sexta-feira, 6 de janeiro de 2017

Emissão veloz de rádio ligada a uma galáxia anã distante

Uma das raras e breves explosões de ondas cósmicas de rádio que confundiram os astrônomos, desde que foram detectadas há quase 10 anos, foi finalmente ligada a uma fonte: uma galáxia anã antiga a mais de 3 bilhões de anos-luz da Terra.

ilustração da localização de uma explosão rápida de rádio captada pelo VLA

© Danielle Futselaar (ilustração da localização de uma explosão rápida de rádio captada pelo VLA)

As explosões rápidas no rádio, que piscam por apenas alguns milissegundos, criaram agitação entre os astrônomos porque pareciam estar vindo de fora da nossa Galáxia, o que significa que teriam de ser muito poderosas para serem avistadas da Terra, e porque nenhuma dessas observadas pela primeira vez foram vistas novamente.

No entanto, uma explosão repetida foi descoberta em 2012, proporcionando uma oportunidade para uma equipe de pesquisadores monitorar repetidamente a sua área do céu com o VLA (Karl Jansky Very Large Array) no estado norte-americano do Novo México e o radiotelescópio de Arecibo em Porto Rico, na esperança de determinar a sua localização.

Graças ao desenvolvimento de gravação de dados em alta velocidade e software de análise de dados em tempo real, por um astrônomo da Universidade da Califórnia, Berkeley, o VLA detectou no ano passado um total de nove explosões durante um período de um mês, o suficiente para localizá-las dentro de uma área com um décimo de segundo de arco no céu. Subsequentemente, maiores interferômetros de rádio europeus e americanos localizaram as explosões até um centésimo de segundo de arco, numa região com aproximadamente 100 anos-luz em diâmetro.

As imagens profundas dessa região, pelo Telescópio Gemini Norte no Havaí, mostraram a existência de uma galáxia anã muito tênue no visível, que o VLA descobriu também emitindo continuamente ondas de rádio de baixo nível, típicas de uma galáxia com um núcleo ativo talvez indiciativo de um buraco negro supermassivo central. A galáxia tem uma baixa abundância de elementos que não hidrogênio e hélio, o que sugere que a galáxia se formou durante a meia-idade do Universo.

 localização e posição da emissão de rádio

© U. C. Berkeley (localização e posição da emissão de rádio)

Enquanto o radiotelescópio de Arecibo pôde apenas localizar a emissão de rádio na área dentro dos dois círculos vistos na imagem acima, o VLA foi capaz de determinar a sua posição numa galáxia anã dentro do quadrado, que pode ser vista na intersecção das linhas na imagem ampliada no canto inferior direito.

A origem de uma explosão rápida no rádio, neste tipo de galáxia anã, sugere uma ligação com outros eventos energéticos que ocorrem em galáxias anãs semelhantes, diz Casey Law, astrônomo de Berkeley, que liderou o desenvolvimento do sistema de aquisição de dados e criou o software de análise para procurar explosões rápidas e singulares.

Segundo o cientista, as estrelas explosivas extremamente brilhantes e as longas explosões de raios gama também ocorrem neste tipo de galáxia. Pensa-se que ambos os eventos estejam associados com estrelas de nêutrons massivas, altamente magnetizadas e de rotação rápida a que chamamos magnetares. As estrelas de nêutrons são objetos compactos e densos formados em explosões de supernova, vistos principalmente como pulsares porque emitem pulsos de rádio periódicos enquanto giram.

"Todas estas evidências apontam para a ideia de que neste ambiente, algo produz estes magnetares," explica Law. "Podem ser formados por uma supernova superluminosa ou por uma longa explosão de raios gama e, depois, à medida que evolui e a sua rotação diminui um pouco, produz estas rajadas de rádio, bem como uma emissão de rádio contínua alimentada por essa diminuição na rotação. Mais tarde na sua vida, parece que os magnetares que vemos na nossa Galáxia, que têm campos magnéticos extremamente fortes, rodam mais como pulsares comuns."

No entanto, isto é apenas uma teoria. Existem muitas outras, apesar de novos dados excluírem várias explicações sugeridas para a fonte dessas explosões.

"Nós somos os primeiros a mostrar que este é um fenômeno cosmológico. Não é algo no nosso quintal cósmico. E somos os primeiros a ver onde este fenômeno ocorreu, nesta pequena galáxia, o que eu acho que é uma surpresa," comenta Law. "Agora o nosso objetivo é descobrir porque é que isto acontece."

Law, o líder da equipe Shami Chatterjee da Universidade de Cornell e outros astrônomos do grupo científico apresentaram os seus achados esta semana na reunião da Sociedade Astronômica Americana em Grapevine, no estado norte-americano do Texas.

As explosões rápidas no rádio são altamente energéticas, embora não sejam suficientemente energéticas para fazer explodir uma estrela, e têm vida muito curta, durando apenas entre um e cinco milissegundos. Estas rajadas de ondas de rádio permaneceram um mistério desde que a primeira foi descoberta em 2007 por pesquisadores que vasculhavam dados arquivados do Radiotelescópio Parkes na Austrália, em busca de novos pulsares. A explosão que encontraram teve lugar em 2001.

Existem agora 18 explosões rápidas no rádio conhecidas, todas descobertas usando radiotelescópios com uma única antena que não são capazes de determinar a localização do objeto com precisão suficiente para permitir que outros observatórios identifiquem o ambiente ou que as encontrem em outros comprimentos de onda. A primeira e única explosão repetida que conhecemos, de nome FRB 121102, foi descoberta na direção da constelação de Cocheiro em novembro de 2012 pelo Observatório Arecibo em Porto Rico, e já ocorreu várias vezes.

Os pesquisadores utilizam métodos para encontrar rajadas transitórias no rádio como estas, o que exige a obtenção de cerca de um terabyte de dados por hora. No VLA, ele atualmente usa 24 CPUs (unidades centrais de processamento) em paralelo, tanto para gravar como para pesquisar os dados em busca de breves explosões de rádio.

"O tema geral, primeiro com o ATA (Allen Telescope Array) e agora com o VLA, é usar estes interferômetros como câmaras de alta velocidade, pegando na sensível capacidade de imagem do telescópio, aumentando a taxa de dados e melhorando os nossos algoritmos para ter acesso a estes transientes na escala de tempo dos milissegundos. "Nós realmente esforçamo-nos para capturar de modo confiável este fluxo de dados de um terabyte por hora e para configurar uma plataforma em tempo real que extraia estas rápidas e tênues explosões desse fluxo de dados gigantesco."

A primeira explosão foi descoberta nos dados apenas algumas horas depois de ter sido gravada no dia 23 de agosto, realça Law.

"Observamos durante cerca de 40 horas no início do ano passado e não vimos nada," explica. "Então começamos uma nova campanha no outono de 2016, e na nossa primeira observação vimos uma. Então observamos por mais outras 40 horas e vimos mais oito rajadas."

Law espera mudar em breve para 64 GPUs (unidades de processamento gráfico) dedicados e mais poderosos para que a análise em tempo real seja possível.

Enquanto Law tem a sua hipótese principal para a origem destas rápidas rajadas de rádio, um magnetar rodeado por qualquer material expelido por uma explosão de supernova ou por um pulsar resultante, existem outras possibilidades. Uma alternativa é que o núcleo ativo da galáxia, com emissão de rádio proveniente de jatos de material emitidos pela região em torno de um buraco negro supermassivo. A fonte da explosão rápida no rádio está até 100 anos-luz das emissões contínuas de rádio oriundas do núcleo da galáxia, sugerindo que são as mesmas ou que estão fisicamente associadas.

A descoberta foi publicada na revista científica Nature e em dois artigos complementares que serão publicados na revista Astrophysical Journal Letters.

Fonte: University of California

Observada galáxia extremamente rara

A aproximadamente 359 milhões de anos-luz da Terra, existe uma galáxia com um nome inócuo (PGC 1000714) que não se parece muito com qualquer outra coisa que os astrônomos observaram antes.

imagem em cores falsas da galáxia PGC 1000714

© Ryan Beauchemin (imagem em cores falsas da galáxia PGC 1000714)

Uma nova pesquisa fornece uma primeira descrição de um núcleo elíptico bem definido rodeado por dois anéis circulares, uma galáxia que parece pertencer a uma classe raramente observada, galáxias do tipo Hoag. Este trabalho foi realizado por cientistas da Universidade de Minnesota Duluth e do Museu de Ciências Naturais da Carolina do Norte.

"Menos de 0,1% de todas as galáxias observadas são galáxias do tipo Hoag," afirma Burcin Mutlu-Pakdil, estudante do Instituto de Astrofísica da Universidade de Minnesota Twin Cities e da Universidade de Minnesota Duluth. As galáxias do tipo Hoag são núcleos redondos rodeados por um anel circular, sem nada a ligá-los visivelmente. A maioria das galáxias observadas são em forma de disco, como a nossa própria Via Láctea. As galáxias com aparências invulgares dão aos astrônomos percepções únicas sobre como as galáxias se formam e mudam.

Os pesquisadores recolheram imagens da galáxia em vários comprimentos de onda, que é apenas observável no Hemisfério Sul, usando um telescópio de grande abertura nas montanhas chilenas. Essas imagens foram usadas para determinar as idades das duas principais características da galáxia, o anel exterior e o corpo central.

Foi descoberto um anel exterior azul e jovem (0,13 bilhões de anos) em torno de um núcleo central avermelhado e bem mais antigo (5,5 bilhões de anos), e ficaram surpreendidos ao descobrir evidências de um segundo anel interior ao redor do corpo central. Para documentar este segundo anel, os pesquisadores tiraram as suas próprias imagens e subtraíram um modelo do núcleo. Isto permitiu-lhes observar e medir a segunda estrutura interior obscurecida.

"Já observamos galáxias com um anel azul ao redor de um corpo central avermelhado antes, o mais conhecido é o objeto de Hoag. No entanto, a característica única desta galáxia é o que parece ser um antigo anel interno vermelho e difuso," comenta Patrck Treuthardt, astrofísico no Museu de Ciências Naturais da Carolina do Norte.

Os anéis galácticos são regiões onde as estrelas se formaram a partir da colisão de gases. "As diferentes cores do anel interior e exterior sugerem que esta galáxia passou por dois períodos diferentes de formação," comenta Mutlu-Pakdil. "A partir destes instantâneos únicos e iniciais, é impossível saber como é que os anéis desta galáxia em particular foram formados." Os cientistas dizem que ao acumularem mais imagens de outras galáxias como esta, será possível começar a entender como é que galáxias invulgares se formam e evoluem.

Enquanto as formas das galáxias podem ser o produto de interações ambientais internas e externas, os pesquisadores especulam que o anel exterior possa ser o resultado desta galáxia ter incorporado porções de uma galáxia anã próxima e rica em gás. Também dizem que a dedução da história do anel mais antigo e interior exigiria o recolhimento de dados infravermelhos de mais alta resolução.

"Sempre que encontramos um objeto único ou estranho para estudar, ele desafia as nossas teorias atuais e suposições sobre como o Universo funciona. Geralmente diz-nos que ainda temos muito a aprender," comenta Treuthardt.

Fonte: North Carolina Museum of Natural Sciences

Pesquisa reforça função das supernovas no estudo do Universo

Quanto da história do Universo podemos saber com a ajuda de uma supernova?

supernova G299

© NASA (supernova G299)

Uma nova pesquisa efetuda por cosmólogos da Universidade de Chicago e da Universidade Estatal de Wayne confirma a precisão das supernovas do Tipo Ia na medição do ritmo no qual o Universo se expande. Os resultados suportam uma teoria extensamente aceita de que a expansão do Universo está acelerando, cuja aceleração é atribuída a uma força misteriosa conhecida como energia escura. As descobertas vão contra manchetes recentes de que as supernovas do Tipo Ia não são de confiança na medição da expansão do Universo.

A utilização da luz da explosão de uma estrela, tão brilhante quanto galáxias inteiras, para determinar distâncias cósmicas, levou ao Prêmio Nobel da Física em 2011. O método baseia-se no pressuposto que, tal como lâmpadas de uma potência conhecida, todas as supernovas do Tipo Ia têm quase o mesmo brilho máximo quando explodem. Esta consistência permite com que sejam usadas como "velas padrão" para medir os céus. Quanto mais fraca a luz, mais distante está a estrela. Mas o método tem sido posto em dúvida nos últimos anos por causa das descobertas de que a luz emitida pelas supernovas do Tipo Ia parecem mais inconsistentes do que o esperado.

"Os dados que examinamos combatem estas reivindicações da morte das supernovas do Tipo Ia como uma ferramenta para medir o Universo," afirma Daniel Scolnic, pós-doutorado do Instituto Kavli para Física Cosmológica da Universidade de Chicago. "Nós não devemos ser persuadidos por estas outras reivindicações apenas porque atraíram muita atenção, embora seja importante continuar a questionar e a reforçar as nossas suposições fundamentais."

Uma das últimas críticas às supernovas do Tipo Ia como ferramenta de medição concluiu que o brilho destas supernovas parece estar em duas subclasses diferentes, o que poderia levar a problemas ao tentar medir distâncias. Na nova pesquisa, liderada por David Cinabro, professor da Universidade Estadual Wayne, não foi encontrada evidências de duas subclasses de supernovas do Tipo Ia nos dados examinados do SDSS (Sloan Digital Sky Survey) e SSSLS (Supernovae Search and Supernova Legacy Survey). Os artigos recentes que desafiam a eficácia das supernovas do Tipo Ia para a medição usaram conjuntos diferentes de dados.

Uma segunda crítica centrou-se na forma como as supernovas do Tipo Ia são analisadas. Quando os cientistas descobriram que as supernovas do Tipo Ia eram mais fracas do que o esperado, concluíram que o Universo estava se expandindo a um ritmo acelerado. Esta aceleração é explicada através da energia escura, que estima-se compor cerca de 70% do Universo. A força enigmática puxa a matéria, impedindo a gravidade de retardar a expansão do Universo.

No entanto, uma substância que perfaz 70% do Universo, mas permanece desconhecida, é frustrante para os cosmólogos. O resultado foi uma reavaliação das ferramentas matemáticas usadas para analisar supernovas que ganhou atenção em 2015, argumentando que as supernovas do Tipo Ia nem sequer mostram que a energia escura existe.

Os cientistas Scolnic e Adam Riess, que ganharam em 2011 o Prêmio Nobel pela descoberta da aceleração da expansão do Universo, escreveram um artigo na edição de 26 de outubro de 2016 da revista Scientific American, refutando as alegações. Eles mostraram que, mesmo que as ferramentas matemáticas usadas para analisar as supernovas do Tipo Ia tivessem sido usadas "incorretamente", ainda há uma probabilidade de 99,7% do Universo estar acelerando.

As novas descobertas são tranquilizadoras para os cientistas que usam as supernovas do Tipo Ia para obter uma compreensão cada vez mais precisa da energia escura, comenta Joshua A. Frieman, membro do Laboratório do Acelerador Nacional Fermi, que não esteve envolvido no estudo.

"O impacto deste trabalho será o de reforçar a nossa confiança na utilização das supernovas do Tipo Ia como sondas cosmológicas," acrescenta.

A pesquisa foi publicada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Universidade de Chicago

quinta-feira, 5 de janeiro de 2017

Nuvens da galáxia de Andrômeda

A bela galáxia de Andrômeda é muitas vezes fotografada por astrônomos baseados na Terra.

galáxia de Andrômeda_Rogelio Bernal Andreo

© Rogelio Bernal Andreo (galáxia de Andrômeda)

A galáxia de Andrômeda é também conhecida como M31, sendo a maior galáxia espiral mais próxima da Terra. Ela é uma galáxia familiar com faixas de poeira escura, núcleo amarelado brilhante e braços espirais marcados pela luz azulada das estrelas. O mosaico foi realizado usando dados de banda larga e estreita, onde o retrato colorido e primoroso de nossa galáxia vizinha oferece características surpreendentemente desconhecidas, porém, as apagadas nuvens avermelhadas de gás de hidrogênio ionizado brilham no mesmo campo amplo de visão. Ainda assim, as nuvens de hidrogênio ionizado provavelmente estão em primeiro plano nesta imagem, no interior da Via Láctea. Elas podem estar associadas com as nuvens interestelares empoeiradas que se espalham por centenas de anos-luz acima do plano galáctico. Se elas estivessem localizadas a uma distância de 2,5 milhões de anos-luz da Galáxia de Andrômeda, elas seriam enormes, já que a própria galáxia de Andrômeda tem 200 mil anos-luz de extensão.

Fonte: NASA

quarta-feira, 4 de janeiro de 2017

Os segredos escondidos das Nuvens de Órion

Esta bela imagem é um dos maiores mosaicos em alta resolução no infravermelho próximo da nuvem molecular Órion A, a fábrica de estrelas massivas mais próxima que se conhece, situada a cerca de 1.350 anos-luz de distância da Terra.

nuvem molecular Órion

© ESO/VISION (nuvem molecular Órion)

Esta nova imagem composta do rastreio VISION (VIenna Survey In Orion) é uma montagem de imagens obtidas na região do infravermelho próximo pelo telescópio de rastreio VISTA (Visible and Infrared Survey Telescope for Astronomy), instalado no Observatório do Paranal do ESO no Chile, revelando muitas estrelas jovens e outros objetos que normalmente se encontram enterrados profundamente no núcleo das nuvens de poeira. A imagem cobre toda a nuvem molecular Órion A, uma de duas nuvens moleculares gigantes que fazem parte do complexo da Nuvem Molecular de Órion. Orion A estende-se para sul da familiar região de Órion conhecida como a espada, ao longo de cerca de 8 graus. A outra nuvem molecular gigante da Nuvem Molecular de Órion é a Órion B, que se situa a este do cinturão de Órion.

O VISTA é o maior telescópio de rastreio do mundo. Possui um enorme campo de visão o qual observa com detectores infravermelhos muito sensíveis, o que o torna ideal na obtenção de imagens infravermelhas profundas de alta qualidade, indispensáveis a este rastreio ambicioso.

O rastreio VISION resultou num catálogo com cerca de quase 800.000 estrelas, objetos estelares jovens e galáxias distantes individuais identificadas, o que representa uma melhor profundidade e cobertura do que as conseguidas até à data por qualquer outro rastreio desta região.

coleção de imagens da nuvem molecular Órion

© ESO/VISION (coleção de imagens da nuvem molecular Órion)

O VISTA observa radiação que o olho humano não vê, permitindo aos astrônomos identificar muitos objetos na maternidade estelar, de outro modo invisíveis. Estrelas muito jovens que não podem ser observadas em imagens obtidas no visível são reveladas quando observadas nos maiores comprimentos de onda do infravermelho, onde a poeira que as rodeia se torna mais transparente.

Esta nova imagem representa um passo em frente na obtenção de uma fotografia completa dos processos de formação estelar em Órion A, tanto para estrelas de pequena massa como para estrelas massivas. O objeto mais espectacular é a gloriosa Nebulosa de Órion, também chamada Messier 42 (M42), que pode ser vista do lado esquerdo da imagem. Esta região forma parte da espada da famosa constelação brilhante do caçador Órion.

A nebulosa de Órion foi inicialmente descoberta no início do século XVII, embora a identidade do seu descobridor permaneça incerta. O caçador de cometas francês Messier fez um desenho esquemático preciso das suas estruturas principais em meados do século XVIII, tendo-lhe atribuído o número 42 no seu famoso catálogo. Messier atribuiu também o número 43 à região mais pequena separada situada a norte da parte principal da nebulosa. Mais tarde William Herschel especulou que a nebulosa poderia ser “o material caótico de futuros sóis” e os astrônomos descobriram entretanto que a neblina é de fato gás brilhando devido à intensa radiação ultravioleta emitida por estrelas quentes jovens recentemente formadas no local.

O catálogo VISTA cobre tanto objetos familiares como novas descobertas. Estes novos objetos incluem cinco candidatos a objetos estelares jovens e dez candidatos a aglomerados de galáxias.

No resto da imagem podemos ver as nuvens escuras de Órion A e encontrar muitos tesouros escondidos, como discos de material que poderão dar origem a novas estrelas (discos protoestelares), nebulosidades associadas a estrelas recém-nascidas (objetos de Herbig Haro), aglomerados de estrelas menores e até aglomerados de galáxias situados muito além da Via Láctea. O rastreio VISION permite o estudo sistemático das fases de evolução mais precoces das estrelas jovens no coração de nuvens moleculares próximas.

Esta imagem muito detalhada de Órion A estabelece uma nova base observacional para estudos futuros de formação de estrelas e aglomerados, destacando uma vez mais o poder do telescópio VISTA na obtenção de imagens de vastas áreas do céu, rápida e profundamente, na região do infravermelho próximo do espectro eletromagnético. O bem sucedido rastreio VISION de Órion será seguido por um novo rastreio público maior de outras regiões de formação estelar chamadas VISIONS, que será efetuado pelo VISTA e terá início em abril de 2017.

Este trabalho foi descrito no artigo científico intitulado “VISION - Vienna survey in Orion I. VISTA Orion A Survey”, de S. Meingast et al., que foi publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

O papel dos gases na evolução das galáxias

Um dos temas mais fascinantes da cosmologia trata do estudo da evolução das galáxias.

Galáxia de Andrômeda

© Robert Gendler (Galáxia de Andrômeda)

O objetivo é compreender como as nuvens primordiais de gás, no Universo recém-nascido, condensaram-se até formar estrelas e galáxias, e como estas evoluíram até se tornar espirais magníficas como a Via Láctea.

Um trabalho de astrofísicos brasileiros e espanhóis procurou estimar como, ao longo de bilhões de anos, processou-se a queda do gás interestelar das regiões externas do disco em espiral em direção ao núcleo galáctico, atraído por sua tremenda força gravitacional.

Descobrir qual a taxa da queda do gás interestelar no tempo e no espaço é fundamental para saber a razão de formação de estrelas, pois é daquele gás que elas são feitas. Ou seja, quanto mais gás cai através do disco, mais estrelas se formam e mais brilhante se torna a galáxia.

Mas há um problema. Os instrumentos básicos dos astrônomos para estudar a evolução galáctica são os observatórios. Só que, salvo raras exceções, a tecnologia atual não permite a observação de galáxias quando o Universo era jovem, ou seja, quando tinha metade da idade atual, que é de aproximadamente 13,8 bilhões de anos.

“A imagem é muito tênue, difusa, de baixa resolução. Isso é problemático, principalmente quando se sabe que a primeira metade da vida do Universo foi o período mais dinâmico na evolução das galáxias”, disse Oscar Cavichia, professor do Instituto de Física e Química da Universidade Federal de Itajubá, um dos autores do estudo.

Para tentar entender como eram as galáxias quando jovens, os pesquisadores usaram o cluster computacional Alphacrucis, instalado no Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da Universidade de São Paulo (USP).

Trata-se de um dos maiores aglomerados de processadores (são 192 servidores que agregam 2.304 processadores) unicamente dedicados ao estudo da Astronomia. Inaugurado em 2012, o Alphacrucis é um dos maiores supercomputadores do Brasil e foi adquirido com apoio da FAPESP.

“Fizemos simulações de 144 modelos diferentes de queda de gás. Eles variavam, por exemplo, de acordo com a massa e o tamanho da galáxias. A potência computacional do Alphacrucis permitiu que realizássemos todas as simulações ao mesmo tempo, em vez de separadamente, o que economizou muito tempo e acelerou o trabalho”, disse Cavichia.

Foram feitas simulações com galáxias espirais hipotéticas de três tamanhos. Médias, como a vizinha Triângulo (M33), que tem 40 bilhões de estrelas. Grandes, como a Via Láctea, com 400 bilhões de estrelas. E gigantes, como a vizinha mais próxima, Andrômeda (M31), com 1 trilhão de estrelas.

As simulações envolveram a queda do gás naqueles três tipos de galáxias a partir da sua formação inicial, quando o Universo contava apenas 1 bilhão de anos (redshift 6), e prosseguiram ao longo do tempo para estimar o que acontecia quando o Universo tinha 1,5 bilhão de anos (redshift 4), 3 bilhões (redshift 2), 6 bilhões (redshift 1) e 9 bilhões de anos (redshift 0,5). Redshift, ou “desvio para o vermelho”, é a alteração na forma como a frequência das ondas de luz é observada em função da velocidade relativa entre a fonte emissora e o receptor.

Também se procurou analisar a variação da queda do gás a partir da distância que ele se encontrava do núcleo galáctico, sob argumento de que quanto mais perto do núcleo maior é a gravidade e mais rápida a queda. Por outro lado, quanto mais longe do núcleo, menor é a gravidade e mais lenta a queda.

“A hipótese do trabalho era de que as galáxias de maior massa se formariam mais rapidamente do que as de menor massa, pois quanto maior a massa da galáxia, maior é a sua força gravitacional”, disse Cavichia.

“Da mesma forma, nossa hipótese sugeria que o gás deveria cair mais rapidamente nas partes internas da galáxia do que nas externas”, completou Cavichia.

O resultado das simulações foi na direção do que os astrofísicos esperavam, mas trouxe uma surpresa. “A queda do gás é mais ou menos constante, com exceção das regiões centrais”, contou Cavichia.

De fato, quanto mais próximo do núcleo da galáxia está o gás, mais acelerada é a sua queda. E, conforme teorizado, o gás cai de forma mais lenta nas galáxias de menor massa.

Mas isso não quer dizer que as galáxias pequenas se formaram mais lentamente do que as grandes; e as grandes, por sua vez, mais devagar do que as gigantes. “O que a simulação revelou foi que todas as galáxias, tanto gigantes quanto grandes e pequenas, capturam gás a uma taxa muito similiar à medida que o tempo passa”, explicou Cavichia.

A maior parte do gás interestelar disponível para a formação de novas estrelas já teria caído quando o Universo completou 9 bilhões de anos, o que está de acordo com as observações astronômicas.

O passo atual dessa pesquisa é estudar a abundância química de elementos, como por exemplo o oxigênio, nos discos das galáxias simuladas. O objetivo é determinar a quantidade correspondente de cada elemento químico no gás presente nos discos formados e avaliar se a similaridade observada na taxa de queda de gás para galáxias de diferentes massas tem algum reflexo na distribuição dos elementos químicos ao longo do tempo nestas galáxias.

O estudo foi publicado no Monthly Notices of the Royal Astronomical Society.

Fonte: FAPESP

Quando galáxias colidem

Esta mancha delicada no espaço profundo é muito mais turbulenta do que parece.

IRAS 14348-1447

© Hubble (IRAS 14348-1447)

Conhecido como IRAS 14348-1447, um nome derivado do projeto que o descobriu, o Infrared Astronomical Satellite (IRAS), este objeto celeste é na verdade a combinação de duas galáxias espirais ricas em gás. Esta dupla condenada se aproximou muito no passado, e a gravidade puxou uma para a outra lentamente, destruindo-as e as fundindo num só objeto. A imagem mostrada aqui foi feita pela Advanced Camera for Surveys (ACS) do Hubble.

O IRAS 14348-1447 está localizado a mais de um bilhão de anos-luz da Terra. É um dos exemplos mais ricos em gás conhecidos de uma galáxia ultraluminosa infravermelha, uma classe de objetos cósmicos que brilha de forma característica e intensa na região infravermelha do espectro. Quase 95% da energia emitida pelo IRAS 14348-1447 está no infravermelhodistante!

A quantidade enorme de gás molecular dentro do IRAS 14348-1447 abastece sua emissão, e origina uma série de processos dinâmicos enquanto interage e se move ao redor; estes mecanismos são responsáveis pela própria aparência giratória e etérea do IRAS 14348-1447, criando caudas e saliências proeminentes que se estendem para longe do corpo principal da galáxia.

Fonte: NASA

domingo, 1 de janeiro de 2017

Dois astros são detectados próximos da Terra

A missão NEOWISE descobriu recentemente dois novos objetos com características peculiares em órbitas próximas da Terra.

ilustração do 2016 WF9

© NASA/JPL-Caltech (ilustração do 2016 WF9)

O primeiro recebeu a designação provisória de 2016 WF9 e deverá aproximar-se do nosso planeta no dia 25 de fevereiro de 2017, a uma distância de 51 milhões de quilômetros. O segundo é o cometa C/2016 U1 NEOWISE, um pequeno objeto escuro que viaja numa trajetória hiperbólica, o que sugere que poderá estar numa primeira incursão através do Sistema Solar interior.

O 2016 WF9 foi descoberto a 27 de novembro de 2016 e tem aproximadamente 0,5 a 1,0 km de diâmetro. A sua órbita transporta-o através do Cinturão de Asteroides, desde as proximidades da órbita de Júpiter até ao interior da órbita da Terra. A sua superfície é bastante escura, refletindo apenas uma pequena percentagem da luz solar incidente. Objetos com estas características poderão ter múltiplas origens. A maioria são antigos membros das populações de asteroides ricos em carbono que habitam as regiões mais exteriores do Cinturão de Asteroides. Uma pequena fração são provavelmente antigos cometas que perderam a maioria dos compostos voláteis que originalmente se encontravam depositados junto à superfície.

cometa C2016 U1 NEOWISE

© Michael Jäger (cometa C/2016 U1 NEOWISE)

O C/2016 U1 NEOWISE foi detectado a 21 de outubro de 2016 e, ao contrário do 2016 WF9, exibe uma coma bem definida. Nas próximas duas semanas deverá aumentar consideravelmente o seu brilho, podendo tornar-se visível através de uns bons binóculos. Neste momento é possível observar o C/2016 U1 NEOWISE pouco antes do nascer do Sol, na direção da constelação do Ofiúco. Nos próximos dias, o cometa irá mover-se cada vez mais para sul, até alcançar o periélio da sua órbita no dia 14 de janeiro, momento em que o seu brilho deverá ultrapassar a 6ª magnitude.

As trajetórias dos dois objetos são já suficientemente bem conhecidas para excluir qualquer possibilidade de colisão com a Terra num futuro próximo.

Fonte: Astronomy Now

quinta-feira, 29 de dezembro de 2016

Conchas de gás ionizado na Grande Nuvem de Magalhães

Uma visão fascinante no céu sul, a Grande Nuvem de Magalhães (LMC) é vista aqui através de filtros de banda estreita.

Grande Nuvem de Magalhães

© John Gleason (Grande Nuvem de Magalhães)

Os filtros são projetados para transmitir apenas a luz emitida por átomos de enxofre ionizado, hidrogênio e oxigênio. Ionizados pela luz energética das estrelas, os átomos emitem sua luz característica quando os elétrons são recapturados e o átomo passa para um estado de energia inferior. Como resultado, esta imagem de cor falsa da galáxia LMC parece coberta com nuvens de gás ionizado em forma de concha envolvendo estrelas massivas e jovens. As nuvens brilhantes dominadas pela emissão de hidrogênio, esculpidas pelos fortes ventos estelares e pela radiação ultravioleta, são conhecidas como regiões HII (hidrogênio ionizado). Ela é composta de muitas conchas sobrepostas; a Nebulosa Tarântula é a grande região formadora de estrelas no centro superior. Um satélite da da Via Láctea, a galáxia LMC tem cerca de 15.000 anos-luz de diâmetro e está a apenas 180.000 anos-luz de distância na constelação de Dorado.

Fonte: NASA

segunda-feira, 26 de dezembro de 2016

Um megamaser cósmico

Esta galáxia tem uma classificação muito mais emocionante e futurista do que a maioria, é um megamaser.

megamaser IRAS 16399-0937

© Hubble (megamaser IRAS 16399-0937)

Megamasers são intensamente brilhantes, cerca de 100 milhões de vezes mais brilhante do que os masers (Microwave Amplification by Stimulated Emission of Radiation) encontrados em galáxias como a Via Láctea. Toda a galáxia atua essencialmente como um laser astronômico que irradia emissão de microondas em vez de luz visível.

Este megamaser é chamado IRAS 16399-0937, e está localizado a mais de 370 milhões de anos-luz da Terra. Esta imagem do telescópio espacial Hubble desmente a natureza energética da galáxia, pintando-a pelo contrário como um botão de rosa cósmico bonito e sereno. A imagem compreende observações captadas através de vários comprimentos de onda por dois dos instrumentos do Hubble: a Advanced Camera for Surveys (ACS), e a Near Infrared Camera and Multi-Object Spectrometer (NICMOS).

A excelente sensibilidade, resolução e campo de visão da NICMOS fornece a oportunidade única de observar a estrutura do IRAS 16399-0937 em detalhes. Foi descoberto que o IRAS 16399-0937 hospeda um núcleo duplo no processo de fusão. Os dois componentes, denominados IRAS 16399N e IRAS 16399S para as partes norte e sul, respectivamente, situam-se a mais de 11.000 anos-luz de distância. No entanto, ambos estão enterrados profundamente dentro do mesmo redemoinho de gás cósmico e poeira e estão interagindo, dando à galáxia sua estrutura peculiar.

Os núcleos são muito diferentes. O IRAS 16399S parece ser uma região de formação estelar em um ritmo incrível. O IRAS 16399N, no entanto, é algo conhecido como um núcleo LINEAR (Low Ionization Nuclear Emission Region), que é a região cuja emissão em grande parte provém de átomos fracos ionizados ou neutros de gases particulares. O núcleo norte também hospeda um buraco negro com cerca de 100 milhões de vezes a massa do Sol!

Fonte: ESA

País das maravilhas cósmico

Por razões desconhecidas, a NGC 6357 está formando algumas das estrelas mais massivas já descobertas.

NGC 6357

© UKIRT/Chandra/Spitzer (NGC 6357)

Esta região de formação de estrelas consiste de numerosos filamentos de poeira e gás circundando enormes cavidades de aglomerados de estrelas. Os padrões intrincados são causados por interações complexas entre os ventos interestelares, as pressões de radiação, os campos magnéticos e a gravidade.

A imagem composta em destaque inclui não apenas a luz visível (azul) tomada pelo telescópio UKIRT no Havaí do SuperCosmos Sky Surveys, mas a luz infravermelha (laranja) do telescópio espacial Spitzer da NASA e luz de raio X (rosa) do telescópio ROSAT e do Observatório Chandra da NASA.

Os raios X do Chandra e ROSAT revelam centenas de fontes pontuais, que são as estrelas jovens na NGC 6357, bem como a emissão difusa de raios X do gás quente. Há bolhas, ou cavidades, que foram criadas por radiação e material lançados das superfícies de estrelas massivas, além de explosões de supernovas.

A NGC 6357 é uma região HII, ou seja, uma região criada quando a radiação de estrelas quentes e jovens extraem os elétrons de átomos de hidrogênio neutro no gás circundante para formar nuvens de hidrogênio ionizado.

Os pesquisadores usam o Chandra para estudar a NGC 6357 e objetos semelhantes, porque as estrelas jovens brilham em raios X. Além disso, os raios X podem penetrar nas nuvens de gás e poeira que cercam estas estrelas jovens, permitindoobter detalhes do nascimento de estrelas que de outra forma seriam perdidos.

A NGC 6357 abrange cerca de 100 anos-luz e fica a cerca de 5.500 anos-luz de distância em direção à constelação do Escorpião. Dentro de 10 milhões de anos, as estrelas mais massivas atualmente vistas na NGC 6357 explodirão se tornando supernovas.

Um artigo recente sobre as observações do Chandra da NGC 6357 descrito por Leisa Townsley da Universidade Estadual da Pensilvânia foi publicado no The Astrophysical Journal Supplement Series.

Fonte: Harvard-Smithsonian Center for Astrophysics

A magnífica Nebulosa Cabeça de Cavalo

Esculpida por ventos estelares e radiação, uma nuvem de poeira interestelar magnífica por acaso assumiu esta forma reconhecível.

Barnard 33 e IC 434

© Osservatorio MTM (Barnard 33 e IC 434)

Adequadamente chamada de Nebulosa Cabeça de Cavalo, ela está cerca de 1.500 anos-luz de distância, incorporada no vasto complexo de nuvens de Órion. Aproximadamente cinco anos-luz de "altura", a nuvem escura é catalogada como Barnard 33 e é visível somente porque sua poeira obscurecedora é mostrada em silhueta contra a nebulosa de emissão avermelhada e brilhante IC 434.

As estrelas estão se formando dentro da nuvem escura. Em contraste está nebulosa de reflexão azul NGC 2023, em torno de uma estrela quente e jovem, localizada no canto inferior esquerdo. A  bela paisagem colorida combina imagens de banda estreita e de banda larga gravadas usando três telescópios diferentes.

Fonte: NASA

domingo, 25 de dezembro de 2016

Pele de Raposa, Unicórnio e Árvore de Natal

As nuvens incandescentes do gás hidrogênio enchem este retrato colorido do céu na fraca mas fantástica constelação Monoceros, o Unicórnio.

NGC 2264_Michael Miller & Jimmy Walker

© Michael Miller/Jimmy Walker (NGC 2264)

É uma região de formação de estrelas catalogada como NGC 2264, a profusão complexa de poeira gás cósmico está a cerca de 2.700 anos-luz de distância e mistura nebulosas de emissão avermelhadas excitadas pela luz energética de estrelas recém-nascidas com nuvens escuras de poeira interestelar.

Onde as nuvens de poeira obscuras também refletem a luz das estrelas quentes e jovens que ficam próximas, formando nebulosas de reflexão azul. A imagem acima do mosaico telescópico ergue-se cerca de 3/4 de grau ou quase 1,5 luas cheias, cobrindo 40 anos-luz à distância de NGC 2264.

Seu elenco de aspectos cósmicos inclui a Nebulosa Pele de Raposa, cuja pelagem empoeirada e enrolada fica à esquerda do centro, a estrela brilhante variável S Monocerotis está imersa na névoa aluzada à direita da Nebulosa Pele de Raposa, e a Nebulosa do Cone aponta para baixo na parte superior da imagem.

Naturalmente, as estrelas da NGC 2264 são conhecidas também como o aglomerado de estrelas da Árvore de Natal. A forma triangular da árvore traçada pelas estrelas tem seu ápice na Nebulosa do Cone. A base mais larga da árvore é centrada perto de S Monocerotis.

Feliz Natal!

Fonte: NASA

sábado, 24 de dezembro de 2016

Próximo de Pandora

Esta imagem da nave espacial de Cassini da NASA é uma das vistas de alta resolução nunca tomadas da lua Pandora de Saturno.

Pandora

© NASA/JPL/Space Science Institute/Cassini (Pandora)

Pandora possui 84 quilômetros de extensão e trafega numa órbita próxima da fronteira exterior do anel F de Saturno.

A Cassini captou a imagem durante seu mais próximo voo de Pandora no dia 18 de dezembro de 2016, durante o terceiro de seus passeios de rastreio pelas bordas externas dos anéis principais de Saturno.

A imagem foi tirada em luz verde com a câmera de ângulo estreito da nave espacial Cassini a uma distância de aproximadamente 40,5 quilômetros de Pandora. A escala da imagem é de 240 metros por pixel.

Na imagem nota-se duas grandes crateras com cerca de 30 km de diâmetro. O interior destas crateras encontra-se preenchido por uma espessa camada de detritos. Estes materiais são provavelmente finas partículas de gelo dos anéis resgatadas pela fraca gravidade de Pandora.

Fonte: NASA

sexta-feira, 23 de dezembro de 2016

Os locais de nascimento da maioria das estrelas atuais

Astrônomos olharam, pela primeira vez, para o local exato onde a maioria das estrelas de hoje nasceram. Para tal, utilizaram o VLA (Karl G. Jansky Very Large Array) do NSF (National Science Foundation) e o ALMA (Atacama Large Millimeter/submillimeter Array) para observar galáxias distantes, vistas como eram há cerca de 10 bilhões de anos.

combinação de imagens no rádio e no visível de galáxias distantes

© NRAO/NASA/K. Trisupatsilp (combinação de imagens no rádio e no visível de galáxias distantes)

Naquela época, o Universo atravessava o pico da sua formação estelar. A maioria das estrelas presentes no Universo nasceram naquela momento.

"Nós sabíamos que as galáxias daquela época estavam formando estrelas prolificamente, mas não sabíamos o aspeto dessas galáxias porque estão envoltas em tanta poeira que quase nenhuma luz visível lhes escapa," afirma Wiphu Rujopakam, do Instituto Kavli para Física e Matemática do Universo, da Universidade de Tóquio e da Universidade de Chulalongkorn em Bangkok.

As ondas de rádio, ao contrário da luz visível, podem atravessar a poeira. No entanto, a fim de revelar os detalhes de galáxias tão distantes e tênues, os astrônomos tiveram que obter as imagens mais sensíveis alguma vez captadas pelo VLA.

As novas observações, usando o VLA e o ALMA, responderam a questões de longa data sobre quais os mecanismos responsáveis pela maior parte da formação estelar nessas galáxias. Descobriram que a intensa formação de estrelas nas galáxias que estudaram ocorreu mais frequentemente por todas as galáxias, ao contrário de regiões muito menores em galáxias atuais com altas e semelhantes taxas de formação estelar.

Os astrônomos usaram o VLA e o ALMA para estudar galáxias no HUDF (Hubble Ultra Deep Field), uma área muito pequena do céu observada desde 2003 com o telescópio espacial Hubble. O Hubble obteve exposições muito longas da área, a fim de detectar galáxias no Universo muito longínquo, e numerosos programas de observação com outros telescópios acompanharam o seu trabalho.

"Usamos o VLA e o ALMA para ver as profundezas dessas galáxias, para além da poeira que obscurece as suas entranhas ao Hubble," afirma Kristina Nyland, do NRAO (National Radio Astronomy Observatory). "O VLA mostrou-nos onde a formação estelar estava ocorrerendo, e o ALMA revelou o gás frio que é o combustível da formação das estrelas," acrescenta.

"Neste estudo, fizemos a imagem mais sensível do VLA," comenta Preshanth Jagannathan, também do NRAO. "Se pegássemos no nosso telefone celular, que transmite um fraco sinal de rádio, e o colocássemos a mais de duas vezes a distância até Plutão, perto da orla externa do Sistema Solar, o seu sinal seria aproximadamente tão forte quanto o detectado a partir destas galáxias," comenta.

Os pesquisadores relatam os seus achados na revista The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory