sexta-feira, 15 de janeiro de 2016

Siga uma caçada de planetas ao vivo

Acaba de ser lançada uma campanha única de divulgação científica que permitirá ao público de todo o mundo acompanhar cientistas enquanto procuram exoplanetas do tipo terrestre em torno da estrela mais próximo de nós, a Proxima Centauri.

Pálido Ponto Vermelho

© ESO (Pálido Ponto Vermelho)

A uma distância de apenas 4,2 anos-luz do Sol e situada na constelação do Centauro, Proxima Centauri é a estrela mais próxima do Sol que conhecemos. Observações anteriores mostraram pistas interessantes, se bem que mínimas, de uma pequena companheira em órbita desta anã vermelha. Esta nova campanha fará uma busca mais detalhada e sensível dos desvios do movimento orbital da estrela anã que podem revelar a presença de um planeta do tipo terrestre em sua órbita.
As observações serão feitas com o HARPS (High Accuracy Radial velocity Planet Searcher), montado no telescópio de 3,6 metros do ESO no Observatório de La Silla. Os dados do HARPS complementarão as imagens obtidas por uma quantidade de telescópios robóticos situados em todo o mundo.
Os telescópios que fazem parte do sistema BOOTES (Burst Optical Observer and Transient Exploring System) e a redeLCOGT (Las Cumbres Observatory Global Telescope Network) darão uma contribuição importante a este projeto medindo o brilho da Proxima Centauri todas as noites durante os dois meses e meio de duração do projeto. Estas observações ajudarão os astrônomos a determinar se as variações detectadas na órbita da estrela são causadas por um planeta em sua órbita ou serão antes devidas a efeitos na sua atmosfera turbulenta.

Após a obtenção dos dados pelos diversos telescópios, os astrônomos começarão a analisá-los e, nos meses que se seguirem, os métodos de investigação e as conclusões obtidas serão descritas num artigo científico que será submetido a uma revista especializada arbitrada por pares. Quando a comunidade científica tiver validado o trabalho de investigação, os resultados serão publicados, concluindo assim um longo e substancial programa de pesquisa científica.
Além de acompanhar as observações científicas à medida que forem chegando, a campanha de divulgação Pálido Ponto Vermelho dará ao público a oportunidade de ver como é que se faz ciência nos observatórios modernos e como é que as diferentes equipes de astrônomos com diferentes especialidades trabalham em conjunto para coletar, analisar e interpretar os dados que podem, ou não, confirmar a presença de um planeta do tipo da Terra em órbita da nossa estrela vizinha mais próxima.

“É um risco envolver o público antes de sabermos o que é que as observações nos dirão, não podemos analisar os dados e tirar conclusões em tempo real. Quando publicarmos o artigo científico resumindo os resultados é perfeitamente possível que tenhamos que dizer que não conseguimos encontrar evidências da presença de um exoplaneta do tipo terrestre em torno de Proxima Centauri. Mas o fato de estarmos à procura de objetos tão pequenos com uma precisão tão extrema é verdadeiramente alucinante,” disse Guillem Anglada-Escude, o coordenador do projeto.
“Queremos compartilhar o entusiasmo da busca com as pessoas e mostrar-lhes como é que a ciência funciona nos bastidores, o processo de tentativa e erro e os esforços continuados que são necessários para conseguir fazer o tipo de descobertas que as pessoas ouvem normalmente nas notícias. Ao fazê-lo, esperamos encorajar mais pessoas para os temas ligadas à ciência e tecnologia,” acrescenta Guillem.
A campanha de divulgação Pálido Ponto Vermelho irá iluminar o lado geralmente desconhecido da procura de exoplanetas com material de apoio colocados nas redes sociais. Uma grande quantidade de posts em blogs sobre muitos assuntos, incluindo técnicas de busca de exoplanetas, o European Extremely Large Telescope do ESO (E-ELT) e a vida das estrelas, estão planejados e serão escritos por astrônomos, cientistas e engenheiros dos observatórios envolvidos na campanha, assim como por escritores de ciência, observadores e outros peritos nestes campos do conhecimento.
Haverá atualizações diárias nas redes sociais, mostrando ao público como é que as observações estão decorrendo e que eventos estão acontecendo nos três observatórios envolvidos. Para receber as atualizações, convidamos as pessoas a seguir a conta Twitter do Pálido Ponto Vermelho com a hashtag #PaleRedDot.
O nome da campanha inspirou-se na famosa imagem do “pálido ponto azul” obtida em 1990 pela sonda Voyager 1 a caminho do espaço interestelar. A frase foi mais tarde usada por Carl Sagan no seu artigo, Pálido Ponto Azul: Uma Visão do Futuro da Humanidade no Espaço. Como Proxima Centauri é uma estrela anã vermelha, os astrônomos pensam que um exoplaneta em sua órbita terá uma cor avermelhada. Ao mesmo tempo, tal como a imagem da Terra obtida pela Voyager foi um feito notável para a humanidade, encontrar um exoplaneta do tipo da Terra em torno da estrela mais próxima de nós seria um outro passo em frente para responder à maior questão da humanidade: Estaremos sós?
A campanha Pálido Ponto Vermelho terá início em 15 de janeiro de 2016 com as observações a começarem apenas três dias depois no Observatório de La Silla do ESO, situado na periferia do deserto chileno do Atacama, e prosseguindo até à primeira semana de abril. Espera-se que todos dos dados científicos obtidos no âmbito do projeto estejam no domínio público na segunda metade de 2016, de modo a poderem ser explorados por todos.

A campanha de divulgação é coordenada pela equipe do projeto com apoio dos departamentos de divulgação científica do ESO, Queen Mary University of London, Instituto de Astrofisica de Andalucia/CSIC, Université de Montpellier, Universidade de Goettingen, Universidad de Chile e Las Cumbres Observatory Global Telescope Network.

Fonte: ESO

quinta-feira, 14 de janeiro de 2016

Uma gêmea da Via Láctea varrida por um vento rapidíssimo de raios X

O observatório espacial XMM-Newton da ESA encontrou uma corrente de vento de gás de alta velocidade saindo do centro de uma galáxia espiral brilhante como a nossa que pode estar reduzindo sua capacidade de produzir novas estrelas.

ilustração de um vento fluindo de um buraco negro no centro de uma galáxia espiral

© ESA (ilustração de um vento fluindo de um buraco negro no centro de uma galáxia espiral)

Não é incomum encontrar ventos quentes que sopram dos discos de material rodopiando em torno de buracos negros supermassivos no centro de galáxias ativas.

Se bastante poderosos, estes ventos podem influenciar seu ambiente de várias maneiras. O seu efeito principal é varrer reservatórios de gás que poderiam ter formado estrelas, mas também é possível que possam desencadear o colapso de algumas nuvens para formar estrelas.

Tais processos são fundamentais nas galáxias e buracos negros durante os 13,8 bilhões de anos da evolução do Universo. Mas, eles afetam apenas os maiores objetos, como enormes galáxias elípticas formadas através da colisão dramática e fusão de duas ou mais galáxias, que às vezes provocam os ventos poderosos o suficiente para influenciar na formação estelar.

Agora, pela primeira vez, esses ventos têm sido vistos em um tipo de galáxia ativa conhecida como Seyfert, que não parecem ter sofrido qualquer fusão. Quando observada na luz visível, quase todas as galáxias Seyfert tem uma forma espiral similar a Via Láctea. No entanto, ao contrário da Via Láctea, as galáxias Seyfert têm núcleos brilhantes que emitem em todo o espectro eletromagnético, um sinal de que os buracos negros supermassivos em seus centros não estão ociosos mas estão devorando seus arredores.

O buraco negro supermassivo no centro desta Seyfert particular, conhecido como IRAS17020+4544 e localizado a 800 milhões de anos-luz da Terra, tem uma massa de cerca de seis milhões de sóis, extraindo gás nas proximidades e fazendo-o brilhar moderadamente.

O XMM-Newton descobriu que os ventos ao redor do buraco negro está se movendo entre 23.000 e 33.000 km/s, cerca de 10% da velocidade da luz.

Um achado importante é que o vento central é suficientemente energético para aquecer o gás na galáxia e suprimir a formação de estrelas, a primeira vez que foi visto em uma galáxia espiral relativamente normal.

"É o primeiro caso sólido de uma emissão de raios X ultrarrápido observado em uma galáxia Seyfert normal," diz Anna Lia Longinotti do Instituto Nacional de Astrofísica, Óptica y Electrónica de Puebla, no México.

o vento peculiar de uma galáxia espiral

© SDSS/A. L. Longinotti (o vento peculiar de uma galáxia espiral)

A imagem acima mostra a análise do XMM-Newton das emissões de raios X que emanam em torno do buraco negro supermassivo no centro da galáxia espiral Seyfert IRAS17020+4544. A imagem da galáxia (mostrada à esquerda) foi obtida pelo Sloan Digital Sky Survey (SDSS). O núcleo ativo da galáxia é o local amarelo claro, no centro; os pontos vermelhos são estrelas em primeiro plano. O espectro mostra vários componentes diferentes (A-E) do fluxo de saída veloz. Características de absorção quente marcam as partes do fluxo de saída que estão se deslocando mais devagar (centenas a milhares km/s).

A galáxia tem uma outra surpresa: a emissão de raios X dos ventos ultrarrápidos de núcleos galácticos são normalmente dominados por átomos de ferro com muitos de seus elétrons despojados para fora, mas os ventos desta galáxia são bastante incomuns, exibindo elementos mais leves, como oxigênio; nenhum ferro foi detectado.

Porque a galáxia é muito semelhante à nossa, isso levanta questões sobre a história da Via Láctea e do papel do seu buraco negro central.

"Sabemos, também graças a resultados recentes obtidos pelo XMM-Newton, que o buraco negro de quatro milhões de massas solares em nossa própria galáxia passou por fases de atividades muito mais fortes, até mesmo apenas algumas centenas de anos atrás," diz Matteo Guainazzi, astrônomo da ESA e atualmente no Institute of Space and Astronautical Science da Japan Aerospace Exploration Agency (JAXA).

"O XMM-Newton continua fazendo descobertas com potencial para questionar a nossa compreensão de como as estrelas em uma galáxia e o buraco negro supermassivo em seu centro evoluem ao longo da história do Universo," diz Norbert Schartel, cientista da ESA.

Um artigo que descreve os resultados intitulado “X-ray high-resolution spectroscopy reveals feedback in a Seyfert Galaxy from an ultra fast wind with complex ionization and velocity structure” foi publicado na revista Astrophysical Journal Letters.

Fonte: ESA

quarta-feira, 13 de janeiro de 2016

Primeira luz de futura sonda de buracos negros

Observar buracos negros é o objetivo principal do instrumento GRAVITY recentemente instalado no Very Large Telescope (VLT) do ESO no Chile.

estrelas duplas do Aglomerado do Trapézio em Órion

© ESO/GRAVITY/M. McCaughrean (estrelas duplas do Aglomerado do Trapézio em Órion)

Durante as primeiras observações, o GRAVITY combinou de forma bem sucedida a radiação estelar obtida pelos quatro telescópios auxiliares do VLT. A enorme equipe de astrônomos e engenheiros, liderada pelo Instituto Max Planck de Física Extraterrestre em Garching (Alemanha), que concebeu e construiu o GRAVITY, encontra-se bastante satisfeita com o desempenho do instrumento. Durante os testes iniciais, o GRAVITY fez já algumas descobertas importantes, tratando-se do mais poderoso instrumento instalado até hoje no interferômetro do VLT.

O instrumento GRAVITY combina a radiação captada por vários telescópios para formar um telescópio virtual com um diâmetro que pode ir até aos 200 metros, utilizando uma técnica conhecida por interferometria, a qual permite aos astrônomos detectar muito mais detalhes em imagens de objetos astronômicos do que o que seria possível com um único telescópio.
Desde o verão de 2015 que uma equipe internacional de astrônomos e engenheiros, liderada por Frank Eisenhauer do Instituto Max Planck de Física Extraterrestre, está instalando o instrumento em túneis especialmente adaptados, situados por baixo do VLT no Observatório do Paranal do ESO, no norte do Chile. Esta é a primeira fase do comissionamento do GRAVITY no Interferômetro do Very Large Telescope (VLTI), tendo sido agora atingido um importante marco no programa.

“Durante a primeira luz, e pela primeira vez na história da interferometria de linha de base longa da astronomia óptica, o GRAVITY fez exposições de vários minutos, ou seja, uma centena de vezes maiores do que o que era possível anteriormente,” comentou Frank Eisenhauer. “O GRAVITY abrirá as portas da interferometria óptica a observações de objetos muito mais fracos, levando a sensibilidade e precisão da astronomia de elevada resolução angular a novos limites, para muito além do que existe atualmente.”
No âmbito das primeiras observações, a equipe observou cuidadosamente estrelas brilhantes e jovens, no conhecido Aglomerado do Trapézio, situado no coração da região de formação estelar de Órion. E logo com estes primeiros dados, o GRAVITY fez uma pequena descoberta: uma das componentes deste aglomerado é uma estrela dupla. A recentemente descoberta estrela dupla é a Theta1 Orionis F e as observações foram feitas com o auxílio da estrela próxima mais brilhante, Theta1 Orionis C, que serviu como estrela de referência.

A chave do sucesso passou por conseguir estabilizar o telescópio virtual durante tempo suficiente, com o auxílio da luz de uma estrela de referência, de modo a obter uma exposição profunda de um segundo objeto muito mais fraco. Além disso, os astrônomos conseguiram também estabilizar a radiação dos quatro telescópios em simultâneo, um fato que nunca tinha sido conseguido anteriormente.
O GRAVITY consegue medir as posições de objetos astronômicos com muita precisão e obtém também imagens e espectroscopia interferométricas. O GRAVITY pretende medir as posições de objetos com escalas da ordem dos 10 microsegundos de arco e obter imagens com uma resolução de 4 milisegundos de arco. Como referência podemos dizer que o instrumento veria objetos do tamanho de edifícios na Lua e poderia localizá-los com uma precisão de alguns centímetros. Imagens com tão elevada resolução têm imensas aplicações, mas o enfoque principal no futuro será o estudo do meio que rodeia os buracos negros.
Em particular, o GRAVITY observará o que acontece no campo gravitacional extremamente forte que existe próximo do horizonte de eventos do buraco negro supermassivo que se situa no centro da Via Láctea; daí o nome escolhido para o instrumento. Trata-se de uma região dominada pela teoria da relatividade geral de Einstein. Adicionalmente, este instrumento observará também detalhes ligados à acreção de massa e a jato, processos que ocorrem tanto em torno de estrelas jovens como em regiões que rodeiam os buracos negros supermassivos situados nos centros de outras galáxias. Será também um excelente instrumento para observar os movimentos de estrelas binárias, exoplanetas e discos estelares jovens e fazer imagens da superfície das estrelas.
Até agora, o GRAVITY foi testado com os quatro telescópios auxiliares de 1,8 metros. As primeiras observações do GRAVITY com os quatro telescópios principais de 8 metros do VLT estão planejadas para a segunda metade de 2016.

Fonte: ESO

terça-feira, 12 de janeiro de 2016

Identificado aglomerado de galáxias massivo mais distante

O Universo primitivo era uma mistura caótica de gás e matéria que só começou a coalescer em galáxias distintas centenas de milhões de anos após o Big Bang.

  aglomerado de galáxias IDCS 1426

  © Chandra/Hubble/Spitzer (aglomerado de galáxias IDCS 1426)

Estas galáxias demoraram vários bilhões de anos para se agruparem em aglomerados gigantescos; era o que os cientistas pensavam.

Agora, astrônomos do Massachusetts Institute of Technology (MIT), da Universidade do Missouri, da Universidade da Flórida, entre outras instituições, detectaram um enorme aglomerado de galáxias formado apenas 3,8 bilhões de anos após o Big Bang. Localizado a 10 bilhões de anos-luz da Terra e potencialmente contendo milhares de galáxias individuais, a megaestrutura é mais ou menos 250 trilhões de vezes mais massiva que o Sol, ou 1.000 vezes mais massiva que a Via Láctea.

O aglomerado de galáxias, denominado IDCS J1426.5+3508 (ou IDCS 1426), é o mais massivo já descoberto nos primeiros 4 bilhões de anos do Universo.

O IDCS 1426 parece estar passando por uma quantidade substancial de convulsões; foram observados um nó brilhante de raios X, ligeiramente fora do centro do aglomerado de galáxias, indicando que o núcleo do aglomerado pode ter-se deslocado cerca de cem mil anos-luz do seu centro. Os cientistas supõem que o núcleo pode ter sido desalojado por uma violenta colisão com outro aglomerado de galáxias, fazendo com que o gás dentro do aglomerado se deslocasse, como vinho num copo que mudou subitamente de posição.

Michael McDonald, professor assistente de física e membro do Kavli Center for Astrophysics and Space Research do MIT, diz que uma tal colisão pode explicar como o IDCS 1426 foi formado tão rapidamente no início do Universo, num instante em que as galáxias individuais estavam começando a tomar forma.

Os aglomerados de galáxias são aglomerados de centenas até milhares de galáxias ligadas pela gravidade. São as maiores estruturas do Universo, e aqueles localizados relativamente perto, como o aglomerado de Virgem, são extremamente brilhantes e fáceis de detectar no céu.

"No Universo próximo, se olharmos para um aglomerado de galáxias, basicamente vemos os outros, parecem todos bastante uniformes. Mas quanto mais para trás olhamos, mais diferentes começam a ser," afirma McDonald.

No entanto, encontrar aglomerado de galáxias mais distantes no espaço, e para trás no tempo, é uma tarefa complexa e incerta.

Em 2012, cientistas usando o telescópio espacial Spitzer da NASA detectaram pela primeira vez os sinais de IDCS 1426 e fizeram algumas estimativas iniciais da sua massa.

Para obter uma estimativa mais precisa da massa do aglomerado de galáxias, McDonald e colegas usaram dados de vários dos grandes observatórios da NASA: o Observatório Keck, o Observatório de raios X Chandra e o telescópio espacial Hubble.

Tanto o Hubble como o Keck recolheram dados visíveis do aglomerado de galáxias, que os pesquisadores analisaram para determinar a quantidade de luz distorcida em torno do aglomerado de galáxias como resultado da gravidade, um fenõmeno conhecido como lente gravitacional. Quanto mais massivo o aglomerado, mais força gravitacional exerce, e mais luz dobra.

Também estudaram dados de raios X obtidos pelo Observatório Chandra a fim de obter a temperatura do aglomerado de galáxias. Os objetos com uma alta temperatura emitem raios X e, quanto mais quente é um aglomerado de galáxias, mais o gás no aglomerado é comprimido, tornando-o mais massivo.

A partir dos dados em raios X, McDonald e colegas também calcularam a quantidade de gás no aglomerado, que pode ser uma indicação da quantidade de matéria e massa no aglomerado de galáxias.

Usando todos os três métodos, o grupo calculou aproximadamente a mesma massa, cerca de 250 trilhões de vezes a massa do Sol. Agora, a equipe está à procura de galáxias individuais no aglomerado para ter uma noção de como estas megaestruturas se podem formar no Universo jovem.

Uma imagem ainda melhor de IDCS 1426 em 2018 poserá ser obtida com o lançamento do telescópio espacial James Webb, um telescópio infravermelho centenas de vezes mais sensível que o Spitzer, telescópio este que foi o primeiro a detectar o aglomerado de galáxias.

"As pessoas tinham quase posto de lado esta ideia de encontrar aglomerado de galáxias no visível e no infravermelho, em favor de assinaturas em raios X e no rádio," observa McDonald.

Portanto, é necessário diversificar um pouco a região espectral para encontrar estes objetos.

McDonald e colegas apresentaram os seus resultados a semana passada na 227ª reunião da Sociedade Astronômica Americana em Kissimmee, Flórida (EUA).

Esta pesquisa foi aceita para publicação na revista The Astrophysical Journal.

Fonte: Massachusetts Institute of Technology

Maior mapa de idades da Via Láctea revela seu crescimento

Apresentado na 227ª reunião da Sociedade Astronômica Americana que decorreu na semana passada em Kissimmee, no estado da Flórida, uma equipe liderada por Melissa Ness do Instituto Max Planck para Astronomia (MPIA) em Heidelberg, Alemanha, criou o primeiro gráfico de crescimento para a nossa Via Láctea.

gráfico de crescimento da Via Láctea

© MPIA/G. Stinson (gráfico de crescimento da Via Láctea)

O gráfico, que usa as idades de mais de 70.000 estrelas e abrange cerca de 50.000 anos-luz, ajuda-nos a ler a história de como a nossa Galáxia cresceu desde a sua infância até à espiral que vemos hoje. Os pontos vermelhos mostram estrelas formadas quando a Via Láctea era jovem e pequena, enquanto os pontos azuis mostram estrelas formadas mais recentemente, quando a Via Láctea já era grande e madura. A escala de cores mostra quantos milhares de milhões de anos passaram desde a formação dessas estrelas.

"Perto do centro da nossa Galáxia, vemos estrelas velhas formadas quando era pequena e jovem. Mais para o exterior, vemos estrelas jovens. Nós concluímos que a nossa Galáxia cresceu para fora," afirma Ness, autora principal do estudo. "Para ver isto, precisávamos de um mapa de idades que abrangia grandes distâncias, e é isso que esta nova descoberta nos fornece."

Os pesquisadores mapearam a Galáxia observando gigantes vermelhas, estrelas brilhantes nos estágios finais das suas vidas que podem ser observadas a grandes distâncias do nosso Sol, até aos alcances muito internos e externos da Via Láctea. "Se soubermos a massa de uma gigante vermelha, sabemos a sua idade usando o relógio de fusão dentro de cada estrela," afirma Marie Martig, autora principal de um estudo relacionado e participante do estudo de Ness. "A determinação das massas de gigantes vermelhas tem sido, historicamente, muito difícil, mas os levantamentos da Galáxia tornaram possíveis novas técnicas revolucionárias."

A equipe começou com espectros retirados de um dos estudos constituintes do SDSS, o APOGEE (Apache Point Observatory Galaxy Evolution Experiment). "O APOGEE é o levantamento ideal para este trabalho porque pode obter espectros de alta qualidade para 300 estrelas simultaneamente numa grande área do céu," afirma Steve Majewski da Universidade de Virgínia e pesquisador principal do APOGEE. "Vendo tantas estrelas ao mesmo tempo significa que a obtenção do espectro de 70.000 estrelas é realmente possível com um único telescópio num espaço de poucos anos."

As idades das estrelas não podem ser medidas apenas com os espectros do APOGEE, mas a equipe do levantamento percebeu que as curvas de luz do satélite Kepler, uma missão espacial da NASA cujo objetivo principal é encontrar planetas ao redor de estrelas, podia fornecer o elo perdido entre os espectros do APOGEE e as idades das estrelas. Portanto, o APOGEE observou milhares de gigantes vermelhas que também tinham sido observados pelo Kepler. Depois de combinarem a informação dos espectros do APOGEE com as curvas de luz do Kepler, os pesquisadores puderam então aplicar os seus métodos para medir idades para todas as 70.000 gigantes vermelhas, uma amostragem de todas as partes da Galáxia.

"Na Via Láctea podemos ler claramente a história de como as galáxias se formam num Universo com grandes quantidades de matéria escura," comenta Ness. "Tendo em conta que podemos ver tantas estrelas individuais na Via Láctea, podemos traçar o seu crescimento em detalhes sem precedentes. Este mapa enorme acaba por ser muito importante."

Fonte: Sloan Digital Sky Survey & Max Planck Institute for Astronomy

Galáxia anã gera ondulações nos subúrbios da Via Láctea

Ondulações no gás localizado no disco externo da nossa galáxia, têm intrigado os astrônomos, desde que elas foram reveladas pela primeiras vez por observações feitas em ondas de rádio, a uma década atrás.

simulação da distribuição de gás e das estrelas

© Gemini Observatory (simulação da distribuição de gás e das estrelas)

A animação acima mostra uma simulação computacional da distribuição de gás (à esquerda) e das estrelas (à direita) após a Via Láctea ser perturbada pela galáxia anã satélite.

Agora, os astrônomos acreditam que encontraram a responsável, uma galáxia anã, contendo um material escuro e invisível, que passou perto dos subúrbios da nossa galáxia a alguns milhões de anos atrás.

A pesquisa, liderada por Sukanya Chakrabarti, do Rochester Institute of Technology, apresenta a primeira explicação plausível para as ondulações galácticas. “É como se fosse jogar uma pedra num lago e gerar as ondas”, disse Charkrabarti, durante a conferência de imprensa realizada na 227ª reunião da Sociedade Astronômica Americana em Kissimmee, na Flórida (EUA).

“Óbvio, nós não estamos falando de um lago, mas sim da nossa galáxia, que tem dezenas de milhares de anos-luz de diâmetro e é feita de estrelas e gás, mas o resultado é o mesmo: ondulações!” disse Charkrabarti, e adicionou que seu trabalho é parte de uma nova disciplina chamada de sismologia galáctica. “Esta é realmente a primeira aplicação não teórica deste campo, onde nós podemos inferir coisas sobre a composição invisível das galáxias, analisando os sismos galácticos”.

Para chegar a esta conclusão, a equipe de pesquisa estudou um trio de estrelas, chamadas de variáveis Cefeidas, que são parte da provável galáxia anã, agora estimada a uma distância de 300.000 anos-luz da nossa galáxia, na direção da constelação da Norma. “Nós temos uma boa ideia da distância para estas estrelas, pois o brilho intrínseco das variáveis Cefeidas, depende do seu período de pulsação, que conseguimos medir com precisão”, disse Chakrabarti. “O que eu queria saber era o quão rápido estas estrelas estavam quando passaram pela nossa galáxia, com esta informação nós podemos começar a entender a dinâmica e por fim saber quanta matéria escura existe”.

Para fazer isso, Chakrabarti e sua equipe focou em três Cefeidas na pequena galáxia. Usando observações espectroscópicas, obtidas pelo Observatório Gemini e também pelo telescópio Magellan e pelo espectrógrafo WiFeS, os pesquisadores descobriram que as estrelas estão todas vagando a velocidades similares, cerca de 200 quilômetros por segundo. “Isto realmente implica que estas estrelas fazem parte de um sistema organizado e que se move rapidamente, e que nós acreditamos, seja uma galáxia anã. É também muito provável que esta galáxia satélite, tenha raspado na nossa galáxia a milhões de anos atrás e deixado estas ondulações”, disse Chakrabarti.

“Esta nova, e potencialmente poderosa forma de estudar como as estrelas, o gás e a poeira são distribuídos nas galáxias é realmente muito animadora”, disse Chris Davis, diretor do programa no U.S. National Science Foundation, que financia cerca de 65% do Gemini, como parte de uma parceria internacional, bem como este programa de pesquisa. “Conhecida como sismologia galáctica, ela pode traçar, tanto o material visível como o invisível, incluindo a elusiva matéria escura. É uma excelente maneira para melhor entender como as galáxias e as galáxias anãs satélites e vizinhas se interagem”.

O astrônomo do Observatório Gemini Rodolfo Angeloni, refez as observações utilizando o telescópio Gemini Sul no Chile. Ele adicionou que o Gemini Sul é unicamente bem equipado para fazer esse tipo de observação. “A combinação dos espelhos cobertos de prata do Gemini e a versatilidade do espectrógrafo infravermelho Flamingos-2, realmente tornaram este trabalho possível. Estes são alvos especialmente apagados e remotos, e nós temos realmente que levar nossos instrumentos ao limite operacional”.

A equipe planeja continuar este trabalho observando mais estrelas variáveis Cefeidas, no halo da nossa galáxia. “Deve existir ainda uma população de variáveis Cefeidas que não foi descoberta, que se formaram de uma galáxia anã rica em gás caindo no halo da nossa galáxia”, disse Chakrabarti. “Com as capacidades dos telescópios atuais e dos instrumentos neles acoplados, nós devemos ser capazes de amostrar de maneira suficiente o halo da Via Láctea, para que possamos fazer estimativas razoáveis da quantidade de matéria escura, um dos grandes mistérios na astronomia de hoje”.

Fonte: Gemini Obervatory

A Nebulosa Califórnia

O que a Califórnia está fazendo no espaço?

NGC 1499

© Farmakopoulos Antonis (NGC 1499)

Vagando através do Braço de Órion da galáxia espiral Via Láctea, esta nuvem cósmica tem a forma parecida com o estado da Califórnia na costa oeste dos Estados Unidos. O nosso Sol e consequentemente o Sistema Solar também localiza-se no Braço de Órion a apenas 1.500 anos-luz de distância da Nebulosa Califórnia. Esta nebulosa também conhecida como NGC 1499 é uma clássica nebulosa de emissão com aproximadamente 100 anos-luz de comprimento. Na imagem acima, o brilho mais proeminente da Nebulosa Califórnia é vermelho, brilho esse característico dos átomos de hidrogênio recombinando com elétrons perdidos que são retirados ou ionizados pelo brilho estelar energético.

A estrela que provavelmente mais contribui com energia para ionizar a maior parte do gás da nebulosa é a brilhante, quente e azulada Xi Persei, logo à direita da nebulosa. A Nebulosa Califórnia é um alvo tradicional para a astrofotografia que pode ser observada e registrada com um telescópio de campo vasto e sendo observada a partir de um local distante da poluição luminosa, apontando o telescópio na direção da constelação de Perseus, não muito longe das Plêiades.

Fonte: NASA

segunda-feira, 11 de janeiro de 2016

A supermassiva galáxia espiral NGC 4845

Esta imagem do telescópio espacial Hubble da NASA e ESA mostra a galáxia espiral NGC 4845, localizada a cerca de 65 milhões de anos-luz de distância da Terra, na constelação de Virgo (A Virgem).

 NGC 4845

  © Hubble (galáxia espiral NGC 4845)

A orientação da galáxia claramente revela a sua bela estrutura espiral, um disco plano de poeira circundando um brilhante bulbo galáctico.

O centro brilhante da NGC 4845 abriga um gigantesco buraco negro. A presença de um buraco negro em galáxias distantes como a NGC 4845 pode ser inferida do seu efeito nas estrelas mais internas da galáxia. Essas estrelas experimentam uma forte atração gravitacional do buraco negro supermassivo e começam a girar ao redor do centro da galáxia com uma velocidade muito maior do que as estrelas mais externas.

A partir da investigação do movimento dessas estrelas centrais, os astrônomos podem estimar a massa do buraco negro central; para a NGC 4845 esse buraco negro tem uma massa de centenas de milhares de vezes a massa do Sol. Essa mesma técnica foi usada para descobrir o buraco negro supermassivo central da nossa Via Láctea, o Sagittarius A*, que tem cerca de 4 milhões de vezes a massa do Sol.

O núcleo galáctico da NGC 4845 não é apenas supermassivo, mas também muito faminto. Em 2013, os pesquisadores estavam observando outra galáxia, quando eles notaram uma violenta labareda (flare) no centro da NGC 4845. A flare veio do buraco negro central enquanto ele se alimentava e consumia um objeto muitas vezes mais massivo que Júpiter. Uma anã marrom, ou um grande planeta simplesmente passou muito perto e foi devorado pelo buraco negro do núcleo da NGC 4845.

Fonte: ESA

Observado buraco negro supermassivo ‘arrotando’ gás

Astrônomos identificaram duas enormes ondas de gás sendo expelidas por um buraco negro supermassivo no núcleo da pequena galáxia NGC 5195.

galáxias NGC 5194 e NGC 5195

© Hubble/Chandra (galáxias NGC 5194 e NGC 5195)

As evidências de explosões poderosas produzidas pelo buraco negro supermassivo foram descobertas usando o observatório de raios X Chandra da NASA. Este é um dos mais próximos buracos negros supermassivos da Terra que está passando por estas explosões violentas.

A galáxia NGC 5195 (M51b) está se fundindo com a grande galáxia espiral NGC 5194 (Whirlpool, M51a). Ambas galáxias fazem parte do Grupo M51, localizado a cerca de 26 milhões de anos-luz da Terra. Outro membro notável do Grupo M51 é a galáxia do Girassol (M63). A galáxia NGC 5194 é uma das descobertas originais do astrônomo francês Charles Messier, que descobriu o objeto em 13 de outubro de 1773 enquanto observava um cometa, descrevendo-a como uma nebulosa tênue, sem estrelas e difícil de visualizar. Sua galáxia satélite, a NGC 5195 foi descoberta por Pierre Méchain em 21 de março de 1781.

"Por analogia, os astrônomos geralmente se referem aos buracos negros como devoradores de estrelas. Aparentemente, os buracos negros também podem ‘arrotar’ após a refeição," disse Eric Schlegel, da Universidade do Texas, em San Antonio (EUA). "Nossa observação é importante porque este comportamento provavelmente aconteceu muito frequentemente no início do Universo, alterando a evolução das galáxias."

Nos dados Chandra, Schlegel e seus colegas detectaram dois arcos de emissão de raios X, perto do centro da NGC 5195.

"Nós pensamos que estes arcos representam fósseis de duas enormes explosões quando o buraco negro expeliu material para o exterior dentro da galáxia," disse Christine Jones, do Harvard-Smithsonian Center for Astrophysics (CfA), em Cambridge, Massachusetts. "Esta atividade é susceptível de gerar um grande efeito sobre a paisagem galáctica."

"Se buracos negros supermassivos centralizados como esse normalmente expelem gás dessa maneira, isto pode explicar a razão pela qual galáxias elípticas como a NGC 5195 tendem a não ter muita atividade de formação de estrelas," disse Schlegel.

Os pesquisadores detectaram um brilho vermelho na região delgada de emissão de gás hidrogênio relativamente fria apenas fora do arco exterior de raios X em uma imagem óptica do telescópio de 0,9 metros do Observatório Nacional Kitt Peak. Isto sugere que os raios X mais quente emitidos tem varrido o gás hidrogênio a partir do centro da galáxia. Este é um caso claro onde o buraco negro supermassivo está afetando sua galáxia anfitriã em um fenômeno denominado "feedback".

Na NGC 5195 as propriedades do gás em torno dos arcos de raios X de incandescência sugerem que o arco exterior coletou material suficiente para desencadear a formação de novas estrelas.

"Acreditamos que esse feedback impeça as galáxias de se tornarem muito grandes. Mas, ao mesmo tempo, ele pode ser responsável pela formação de algumas estrelas. Isso mostra que os buracos negros podem criar, e não apenas destruir," disse Marie Machacek, pesquisadora do CfA.

Pensa-se que os ímpetos do buraco negro supermassivo na NGC 5195 pode ter sido desencadeado pela interação desta galáxia menor com o sua grande companheira espiral, produzindo gás a ser canalizado em direção ao buraco negro. A energia gerada por este material em colapso iria produzir as explosões. A equipe estima que demorou cerca de um a três milhões de anos para o arco interno alcançar a sua posição atual e de três a seis milhões de anos para o arco exterior.

Os arcos também são significativos devido à sua localização na galáxia. Eles estão bem fora da região onde ventos rápidos foram detectados a partir de buracos negros supermassivos ativos em outras galáxias, ainda dentro das cavidades e filamentos muito maiores observados no gás quente em torno de muitas galáxias massivas. Como tal, eles podem representar uma visão rara de uma fase intermediária no processo de feedback operando entre o gás interestelar e o buraco negro.

A descoberta desta dramática interação foi anunciada na reunião anual da Sociedade Astronômica Americana em Kissimmee, na Flórida (EUA).

Fonte: Astronomy

domingo, 10 de janeiro de 2016

A Galáxia de Andrômeda registrada em raios X de alta energia

O Nuclear Spectroscopic Telescope Array (NuSTAR) registrou uma composição da faixa da Galáxia de Andrômeda, a galáxia mais próxima da nossa Via Láctea.

Galáxia de Andrômeda registrada em raios X de alta energia

© NASA/JPL-Caltech/GSFC (Galáxia de Andrômeda registrada em raios X de alta energia)

A observação do NuSTAR, inserida nesta composição maior da galáxia, apresenta os comprimentos de onda de raios X de alta energia provenientes na sua maioria das fontes binárias de raios X. A imagem de fundo de Andrômeda foi registrada em luz ultravioleta pelo satélite Galaxy Evolution Explorer (GALEX). A Galáxia de Andrômeda situa-se a cerca de 2,5 milhões de anos-luz de distância e é uma galáxia espiral como a nossa Via Láctea, porém é ligeiramente maior em tamanho.

O NuSTAR tem observado uma classe de quarenta sistemas nomeados como binários de raios X, fontes intensas de comprimentos de onda de raios X, compostas por um buraco negro ou uma estrela de nêutrons que se alimentam de uma companheira estelar próxima.

Os resultados auxiliaram os cientistas a entender melhor o papel das fontes binárias de raios X na evolução do nosso Universo. De acordo com os astrônomos, estes objetos energéticos podem desempenhar um papel crítico no aquecimento do meio intergaláctico de gás na qual as primeiras galáxias formaram-se.

“Andrômeda é a única grande galáxia espiral onde podemos observar binários individuais de raios X e estudá-los detalhadamente em um ambiente como o nosso”, disse Daniel Wik do Goddard Space Flight Center da NASA, que apresentou os resultados na 227ª reunião da American Astronomical Society em Kissimmee, na Flórida, nos Estados Unidos.

“Podemos então utilizar esta informação para deduzir o que está acontecendo em galáxias mais distantes, que são mais difíceis de observar”, disse Wik. Andrômeda, também conhecida como M31, pode ser considerada como uma irmã mais antiga da nossa galáxia, a Via Láctea.

Outras missões espaciais, como o observatório de raios X Chandra da NASA, registrou imagens mais nítidas de Andrômeda em energias mais baixas de raio X do que os raios X de alta energia detectados pelo NuSTAR. A combinação do Chandra e do NuSTAR fornece aos astrônomos uma poderosa ferramenta para compreender sobre a natureza dos binários de raio X em galáxias espirais.

Os binários de raios X, onde um membro é sempre uma estrela morta ou remanescente, são formados a partir da explosão do que já foi uma estrela mais massiva que o Sol. Dependendo da massa e outras propriedades da gigante estrela original, a explosão pode produzir um buraco negro ou uma estrela de nêutrons.

Sobre certas circunstâncias, o material da estrela companheira pode derramar suas bordas mais externas e então ser capturado pela gravidade do buraco negro ou da estrela de nêutrons. A medida que o material é atraído, ele se aquece incrivelmente a altas temperaturas, liberando uma enorme quantidade de raios X.

Com novo modo de exibição do NuSTAR de uma faixa de Andrômeda, Wik e seus colegas estão trabalhando na identificação da porção dos binários de raios X, que abrigam os buracos negros e estrelas de nêutrons. Essa pesquisa irá auxiliá-los a compreender esta população integralmente.

“Temos percebido que nos últimos anos é provável que os restos da massa inferior de uma comum evolução estelar, os buracos negros e as estrelas de nêutrons, podem desempenhar um papel crucial no aquecimento do gás intergaláctico às vezes muito cedo no Universo, em torno do amanhecer cósmico”, disse Ann Hornschemeier Goddard Space Flight Center da NASA, cientista principal dos estudos do NuSTAR sobre a Galáxia de Andrômeda.

“Observações com o NuSTAR das populações locais com massa e tamanho estelar, os buracos negros e estrelas de nêutrons nos permitem descobrir somente quanta energia está vindo do interior desses sistemas”. A nova pesquisa revela também como Andrômeda pode diferir da Via Láctea.

“Estudar as extremas populações estelares em Andrômeda nos diz sobre como sua história de formação estelar pode ser diferente da nossa Galáxia”, disse Fiona Harrison, principal cientista da missão NuSTAR.

Harrison estará apresentando o estudo no Prêmio 2015 Rossi durante a reunião da American Astronomical Society. O prêmio, concedido pela Divisão de Astrofísica de Alta Energia da American Astronomical Society, homenageia o físico italiano Bruno Rossi, uma autoridade sobre a física de raios cósmicos e um pioneiro no campo da astronomia de raios X.

Fonte: California Institute of Technology

sábado, 9 de janeiro de 2016

Os "gêmeos" do sistema estelar Eta Carinae em outras galáxias

Eta Carinae, o sistema estelar mais luminoso e massivo até 10.000 anos-luz de distância, é conhecido pela sua enorme erupção observada em meados do século XIX e que atirou pelo menos 10 vezes a massa do Sol para o espaço.

  a grande erupção de Eta Carinae

© Hubble (a grande erupção de Eta Carinae)

Este véu de gás e poeira em expansão, que ainda envolve Eta Carinae, torna-o o único objeto conhecido do seu gênero na Via Láctea. Agora, um estudo usando dados de arquivo dos telescópios Spitzer e Hubble da NASA descobriu, pela primeira vez, cinco objetos com propriedades semelhantes em outras galáxias.

"As estrelas mais massivas são sempre raras, mas têm um impacto tremendo na evolução química e física da sua galáxia hospedeira," afirma o autor principal Rubab Khan, pesquisador pós-doutorado do Centro de Voo Espacial Goddard da NASA. Estas estrelas produzem e distribuem grandes quantidades de elementos químicos vitais para a vida e, eventualmente, explodem como supernovas.

Localizado a cerca de 7.500 anos-luz de distância na direção da constelação de Quilha (Carina, em latim), Eta Carinae é 5 milhões de vezes mais brilhante que o nosso Sol. O sistema binário consiste de duas estrelas de grande massa numa órbita íntima de 5,5 anos. Estima-se que a estrela mais massiva do par tenha cerca de 90 vezes a massa do Sol, enquanto a companheira exceda as 30 massas solares.

Sendo um dos "laboratórios" mais próximos para estudar estrelas de grande massa, Eta Carinae tem sido um marco astronômico desde a sua erupção na década de 1840. Para compreender a razão da erupção e como se relaciona com a evolução de estrelas de grande massa, os astrônomos precisam de exemplos adicionais. Avistar estrelas raras durante o rápido rescaldo de uma grande explosão, é um desafio com os níveis de dificuldade de encontrar uma agulha num palheiro, e nada parecido com Eta Carinae tinha sido descoberto antes do estudo de Khan.

"Nós sabíamos que existiam outros objetos do gênero," comenta Krzysztof Stanek, professor de astronomia na Universidade Estatal de Ohio em Columbus, EUA. "Era realmente uma questão de saber o que procurar e de ser persistente."

Trabalhando com Scott Adams e Christopher Kochanek, também de Ohio, e George Sonneborn do Centro de Voo Espacial Goddard, Khan desenvolveu uma espécie de impressão digital, óptica e infravermelha, para identificar possíveis objetos do gênero de Eta Carinae.

A poeira forma-se no gás expelido por uma estrela massiva. Esta poeira escurece a luz ultravioleta e visível, mas absorve e re-irradia esta energia como calor em comprimentos de onda mais longos e infravermelhos. "Com o Spitzer, vemos um aumento constante de brilho a partir de cerca de 3 micrômetros, atingindo o máximo entre os 8 e os 24 micrômetros," explica Khan. "Ao comparar esta emissão com o escurecimento que vemos nas imagens ópticas do Hubble, podemos determinar a quantidade de poeira presente e compará-la com a quantidade que vemos em torno de Eta Carinae."

Um levantamento inicial de sete galáxias entre 2012 e 2014 não descobriu quaisquer gêmeos Eta Carinae, salientando a sua raridade. No entanto, o estudo identificou uma classe de estrelas menos massivas e menos luminosas de interesse científico, demonstrando que a pesquisa era sensível o suficiente para encontrar estrelas parecidas com Eta Carinae, caso estivessem presentes.

A composição de imagens a seguir da câmara WFC3 do Hubble mostram uma galáxia repleta de estrelas recém-formadas. Uma taxa alta de formação estelar aumenta as hipóteses de encontrar estrelas massivas que passaram por uma fase similar à de Eta Carinae. As duas inserções mostram as localizações dos gêmeos Eta Carinae.

galáxia espiral vizinha M83

© STScI/GSFC (galáxia espiral vizinha M83)

Num novo levantamento em 2015, a equipe encontrou dois candidatos a gêmeos Eta Carinae na galáxia M83, localizada a 15 milhões de anos-luz de distância, e um candidato na galáxia NGC 6946, em M101 e M51, situadas entre os 18 e os 26 milhões de anos-luz de distância. Estes cinco objetos imitam as propriedades ópticas e infravermelhas de Eta Carinae, indicando que cada um, muito provavelmente, contém uma estrela de grande massa enterrada em cinco a dez massas solares de gás e poeira. Estudos posteriores permitirão com que os astrônomos determinem mais precisamente as suas propriedades físicas.

O telescópio espacial James Webb da NASA, com lançamento previsto para o final de 2018, transportará um instrumento ideal para estudar estas estrelas em profundidade. O MIRI (Mid-Infrared Instrument) tem 10 vezes a resolução angular dos instrumentos a bordo do Spitzer e é mais sensível aos comprimentos de onda onde os gêmeos Eta Carinae realmente brilham. "Combinado com o maior espelho primário Webb, o MIRI permitirá o estudo em maior profundidade destes raros laboratórios estelares e propiciar a descoberta de fontes adicionais nesta fase fascinante da evolução estelar," comenta Sonneborn, cientista das operações telescópicas do projeto Webb. Serão necessárias observações do Webb para confirmar que os gêmeos Eta Carinae pertencem realmente à família de Eta Carinae.

Os resultados foram publicados de dezembro da revista The Astrophysical Journal Letters.

Fonte: Goddard Space Flight Center

"Vendo" buracos negros com telescópios de uso doméstico

Para observar um buraco negro ativo nas proximidades é necessário um telescópio de 20 cm.

  observador do céu com um telescópio de tamanho médio

    © U. de Quioto/Eiri Ono (observador do céu com um telescópio de tamanho médio)

Uma equipe internacional de pesquisadores anunciou que a atividade de tais fenômenos pode ser observada no visível durante grandes explosões, e que a luz tremeluzente que emerge dos gases em torno dos buracos negros é um indicador direto disto. Os resultados da equipe indicam que a luz no óptico, não apenas os raios X, fornecem dados observacionais confiáveis da atividade dos buracos negros.

"Sabemos agora que podemos fazer observações no visível e que os buracos negros podem ser observados sem telescópios que observam em raios X ou raios gama," explica a autora principal Mariko Kimura, estudante de mestrado da Universidade de Quioto.

Uma vez em várias décadas, alguns binários de buracos negros passam por surtos de explosões, durante os quais são emitidas grandes quantidades de energia, incluindo raios X, pelas substâncias que caem para o buraco negro. Os buracos negros são normalmente rodeados por um disco de acreção, onde o gás de uma estrela companheira é lentamente atraído para o buraco negro num padrão espiral. As atividades dos buracos negros são tipicamente observadas em raios X, gerados nas porções internas dos discos de acreção onde as temperaturas atingem mais de 10 milhões Kelvin.

V404 Cygni, um dos binários de buraco negro mais próximos da Terra que está localizado a 7.800 anos-luz, "acordou" após 26 anos de dormência no dia 15 de junho de 2015 e sofreu uma tal explosão.

Liderada por astrônomos da Universidade de Quioto, a equipe conseguiu obter dados sem precedentes de V404 Cygni, detectando padrões repetitivos com escalas de tempo de alguns minutos até algumas horas. Os padrões de flutuações ópticas estavam correlacionados com os padrões de flutuações em raios X.

Com base nas análises dos dados observacionais ópticos e em raios X, os astrônomos e seus colaboradores da agência espacial japonesa (JAXA), do laboratório nacional RIKEN e da Universidade de Hiroxima, mostraram que a luz provém de raios X que emergem da região mais interior do disco de acreção ao redor de um buraco negro. Estes raios X irradiam e aquecem a região exterior do disco, fazendo com que emita luz no óptico, tornando-se assim visível ao olho humano.

A observação da explosão foi o fruto de uma colaboração internacional entre países espalhados por diferentes fusos horários.

"As estrelas só podem ser observadas depois do anoitecer, e só temos capacidade de observar durante algumas horas cada noite, mas ao fazermos observações a partir de diferentes locais em todo o mundo, somos capazes de obter dados mais compreensivos," afirma Daisaku Nogami, coautor do estudo. "Estamos muito satisfeitos que a nossa rede de observação internacional tenha sido capaz de se unir para documentar este evento raro."

O estudo também revelou que estas variações repetitivas ocorrem em taxas de acreção de massa inferiores a um-décimo do que se pensava anteriormente. Isto indica que a taxa de acreção de massa não é o principal fator desencadeador da atividade repetitiva em volta dos buracos negros, mas sim da duração dos períodos orbitais.

Os resultados da equipe foram publicados na revista Nature.

Fonte: Kyoto University

quarta-feira, 6 de janeiro de 2016

Descoberta nova estrela na galáxia do Triângulo

Apesar de não estarem presentes os três reis magos na noite do último Natal, o astrônomo amador Emmanuel Conseil descobriu uma nova estrela ou nova na galáxia do Triângulo.

M33_Bjoern

  © Bjoern (M33)

Ele fez a descoberta usando um telescópio on-line Slooh, cujos telescópios estão localizados no observatório das Ilhas Canárias. Foi a segunda vez Conseil descobre uma nova desta maneira.

O site Slooh fez uma transmissão ao vivo da galáxia e sua nova estrela na sua página na internet ontem à tarde, veja a apresentação no canal.

"O objeto estava lá em minhas imagens no dia de Natal, mas não estava presente no dia anterior. É muito nova!" disse Conseil em um comunicado.

nova na M33

© Emmanuel Conseil (nova na M33)

A nova é basicamente uma explosão nuclear gigantesca que ocorre quando uma estrela anã branca absorve material, principalmente hidrogênio, a partir de sua vizinha estelar. Quando se reúne material suficiente é provocada uma reação de fusão nuclear, que explode o material para o espaço. A nova é normalmente visível por vários meses depois. Vários outros astrônomos amadores corroboraram a descoberta do Conseil usando os telescópios Slooh.

A galáxia do Triângulo (Messier 33, NGC 598) é uma galáxia espiral localizada a cerca de três milhões de anos-luz na direção da constelação Triangulum. Possui entre 40 a 60 mil anos-luz de diâmetro e uma magnitude aparente de 5,5. A galáxia espiral foi descoberta por Giovanni Battista Hodierna antes de 1654, juntamente com o aglomerado aberto NGC 752. A galáxia do Triângulo pode ser vista a olho nu em um céu noturno sob excelentes condições; é o objeto do céu profundo mais distante a ser visto sem o auxílio de instrumentos ópticos.

Fonte: Observatório Slooh

Uma classe de pulsares evolui até consumir outros objetos celestes

O espaço sideral é um zoológico de espécies curiosas. Dentre elas, uma das mais intrigantes é a dos pulsares, objetos compactos que giram depressa e emitem pulsos regulares de ondas de rádio.

pulsar PSR B1509-58

  © Chandra/WISE (pulsar PSR B1509-58)

Na imagem acima mostra as emissões em raios X (em amarelo) que foram captadas pelo observatório Chandra e no infravermelho (em vermelho, azul e verde) que foram obtidas pelo WISE (Wide-field Infrared Survey Explorer).

Um modelo desenvolvido por pesquisadores do Brasil e da Argentina ajuda a explicar como evoluem algumas das mais exóticas variedades de pulsares, que, como seria apropriado num zoológico, receberam nomes de animais: as aranhas redback e viúva-negra.

Os pulsares fascinam os astrônomos desde a sua descoberta em 1967. Quando os astrônomos Jocelyn Bell e Antony Hewish observaram pela primeira vez as emissões pulsadas que deram o nome desses objetos, eles as acharam tão intrigantes que não descartavam serem transmissões de civilizações extraterrestres. Com bom humor, Bell e Hewish batizaram o objeto que descobriram como o pulsar PSR B1919+21 (LGM-1), sigla para little green men ou homenzinhos verdes. Mas não tardou para que se descobrisse que os pulsares são uma categoria de estrelas de nêutrons, espécie de cadáver de uma estrela de massa elevada que, após esgotar seu combustível nuclear, explode como uma supernova.

Estrelas com massa oito vezes maior que a do Sol, ao explodir, ejetam suas camadas mais exteriores, enquanto seu núcleo sofre tamanha compactação que os elétrons mergulham na direção dos prótons e os convertem em nêutrons, daí o nome estrela de nêutrons. São objetos muito compactos, em que a massa restante, equivalente à de um a dois sóis, é comprimida numa esfera com 10 a 30 quilômetros de diâmetro. Quando seu poderoso campo magnético está desalinhado em relação ao eixo de rotação, o feixe de radiação emitido por essas estrelas gira realizando um movimento de precessão. Da Terra, essa radiação é vista de modo intermitente, na forma dos pulsos que caracterizam esses objetos.

Muitos desses pulsares têm estrelas companheiras girando em torno deles. Alguns são acompanhados por uma estrela cuja massa corresponde de 20% a 40% da massa do Sol e formam sistemas conhecidos como redback, aranha australiana que tem uma listra vermelha no abdômen negro. Já os pulsares acompanhados de estrelas menores, com 5% da massa solar, são chamados viúva-negra.

Os sistemas receberam esses nomes porque, neles, a estrela de maior massa e também mais densa – o pulsar – contribui para “evaporar” a de menor massa. É algo semelhante ao que ocorre com essas aranhas: as fêmeas, bem maiores que os machos, os matam depois da cópula. “Os norte-americanos e os australianos usaram esses apelidos e pegou”, conta o astrofísico Jorge Horvath, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP). “Agora esses sistemas são conhecidos como spiders.”

O trabalho que Horvath desenvolveu com os colegas argentinos Omar Benvenuto e María Alejandra De Vito, ambos da Universidade Nacional de La Plata, dá um importante passo para compreender a evolução desses sistemas. O modelo do trio mostra que há uma relação evolutiva entre os sistemas redback e viúva-negra.

Em ambos os casos os pulsares consomem parte da massa de suas companheiras por um mecanismo chamado acréscimo ou acreção. Bem mais densos, os pulsares apresentam um intenso campo gravitacional que atrai a massa da estrela companheira. Eles funcionam como um aspirador de pó que suga os pedaços da vizinha que se esfarela. Mas esses sistemas aranhas também podem assumir uma configuração bem mais interessante: a órbita de suas estrelas pode evoluir até que a distância entre as duas seja inferior à da Terra à Lua.

Nesses casos, quando a massa da companheira se torna muito pequena (5% da massa solar), típica dos sistemas viúva-negra, ela acaba consumida por um segundo mecanismo: evaporação. A radiação e as partículas emitidas pelo pulsar varrem parte da massa da companheira para longe, como um sopro que afasta a poeira da mesa. “Nas simulações, descobrimos que em alguns casos haveria tempo suficiente para o pulsar causar a evaporação total da companheira”, conta Horvath. “Vimos também que, em outros casos, poderia restar, a uma distância maior do pulsar, um ‘caroço’ com massa equivalente à de um planeta”, diz.

Nesse trabalho os pesquisadores mostraram ainda que o comportamento desses sistemas depende tanto da distância inicial entre o pulsar e a estrela companheira quanto da massa inicial desta. Quando a companheira está em uma órbita próxima ao pulsar, que ela completa em menos de um dia terrestre, sua massa é consumida por acreção e alguns desses sistemas evoluem para se tornar os redback. Já se a distância for menor, equivalente a uma órbita de menos de três horas, a estrela companheira é consumida por evaporação, típica dos sistemas viúva-negra. Os pesquisadores viram ainda que, sob certas condições, o primeiro sistema pode se converter no segundo. “Nesses sistemas, a massa dos pulsares aumenta muito, algo importante para compreender a natureza da matéria que os compõe”, explica Horvath.

Na modelagem, Horvath e colegas incluíram os efeitos das emissões de radiação e partículas do pulsar sobre a evolução do sistema. “A emissão influencia de duas maneiras: ela pode arrancar camadas de gás da companheira  por evaporação e a matéria atraída para o pulsar gera raios X intensos o suficiente para afetar a estrutura da companheira”, afirma Marcelo Allen, professor do Instituto Federal de São Paulo, que não participou do estudo.

A compreensão completa de redbacks e viúvas-negras exigirá novos esforços. “Estamos longe de uma formulação teórica satisfatória para explicar o comportamento observacional em longas escalas de tempo”, avalia Flavio D’Amico, astrofísico do Instituto Nacional de Pesquisas Espaciais.

Os pesquisadores detalharam essas trajetórias evolutivas em um artigo no periódico Astrophysical Journal Letters.

Fonte: FAPESP (Pesquisa)

terça-feira, 5 de janeiro de 2016

Campos magnéticos fortes no núcleo de estrelas de massa intermediária

Um grupo internacional de astrônomos liderados pela Universidade de Sydney descobriu que campos magnéticos fortes são comuns no interior das estrelas, não tão raros quanto se pensava, o que irá afetar drasticamente a nossa compreensão de como as estelas evoluem.

super gigante vermelha Mu Cephei

  © New Forest Observatory (super gigante vermelha Mu Cephei)

Na imagem acima está a brilhante estrela super gigante vermelha Mu Cephei  na direção superior esquerda. Ela está localizada na borda externa da enorme nebulosa de emissão IC1396. Na região da extrema direita pode se vista a famosa nebulosa Tromba de Elefante (IC 1396A ou LBN 452).

Usando dados da missão Kepler da NASA, a equipe descobriu que as estrelas apenas um pouco mais massivas que o Sol têm campos magnéticos internos até 10 milhões de vezes mais poderosos do que o da Terra, com implicações importantes para a evolução e destino final das estrelas.

"Isto é tremendamente excitante e totalmente inesperado," afirma o astrofísico Dennis Stello, pesquisador principal do estudo e da Universidade de Sydney.

"Tendo em que conta que pensávamos, anteriormente, que apenas 5 a 10% das estrelas tinham campos magnéticos fortes, os modelos atuais de como as estrelas evoluem não têm campos magnéticos como um ingrediente fundamental," afirma o professor Stello. "Tais campos foram simplesmente considerados insignificantes para a nossa compreensão geral da evolução estelar."

"O nosso resultado mostra claramente que esta suposição precisa de ser revisitada."

A pesquisa é baseada num trabalho anterior pelo Instituto de Tecnologia da Califórnia (Caltech), de que fez parte o professor Stello, e que constatou que as medições de oscilações estelares, ou ondas sonoras, no interior das estrelas podem ser usadas para inferir a presença de fortes campos magnéticos.

Esta pesquisa mais recente usou esse resultado para olhar para um grande número de versões evoluídas do nosso Sol observadas pelo Kepler. Descobriu-se que mais de 700 destas gigantes vermelhas mostram a assinatura de campos magnéticos fortes, com algumas das oscilações suprimidas pela força dos campos.

"Dado que a nossa amostra é grande, fomos capazes de aprofundar a análise e concluir que os campos magnéticos fortes são muito comuns em estrelas com 1,5 a 2 vezes a massa do Sol," explica Stello.

"No passado, só podíamos medir o que acontecia à superfície das estrelas e os resultados levavam à interpretação de que os campos magnéticos eram raros."

  campos magnéticos vistos no interior das gigantes vermelhas

© University of Sydney (campos magnéticos vistos no interior das gigantes vermelhas)

Usando uma nova técnica chamada asterossismologia (ou sismologia estelar), que pode "penetrar pela superfície" de uma estrela, os astrônomos podem agora observar a presença de um campo magnético muito forte perto do núcleo estelar, que contém o motor central da queima nuclear da estrela. Isto é importante porque os campos magnéticos podem alterar os processos físicos que ocorrem no núcleo, incluindo as taxas de rotação interna, o que afeta a forma como as estrelas envelhecem.

A maioria das estrelas como o Sol oscilam continuamente devido a ondas sonoras que saltam para trás e para a frente dentro delas. "O seu interior é essencialmente como um sino tocando", comenta Stello. "E, como um sino, ou um instrumento musical, o som que produzem pode revelar as suas propriedades físicas."

Foram medidas minúsculas variações de brilho nas estrelas, variações estas provocadas pelo "badalar do sino" e descobriu que faltavam certas frequências de oscilação em 60% das estrelas porque foram suprimidas pelos fortes campos magnéticos nos núcleos estelares.

Os resultados vão permitir com que os cientistas testem mais diretamente as teorias de como os campos magnéticos se formam e evoluem, um processo conhecido como dínamo, dentro das estrelas. Isto pode, potencialmente, levar a uma melhor compreensão geral dos dínamos, incluindo aquele que controla o ciclo magnético do Sol, com a duração de 11 anos, que se sabe afetar sistemas de comunicação e a cobertura de nuvens na Terra.

"Agora é o momento de os teóricos investigarem o porquê destes campos magnéticos serem tão comuns," conclui o professor Stello.

Os resultados foram publicados ontem na revista Nature.

Fonte: University of Sydney & University of California