeros átomos de hidrogênio que se pensa permearem o espaço entre galáxias nos primórdios do Universo. O resultado fornece novas informações sobre a "reionização cósmica", o processo através do qual as nuvens escuras de hidrogênio foram divididas nos seus prótons e elétrons constituintes pela primeira geração de estrelas.

"Vemos frequentemente a linha de emissão Lyman-alpha do hidrogênio em objetos próximos, pois é um dos marcadores mais confiáveis da formação estelar," afirma o astrônomo Adi Zitrin, do Instituto de Tecnologia da Califórnia (Caltech), autor principal do estudo. "No entanto, à medida que penetramos cada vez mais no Universo e, portanto, cada vez mais no passado, o espaço entre as galáxias contém um número crescente de nuvens escuras de hidrogênio que absorvem este sinal."

Um trabalho recente descobriu que a fração de galáxias que mostram esta linha proeminente diminui acentuadamente depois dos primeiros bilhões de anos do Universo, o que equivale a um desvio para o vermelho de aproximadamente 6. O desvio para o vermelho é uma medida de quanto o Universo se expandiu desde que a luz saiu de uma fonte distante e só pode ser determinado para objetos tênues com um espectrógrafo acoplado a um telescópio grande e poderoso como os telescópios gêmeos de 10 metros do observatório Keck.

"O aspeto surpreendente da presente descoberta é que detectamos esta linha Lyamn-alpha numa galáxia aparentemente tênue com um desvio para o vermelho de 8,68, correspondendo a uma altura em que o Universo deveria estar repleto de nuvens absorventes de hidrogênio," explica Richard Ellis, coautor e astrônomo do Caltech. "Para além de quebrar o recorde anterior de desvio para o vermelho de 7,73, também obtido no observatório Keck, esta detecção diz-nos algo novo sobre o modo como o Universo evoluiu nas suas primeiras centenas de milhões de anos."

As simulações computacionais da reionização cósmica sugerem que o Universo era totalmente opaco à radição Lyman-alpha nos primeiros 400 milhões de anos da histórica cósmica e, gradualmente, à medida que as primeiras galáxias nasciam, a intensa radiação ultravioleta das suas estrelas jovens "queimou" este hidrogênio obscurecedor em bolhas de raio cada vez maior que, eventualmente, se sobrepuseram para que todo o espaço entre as galáxias se tornasse "ionizado", isto é, composto por elétrons e prótons livres. Neste ponto, a radiação Lyman-alpha ficou livre para viajar desimpedida através do espaço.

Pode ser que a galáxia observada, EGSY8p7, que é invulgarmente luminosa, tenha propriedades especiais que lhe permitiram criar uma grande bolha de hidrogênio ionizado muito mais cedo do que o possível para galáxias mais representativas deste momento," afirma Sirio Belli, estudante do Caltech que ajudou a fazer as observações principais. "Descobriu-se que EGSY8p7 é luminosa, que tem um grande desvio para o vermelho, e as suas cores medidas pelos telescópios Hubble e Spitzer indicam que poderá ser alimentada por uma população de estrelas excecionalmente quentes."

Tendo em conta que a descoberta de uma fonte tão precoce, com radiação Lyman-alpha assim tão poderosa, é algo inesperada, fornece uma nova visão sobre o modo como as galáxias contribuíram para o processo da reionização. É possível que o processo seja irregular, que algumas regiões do espaço evoluam mais rapidamente que outras. Por exemplo, devido a variações na densidade da matéria de lugar para lugar. Alternativamente, a EGSY8p7 poderá ser o primeiro exemplo de uma geração antecipada com radiação ionizante invulgarmente forte.

"Em alguns aspetos, o período de reionização cósmica é a peça que faltava na nossa compreensão geral da evolução do Universo," afirma Zitrin. "Além de empurrar a fronteira para uma época em que o Universo tinha apenas 600 milhões de anos, o surpreendente desta descoberta é que o estudo de fontes como a EGSY8p7 vai fornecer novos dados sobre como este processo ocorreu."

O artigo científico sobre o assunto será publicado na revista The Astrophysical Journal Letters.

Fonte: W. M. Keck Observatory

quarta-feira, 5 de agosto de 2015

O fantasma de uma estrela moribunda

Embora esta bolha extraordinária, que brilha como o fantasma de uma estrela na vastidão negra do espaço, pareça sobrenatural e misteriosa, trata-se simplesmente de um objeto astronômico familiar: uma nebulosa planetária, isto é os restos de uma estrela moribunda.

nebulosa planetária ESO 378-1

© ESO/VLT (nebulosa planetária ESO 378-1)

Esta é a melhor imagem feita até hoje da ESO 378-1, um objeto pouco conhecido, e foi obtida com o Very Large Telescope (VLT) do ESO no norte do Chile.

Conhecida por Nebulosa da Coruja do Sul, esta orbe reluzente é uma nebulosa planetária com um diâmetro de quase quatro anos-luz. Este nome informal tem a ver com a sua "prima visual" que se encontra no hemisfério norte, a Nebulosa da Coruja. A ESO 378-1, também catalogada como PN K 1-22 e PN G283.6+25.3, situa-se na constelação da Hidra. A sigla ESO no nome deste objeto refere-se a um catálogo de objetos compilado nas décadas de 1970 e 1980 a partir da inspeção de fotografias obtidas com o telescópio Schmidt de 1 metro do ESO em La Silla.
Tal como todas as nebulosas planetárias, a ESO 378-1 trata-se de um fenômeno relativamente curto, com uma duração de apenas algumas dezenas de milhares de anos, isto comparado com a vida típica de uma estrela que é de vários bilhões de anos. A vida de uma nebulosa planetária em termos de fração da vida da estrela pode ser comparada à vida de uma bolha de sabão relativamente à idade da criança que a soprou.
As nebulosas planetárias formam-se a partir de gás que é ejetado por estrelas moribundas e que se expande. Embora sejam objetos brilhantes e intrigantes nas fases iniciais da sua formação, estas bolhas desvanecem à medida que o seu gás constituinte se afasta e a estrela central se vai tornando cada vez mais tênue.
Para que uma nebulosa planetária se forme, a estrela que lhe dá origem tem que ter uma massa inferior a 8 vezes a massa do Sol. Estrelas com mais massa do que este valor terminarão as suas vidas de forma dramática em explosões de supernovas.
À medida que estas estrelas menos massivas vão envelhecendo começam a perder as suas camadas de gás mais exteriores sob a forma de ventos estelares. Após a dissipação da maioria destas camadas exteriores, o núcleo estelar quente que resta começa a emitir radiação ultravioleta que, por sua vez, ioniza o gás circundante. Esta ionização faz com que a concha de gás em expansão comece a brilhar em cores vivas.
Depois do desvanecimento da nebulosa planetária, o resto estelar que sobra irá ainda queimar o que lhe resta de combustível durante cerca de um bilhão de anos, transformando-se depois numa minúscula, mas quente e muito densa, anã branca que irá arrefecendo lentamente ao longo de bilhões de anos. O Sol dará origem a uma nebulosa planetária daqui a vários bilhões de anos, transformando-se posteriormente numa anã branca.
As nebulosas planetárias desempenham um papel crucial no enriquecimento químico e evolução do Universo. Estes objetos devolvem o material das estrelas, onde novos elementos tais como o carbono e o nitrogênio, assim como outros elementos pesados, foram criados, ao meio interestelar. É deste material que se formam novas estrelas, planetas e eventualmente vida. Daí a famosa frase do astrônomo Carl Sagan: “Somos feitos de poeira de estrelas.”
Esta imagem foi obtida no âmbito do programa Jóias Cósmicas do ESO, uma iniciativa que visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrônomos através do arquivo científico do ESO.

Fonte: ESO

domingo, 2 de agosto de 2015

Observado trânsito de exoplaneta rochoso mais próximo da Terra

Uma equipe internacional, da qual faz parte o pesquisador do Instituto de Astrofísica e Ciências do Espaço (IA) Pedro Figueira, anunciou hoje a descoberta do HD219134, um sistema com 3 “super Terras”, incluindo o planeta HD219134 b, e um planeta gigante.

ilustração do exoplaneta HD219134 b

© NASA/JPL-Caltech/R. Hurt (ilustração do exoplaneta HD219134 b)

Imagem artística vista acima do exoplaneta HD219134 b. A sua densidade, semelhante à da Terra, indica uma composição de metal e rocha. Devido à sua proximidade da estrela, a temperatura do exoplaneta deve rondar os 700º C, e por isso a superfície deve estar parcialmente derretida (zonas mais escuras da imagem).

Para Pedro Figueira (IA e Universidade do Porto): “HD219134 b é, muito provavelmente, o planeta mais interessante descoberto até hoje”.

Por estar a apenas 5,7 milhões de quilômetros da sua estrela (sensivelmente um décimo da distância de Mercúrio ao Sol), esta super Terra completa uma órbita em apenas 3,1 dias, tendo sido observado recentemente pelo telescópio espacial Spitzer (NASA) através do método dos trânsitos, o que permitiu determinar que tem um diâmetro 1,6 vezes maior que o da Terra. Uma “super Terra” é um tipo de planeta extrassolar, com uma massa compreendida entre 1 e 10 vezes a massa da Terra, embora o termo possa ser generalizado para planetas até à massa de Urano (cerca de 15 vezes a massa da Terra). O método dos trânsitos consiste na medição da diminuição da luz de uma estrela, provocada pela passagem de um exoplaneta à frente dessa estrela (algo semelhante a um micro-eclipse). Através de um trânsito é possível determinar apenas o raio do planeta. Este método é complicado de usar, porque exige que o(s) planeta(s) e a estrela estejam exatamente alinhados com a linha de visão do observador.

Graças a observações efetuadas ao longo dos últimos 3 anos pelo espectrógrafo HARPS-N (High Accuracy Radial velocity Planet Searcher for the Northern hemisphere), que detecta variações de velocidade inferiores a 4 km/h, através do método das velocidades radiais, foi ainda possível determinar que a massa deste exoplaneta é inferior a 4,5 vezes a da Terra, o que em conjunção com o raio medido lhe confere uma densidade de 5,89 g/cm³. Este é por isso o planeta rochoso que transita a sua estrela mais próximo de nós. O método das velocidades radiais detecta exoplanetas medindo pequenas variações na velocidade (radial) da estrela, devidas ao movimento que a órbita desses planetas imprime na estrela. A título de exemplo, a variação de velocidade que o movimento da Terra imprime ao Sol é de apenas 10 cm/s (cerca de 0,36 km/h). Com este método é possível determinar o valor mínimo da massa do planeta.

Pedro Figueira acrescenta ainda: “A sua massa e raio permitem-nos inferir uma composição rochosa, extremamente semelhante à do nosso próprio planeta, e os três planetas que o acompanham na sua órbita mostram que estamos perante um sistema planetário. O artigo de anúncio está agora sendo publicado e já existem vários estudos em curso para melhor caracterizar este fascinante planeta.”

O astrônomo do Observatório de Genebra e primeiro autor do artigo, Ati Motalebi comenta ainda que: “Este exoplaneta será um dos mais estudados, durante décadas”. Agora que se sabe que o HD219134 b transita a sua estrela, os astrônomos estão já planejando observações, com telescópios terrestres e espaciais, de modo a poderem caracterizá-lo com detalhe, incluindo para detectarem a sua composição química.

Este é o primeiro resultado publicado pelo programa Rocky Planet Search (Busca de Planetas Rochosos), desenvolvido pela equipe do HARPS-N. O sistema HD219134 é composto por 3 super-Terras (com 4,5, 2,7 e 8,7 vezes a massa da Terra, respectivamente) e um sub-Saturno (62 vezes a massa da Terra), a distâncias que variam entre 0,04 e 2 UA (unidades astronômicas).

O artigo “The HARPS-N Rocky Planet Search - I. HD219134 b: A transiting rocky planet in a 4 planet system at 6.5 pc from the Sun” foi aceita para publicação na revista Astronomy & Astrophysics.

Fonte: Instituto de Astrofísica e Ciências do Espaço