sexta-feira, 27 de janeiro de 2017

Descobertos fluxos rápidos de gás em anã branca

As novas anãs (objetos parecidos com SS Cyg, que contêm uma estrela tipo-Sol em órbita de uma anã branca) são bem conhecidas pelo seu comportamento explosivo e repetido, mas de baixo nível, nunca tendo sido observadas com escalas rápidas de erupções.

ilustração da erupção anômala de uma nova anã

© U. de Oxford (ilustração da erupção anômala de uma nova anã)

Já se sabia da existência de erupções em anãs brancas, estrelas de nêutrons e até mesmo em buracos negros enormes que residem em outras galáxias. Estas estrelas alimentam-se principalmente de gás oriundo das suas estrelas companheiras através de acreção (onde uma grande quantidade de gás é acumulada através da força gravitacional). Ocasionalmente, estas estrelas lançam algum do gás sob a forma de jatos, poderosas emissões gasosas restritas a um único fluxo cônico e estreito.

As observações iniciais da atividade de SS Cyg, em fevereiro de 2016, foram consideradas atípicas, mas análises telescópicas posteriores desvendaram a intrigante revelação de erupções rápidas. O comportamento mais fascinante e inesperado foi avistado no rádio, mais para o final da explosão, quando se observou uma enorme erupção. Com a duração de menos de 15 minutos, teve uma energia superior a um milhão de vezes as explosões solares mais fortes, atingindo um pico de aproximadamente 20 mJy (miliJansky ou 10–26 W/m².Hz).

O nível de dados, no rádio, registados durante a erupção não tem precedentes para sistemas de novas anãs e é consistente com o esperado para um jato.

"Muitos dos estudos mais convincentes da astrofísica tiveram por base o estudo de SS Cyg. O mais recente, a detecção de uma erupção rápida no rádio, especialmente uma explosão brilhante e veloz no final do evento, é altamente incomum e demonstra que poderá estar em jogo uma nova física. Esperávamos ver erupções de variação lenta, mas encontramos picos de atividade, rápidos e em forma de cone, e observamos uma quantidade enorme de energia sendo liberada num intervalo de tempo tão curto quanto dez minutos. Nada como isto tinha sido visto antes num sistema de nova anã," afirma o Dr. Kunal Mooley, pesquisador de astrofísica da Universidade de Oxford, que liderou a pesquisa.

"Daqui para a frente, os teóricos devem trabalhar com os observadores a fim de encontrar a resposta para o porquê destas explosões rápidas ocorrerem em SS Cyg. Para entender realmente o processo de acreção de gás e expulsão de gás em sistemas com anãs brancas, especialmente em novas anãs, devemos realizar estudos similares em outros sistemas astrofísicos."

Descoberto pela primeira vez há mais de cem anos, o sistema SS Cyg tem sido estudado extensivamente pelos astrônomos. A estrela continua fornecendo novas informações sobre os processos físicos associados com sistemas binários de anãs brancas, como aqueles encontrados pela equipe do Dr. Mooley.

O Dr. Mooley e a sua equipe em Oxford estão agora realizando mais análises, trabalhando para construir um corpo de eventos conclusivos sobre o comportamento de novas anãs e estabelecer se são, realmente, capazes de lançar jatos poderosos.

A pesquisa foi publicada no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Oxford

terça-feira, 24 de janeiro de 2017

Descoberta distante galáxia mais brilhante até agora conhecida

Uma equipe internacional liderada por pesquisadores do Instituto de Astrofísica das Canárias (IAC) e da Universidade de La Laguna (ULL) descobriu uma das galáxias "não-ativas" mais brilhantes no início do Universo.

ilustração da lente gravitacional BG1429 1202

© Yiping Shu/Gabi Perez (ilustração da lente gravitacional BG1429+1202)

A descoberta da galáxia BG1429+1202 foi possível graças ao auxílio de uma enorme galáxia elíptica ao longo da linha de visão do objeto, que agiu como uma espécie de lente gravitacional, amplificando o brilho e distorcendo a imagem observada. Os resultados fazem parte do projeto BELLS GALLERY, com base na análise de 1,5 milhões de espectros de galáxias do SDSS (Sloan Digital Sky Survey).

O fenômeno de lente gravitacional, previsto pela Teoria Geral da Relatividade de Einstein, é produzido quando a luz é desviada à medida que passa por um objeto muito massivo. Para um observador distante, a massa da galáxia elíptica atua sobre a luz como se fosse uma lente enorme, produzindo uma imagem mais brilhante da fonte, BG1429+1202, permitindo-nos ver detalhes que de outra forma seriam demasiado fracos de detectar.

"Este é um dos poucos casos conhecidos de galáxias com um brilho aparente muito alto e também uma luminosidade intrinsecamente elevada. As observações permitiram-nos determinar as suas propriedades principais num espaço de tempo muito curto," diz Rui Marques Chaves, doutorando do IAC-ULL e autor principal do artigo. Para estudar este sistema, foram usados dois telescópios no Observatorio del Roque de los Muchachos (Garafía, La Palma): o GTC (Gran Telescopio CANARIAS) e o WHT (William Herschel Telescope), do ING (Isaac Newton Group of Telescopes). O sistema é formado por uma galáxia elíptica a uma distância de 5,4 bilhões de anos e por trás encontra-se a BG1429+1202, que emite radiação Lyman-alfa, a 11,4 bilhões de anos-luz de nós (vemos esta galáxia como era cerca de 2,3 bilhões de anos após o Big Bang). A galáxia que age como lente produz quatro imagens distintas da galáxia distante, com um fluxo que é nove vezes maior do que seria sem esta lente natural ao longo da nossa linha de visão.

Uma característica excepcional da BG1429+1202 é a sua muito alta luminosidade na linha de emissão Lyman-alfa, uma das mais brilhantes no espectro ultravioleta, porque outros casos semelhantes de galáxias ampliadas não mostram uma emissão tão forte nesta linha. Embora o efeito de lente gravitacional já tenha sido usado em muitos projetos de pesquisa, o método de selecionar galáxias que emitem radiação Lyman-alfa foi usado pela primeira vez no projeto BELLS GALLERY. "Nós analisamos cerca de milhão e meio de espectros de galáxias," acrescenta Yiping Shu, astrônomo do NAOC (National Astronomical Observatories) em Pequim (China). "Foram obtidos com o Telescópio Sloan do Observatório Apache Point no Novo México (EUA), e detectamos emissão Lyman-alfa em galáxias muito mais distantes do que as suas lentes em 187 casos, 21 dos quais passamos a observar com o Telescópio Espacial Hubble. Essas observações confirmam que a maioria destes objetos são distorcidos por lentes gravitacionais."

O aumento do brilho aparente (o brilho observado da Terra) de galáxias distantes que é produzido por lentes gravitacionais permite-nos obter dados de qualidade melhorada. "Com telescópios como o GTC e o WHT podemos realizar estudos que seriam impossíveis sem a presença das lentes. Na prática, é como estivéssemos a observar já com um dos telescópios gigantes do futuro, como o E-ELT (European Extremely Large Telescope) de 39 metros ou o TMT (Thirty Meter Telescope)," explica Ismael Pérez Fournon, pesquisador do IAC-ULL. "BG1429+1202 é tão brilhante que até pode ser vista em imagens fotográficas do DSS (Digital Sky Survey)," acrescenta Paloma Matínez Navajas, pesquisadora do IAC.

Apesar dos numerosos estudos anteriores de lentes gravitacionais baseados em imagens e espectros do SDSS, BG1429+1202 não tinha sido descoberta até este trabalho. "Descobertas como BG1429+1202 demonstram a maneira pela qual grandes conjuntos de dados astronômicos de grandes levantamentos podem ser extraídos para novas aplicações astrofísicas. No NOAO (National Optical Astronomy Observatory), estamos implementando capacidades de acesso livre para suportar estes projetos de pesquisa de arquivo usando dados públicos de campo largo do DECam (Dark Energy Camera) e outros instrumentos, bem como dados futuros de projetos como o DESI (Dark Energy Spectroscopic Instrument), conclui Adam Bolton, diretor associado do NOAO.

Os resultados foram publicados na revista científica The Astrophysical Journal Letters.

Fonte: Instituto de Astrofísica de Canarias

Astrônomos procuram sinais de vida em exoplaneta do sistema Wolf 1061

Existe alguém lá fora?

ilustração de um exoplaneta

© NASA/Ames/JPL-Caltech (ilustração de um exoplaneta)

A questão de se os terráqueos estão sozinhos no Universo tem intrigado todos, desde biólogos a físicos, passando por filósofos e cineastas. É também a força motriz por trás da pesquisa sobre exoplanetas do astrônomo Stephen Kane da Universidade Estatal de San Francisco.

Como um dos principais "caçadores de planetas" do mundo, Kane concentra-se na descoberta de "zonas habitáveis", áreas onde a água pode existir em estado líquido à superfície de um planeta, caso exista pressão atmosférica suficiente. Kane e a sua equipe, que inclui Miranda Waters, antiga estudante de graduação, examinaram a zona habitável de um sistema planetário a 14 anos-luz de distância.

"O sistema Wolf 1061 é importante porque está muito perto e isso dá-nos várias oportunidades para fazer estudos de acompanhamento com o objetivo de ver se realmente tem vida," comenta Kane.

Mas não é apenas a proximidade de Wolf 1061 com a Terra que o torna num tema atraente para Kane e para a sua equipe. Um dos três planetas conhecidos do sistema, um planeta rochoso chamado Wolf 1061c, está inteiramente dentro da zona habitável. Com a ajuda de colaboradores da Universidade Estatal do Tennessee e de Genebra, na Suíça, foram capazes de medir a estrela em torno da qual o planeta orbita para obter uma imagem mais clara se a vida pode lá existir.

Quando os cientistas procuram por planetas que possam sustentar vida, estão basicamente à procura de um planeta com propriedades quase idênticas às da Terra, realça Kane. Tal como a Terra, o planeta terá que existir num ponto ideal a que chamamos "zona habitável", onde as condições são ideais para a vida. Simplificando, o planeta não pode estar demasiado perto nem demasiado longe da sua estrela hospedeira. Um planeta que está demasiado perto seria muito quente. Se está muito longe, poderá ser muito frio e qualquer água aí presente estaria sob o estado sólido, que é o que acontece em Marte, acrescentou Kane.

Por outro lado, quando os planetas aquecem, pode ocorrer um "efeito de estufa", onde o calor fica preso na atmosfera. Os cientistas pensam que foi isto que aconteceu com o gêmeo da Terra, Vênus. Pensa-se que Vênus já teve oceanos, mas, devido à sua proximidade com o Sol, o planeta tornou-se demasiado quente e toda a água evaporou-se. Dado que o vapor de água é extremamente eficaz na absorção de calor, tornou a superfície planetária ainda mais quente. A temperatura à superfície de Vênus atinge agora os 460 ºC.

Uma vez que Wolf 1061c está perto da orla interna da zona habitável, o que significa que está mais perto da estrela, é possível que o planeta tenha uma atmosfera mais parecida com a de Vênus. "Está perto o suficiente da estrela para suspeitarmos da existência de um efeito de estufa," explica Kane.

Kane e a sua equipe também observaram que, ao contrário da Terra, que atravessa mudanças climáticas como idades do gelo devido a variações lentas na sua órbita em torno do Sol, a órbita de Wolf 1061c muda a um ritmo muito mais rápido, o que poderá significar que o clima é bastante caótico. "Pode fazer com que a frequência com que o planeta arrefece ou aquece seja bastante severa," afirma Kane.

Estes achados deixam no ar a pergunta: será que a vida é possível em Wolf 1061c? Uma possibilidade é que as escalas curtas de tempo, nas quais a órbita de Wolf 1061c muda, podem ser suficientes para arrefecer o planeta, realça Kane. Mas para entender realmente o que se está passando na superfície do planeta são necessárias mais investigações.

Ao longo dos próximos anos serão lançados novos telescópios como o Telescópio Espacial James Webb, o sucessor do Telescópio Espacial Hubble, e este será capaz de detectar componentes atmosféricos dos exoplanetas e mostrar o que está acontecendo à superfície.

A descoberta será publicada num artigo intitulado "Characterization of the Wolf 1061 Planetary System" na próxima edição da revista The Astrophysical Journal.

Fonte: San Francisco State University

segunda-feira, 23 de janeiro de 2017

Nascimento estelar com possibilidade de ventos?

A constelação menos conhecida de Canes Venatici (Cães de Caça), é o lar de uma variedade de objetos do céu profundo, incluindo esta bela galáxia, conhecida como NGC 4861.

NGC 4861

© Hubble (NGC 4861)

Astrônomos ainda estão debatendo sobre como classificá-la. Enquanto suas propriedades físicas, tais como: a massa, o tamanho e a velocidade de rotação, indicam que ela é uma galáxia espiral, sua aparência se parece mais como um cometa com sua "cabeça" densa e luminosa e sua "cauda" mais escura atrás. Talvez se encaixe melhor como uma galáxia anã irregular.

Embora pequenas e confusas, as galáxias como a NGC 4861 fornecem aos astrônomos oportunidades interessantes para o estudo. Pequenas galáxias têm menores potenciais gravitacionais, o que significa simplesmente que é preciso menos energia para mover coisas sobre elas do que em outras galáxias. Como resultado, mover-se dentro, ao redor, e através de uma galáxia tão pequena é bastante fácil de fazer, tornando-as muito mais propensas a ser sufocadas com fluxos e saídas de partículas carregadas rápidas conhecidas como ventos galácticos, que podem inundar tais galáxias com pouco esforço.

Estes ventos galácticos podem ser alimentados pelo processo contínuo de formação de estrelas, que envolve enormes quantidades de energia. As estrelas novas estão surgindo dentro da cabeça brilhante e colorida da NGC 4861 e ejetando fluxo de partículas de alta velocidade, que se juntam ao vento galáctico mais extenso. A NGC 4861 seria uma candidata perfeita para estudar tais ventos, mas estudos recentes não encontraram nenhum vento galáctico nela.

Fonte: ESA

domingo, 22 de janeiro de 2017

A evolução dos aglomerados de galáxias massivos

Os aglomerados de galáxias têm sido reconhecidos há muito tempo como importantes laboratórios para o estudo da formação e evolução das galáxias.

aglomerado de galáxias IDCS J1426.5 3508

© Chandra/Hubble/Spitzer (aglomerado de galáxias IDCS J1426.5+3508)

A imagem acima foi obtida em vários comprimentos de onda do aglomerado de galáxia massivo e distante, IDCS J1426.5 + 3508, sendo os raios X do Chandra em azul, a luz visível do Hubble em verde, e os raios infravermelhos do Spitzer em vermelho.

O advento da nova geração de telescópios de levantamento de ondas milimétricas e submilimétricas, como o Telescópio do Pólo Sul (SPT), tornou possível identificar pequenos conjuntos de galáxias em grandes frações do céu usando um efeito reconhecido pela primeira vez por Rashid Sunyaev e Yakov Zel'dovich em 1969: Quando elétrons quentes no gás do aglomerado interagem com a luz do fundo de microondas cósmica onipresente eles aumentam seu brilho muito ligeiramente.

A Smithsonian Astrophysical Observatory (SAO) é uma instituição parceira no Telescópio do Pólo Sul, que vem realizando um grande levantamento que cobre cerca de 6% do céu com uma sensibilidade e resolução angular adequada para detectar aglomerados de galáxias tão distantes quanto os da época cerca de quatro bilhões de anos depois do Big Bang. Uma vantagem de estudar esta amostra de aglomerados é que, devido ao fato de terem sido identificadas a partir das suas assinaturas de gás quente (em vez da luz das estrelas das suas galáxias membros), a evolução do aglomerado e da sua população em conjunto é mais fácil de separar.

O astrônomo Brian Stalder do Harvard-Smithsonian Center for Astrophysics (CfA) e uma equipe de colegas usaram os dados de pesquisa do SPT para identificar vinte e seis dos mais massivos aglomerados conhecidos, cada um com uma massa de mais de um quatrilhão de massas solares. Os pesquisadores acham que os aglomerados estão amplamente de acordo com o pensamento atual sobre a evolução de aglomerados massivos e as estrelas nestas galáxias. Os modelos sugerem uma evolução geralmente passiva (isto é, sem interrupções incomuns por colisões ou atuação nuclear de um buraco negro) e implicam que a maior parte da formação estelar e da fusão de galáxias teve lugar numa época ainda mais antiga do que esta amostra cobre. Os cientistas observam, no entanto, que uma amostra maior é necessária para estender as conclusões, e está sendo realizada usando outros telescópios ópticos de grande porte, incluindo os telescópios gêmeos Magellan de 6,5 metros no Chile, dos quais a SAO também é um dos principais parceiros.

Um artigo do estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 21 de janeiro de 2017

As caudas de dois pulsares

Como faróis cósmicos que varrem o Universo com rajadas de energia, os pulsares fascinam e nos confundem desde que foram descobertos há 50 anos atrás.

ilustração das caudas de um pulsar

© Nahks Tr'Ehnl (ilustração das caudas de um pulsar)

Em dois estudos, equipes internacionais de astrônomos sugerem que imagens recentes de dois pulsares, obtidas pelo observatório de raios X Chandra da NASA, Geminga e B0355+54, podem ajudar a iluminar as assinaturas distintivas dos pulsares, bem como a sua geometria muitas vezes desconcertante.

Os pulsares são um gênero de estrela de nêutrons que nascem em explosões de supernova quando as estrelas massivas desmoronam. Descobertas inicialmente graças a feixes de emissão de rádio, parecidos a faróis, as pesquisas mais recentes descobriram que os pulsares energéticos também produzem feixes de raios gama altamente energéticos.

Curiosamente, os feixes raramente se combinam, afirma Bettina Posselt, pesquisadora em astronomia e astrofísica da Universidade Estatal da Pensilvânia, EUA. As formas dos pulsos rádio e raios gama observados são muitas vezes bastante diferentes e alguns dos objetos mostram apenas ou um tipo de pulso ou o outro. Estas diferenças geraram debate sobre o modelo de pulsar.

"Não se sabe totalmente o porquê de haverem variações entre diferentes pulsares," comenta Posselt. "Uma das principais ideias é que as diferenças de pulso têm muito a ver com a geometria, e também dependem da rotação e de como os eixos magnéticos do pulsar estão orientados em relação à nossa linha de visão."

As imagens do Chandra estão fornecendo o seu olhar mais próximo sobre a geometria distinta dos ventos de partículas carregadas que irradiam raios X e outros comprimentos de onda dos objetos. Os pulsares giram ritmicamente enquanto viajam pelo espaço a velocidades que atingem centenas de quilômetros por segundo. As nebulosas de vento pulsar (sigla PWN, inglês para Pulsar Wind Nebulae) são produzidas quando as partículas energéticas que fluem dos pulsares são disparadas ao longo dos campos magnéticos da estrela, formando toros (anéis) em torno do plano equatorial do pulsar e percorrem o eixo de rotação, muitas vezes formando caudas longas à medida que os pulsares rapidamente cortam através do meio interestelar.

"Este é um dos resultados mais agradáveis do nosso estudo mais amplo das nebulosas de vento pulsar," comenta Roger W. Romani, professor de astrofísica na Universidade de Stanford e pesquisador principal do projeto PWN do Chandra. "Ao tornar visível a estrutura tridimensional destes ventos, mostramos como podemos chegar ao plasma injetado pelo pulsar no centro. A fantástica acuidade de raios X do Chandra foi essencial para este estudo, possibilitando obter as exposições profundas que tornaram estas tênues estruturas visíveis."

  caudas de Geminga e B0355 54

© NASA/Nahks Tr'Ehnl (caudas de Geminga e B0355+54)

Pode ser vista uma espetacular PWN ao redor do pulsar Geminga. Geminga, um dos pulsares mais próximos, a apenas 800 anos-luz de distância da Terra, tem três caudas invulgares. Os fluxos de partículas expelidos dos alegados polos de Geminga, ou caudas laterais, estendem-se por mais de meio ano-luz, mais de 1.000 vezes a distância entre o Sol e Plutão. Outra cauda, mais curta, também é emanada do pulsar.

Uma imagem muito diferente pode ser vista no pulsar chamado B0355+54, que está a cerca de 3.000 anos-luz da Terra. A cauda deste pulsar tem um tampão de emissão, seguido por uma cauda dupla e estreita que se prolonga por quase cinco anos-luz.

Enquanto Geminga mostra pulsos no espectro de raios gama, mas permanece silencioso no rádio, B0355+54 é um dos pulsares de rádio mais brilhantes, mas não apresenta raios gama.

O eixo de rotação dos pulsares e suas orientações magnéticas influenciam nas emissões que podemos ver a partir da Terra.

Segundo Posselt, Geminga pode ter polos magnéticos muito perto da parte superior e inferior do objeto, e polos de rotação quase alinhados, tal como a Terra. Um dos polos magnéticos de B0355+54 pode estar orientado diretamente para a Terra. Como a emissão de rádio ocorre perto do local dos polos magnéticos, as ondas de rádio podem apontar ao longo da direção dos jatos. A emissão de raios gama, por outro lado, é produzida a maiores altitudes e numa região maior, permitindo com que os respetivos pulsos varram áreas maiores do céu.

"Para Geminga, vemos os brilhantes pulsos de raios gama e a orla do toro da nebulosa de vento pulsar, mas os feixes de rádio perto dos jatos apontam para os lados e permanecem invisíveis," realça Posselt.

As caudas laterais, fortemente dobradas, fornecem pistas sobre a geometria do pulsar, que pode ser comparada com a dos jatos produzidos por aviões, ou com frentes de choque parecidas com aquelas criadas por uma bala enquanto viaja pelo ar.

Oleg Kargaltsev, professor assistente de física da Universidade George Washington, que trabalhou no estudo de B0355+54, disse que a orientação de B0355+54 desempenha também uma função no modo como os astrônomos vêm o pulsar.

"Para B0355+54, um jato aponta diretamente para nós, de modo que detectamos os brilhantes pulsos de rádio enquanto a maioria da emissão de raios gama é direcionada no plano do céu e falha a Terra," explica Kargaltsev. Isto implica que a direção do eixo de rotação do pulsar está alinhada com a nossa perspetiva e que o pulsar está se movendo perpendicularmente ao seu eixo de rotação."

Noel Klingler, assistente de pesquisa em física, da Universidade George Washington, e autor principal do artigo sobre B0355+54, acrescentou que os ângulos entre os três vetores - o eixo de rotação, a linha de visão e a velocidade - são diferentes para pulsares diferentes, afetando assim as aparências das suas nebulosas.

"Em particular, pode ser complicado detectar uma PWN de um pulsar movendo-se perto da linha de visão e tendo um pequeno ângulo entre o eixo de rotação e a nossa perspetiva," comenta Klingler.

Na interpretação da frente de choque dos dados de raios X de Geminga, as suas duas longas caudas e o seu espectro incomum podem sugerir que as partículas são aceleradas até quase à velocidade da luz por um processo chamado aceleração de Fermi. A aceleração de Fermi ocorre na interseção entre o vento pulsar e o material interestelar.

Apesar de diferentes interpretações permaneceram em estudo para a geometria de Geminga, Posselt realça que as imagens do pulsar pelo Chandra estão ajudando os astrofísicos a usar pulsares como laboratórios de física de partículas. O estudo destes objetos dá aos astrofísicos a oportunidade de investigar a física de partículas em condições que seriam impossíveis de reproduzir num acelerador de partículas aqui na Terra.

"Em ambos os cenários, Geminga fornece emocionantes novas restrições sobre a física de aceleração em nebulosas de vento pulsar e sobre a sua interação com a matéria interestelar circundante," conclui.

As descobertas foram divulgadas na atual edição da revista The Astrophysical Journal.

Fonte: Pennsylvania State University

quinta-feira, 19 de janeiro de 2017

A Nebulosa Tromba do Elefante em Cepheus

Nesta ilustração galáctica, a Nebulosa Tromba do Elefante serpenteia através da nebulosa de emissão e do jovem aglomerado de estrelas IC 1396, na distante constelação de Cepheus.

vdB 142

© Stephen Leshin (vdB 142)

A tromba do elefante cósmica, também conhecida como vdB 142, tem mais de 20 anos-luz de extenção. Esta visão colorida inclui dados de imagem de um filtro de banda estreita que transmite a luz de átomos de hidrogênio ionizado na região.

O composição resultante destaca as brilhantes cristas varridas que delineiam os bolsões de poeira e gás interestelar frio. Tais nuvens embutidas, escuras e com forma de gavinha contêm a matéria-prima para a formação estelar e escondem protoestrelas no seu interior.

Localizado a quase 3.000 anos-luz de distância, o complexo IC 1396 cobre uma grande região no céu, abrangendo mais de 5 graus. Esta cena dramática abrange um campo de 1 grau de largura, cerca do tamanho de 2 Luas cheias.

Fonte: NASA

terça-feira, 17 de janeiro de 2017

Estrela presumida jovem é afinal uma anciã galáctica

Era considerada uma adolescente entre as estrelas. Mas agora uma coisa ficou clara: este objeto celeste foi formado quando a nossa Galáxia nasceu. Porque é que os pesquisadores erraram durante tantas décadas?

representação de uma estrela anã branca

© NASA (representação de uma estrela anã branca)

A 49 Librae (49 Lib), uma estrela relativamente brilhante no céu do hemisfério sul, tem 12 bilhões de anos e não apenas 2,3 bilhões. Durante muitas décadas, os cientistas ficaram chocados com os dados contraditórios que recebiam deste corpo celeste, porque tinham estimado uma idade muito mais jovem do que realmente é. A nova determinação da sua idade, por astrônomos da Ruhr-Universität Bochum RUB), resolveu agora com sucesso todas as inconsistências. O Dr. Klaus Fuhrmann e o professor Dr. Rolf Chini publicaram os seus resultados na revista The Astrophysical Journal.

"Antes, havia-se assumido que a estrela tinha apenas metade da idade do nosso Sol," comenta Chini. "No entanto, os nossos dados mostraram que se formou durante o nascimento da Via Láctea." A razão para o erro: o objeto celeste é um sistema binário, como foi provado por outro grupo de pesquisa em 2016. A equipe de Chini demonstrou agora o mecanismo usado pela parceira estelar de 49 Lib para fingir a sua idade.

A estrela companheira de 49 Lib é uma estrela quase extinta praticamente invisível. No final da sua vida, transferiu parte da sua matéria para 49 Lib, e foi isto que levou a uma estimativa tão confusa da sua idade.

Os cientistas determinam a idade das estrelas com base na sua composição química. As estrelas velhas, formadas durante uma fase inicial do Universo, não contêm elementos pesados. Isto porque estes elementos foram produzidos mais tarde, após a fusão nuclear de muitas gerações de estrelas. As estrelas novas, tais como o nosso Sol, possuem elementos pesados porque emergiram dos restos das gerações passadas das estrelas.

Dado que a misteriosa estrela 49 Lib contém elementos pesados, os cientistas pensaram, durante muitas décadas, que seria um corpo celeste relativamente jovem. No entanto, foi descoberto que os elementos pesados não são originários da 49 Lib, mas que haviam sido transferidos até lá a partir da sua companheira invisível.

No final da vida, as estrelas tornam-se enormes; tão grandes que a sua própria gravidade já não é suficiente para manter a matéria junta. A matéria escapa como gás para o espaço. Caso houvesse outra estrela na sua vizinhança, a sua gravidade poderia atrair e absorver a matéria expelida. Foi assim que 49 Lib ganhou os seus elementos pesados.

A idade das estrelas são determinadas com base nos seus espectros. A luz emitida pela estrela é separada nos seus componentes individuais e descodificada nos comprimentos de onda nos quais a estrela emite mais luz. A composição dos elementos químicos de uma estrela determina o seu espectro.

Com base nos seus dados, os pesquisadores da RUB fizeram mais do que apenas especificar a idade da estrela em questão. "Somos capazes de acompanhar a evolução de todo este sistema binário," explica Rolf Chini. É possível saber, por exemplo, as massas com as quais a vida do sistema começou e como estas massas evoluíram desde então.

Ao início, ambas as estrelas tinham massas semelhantes à do Sol. Quando a 49 Lib recebeu parte da matéria da sua parceira estelar em extinção, ganhou uma massa de aproximadamente 0,55 sóis. Quanto mais massa tem uma estrela, menor é a sua vida. O ganho de massa reduziu, assim, dramaticamente a vida da 49 Lib. "Tornar-se-á em breve uma gigante vermelha e, seguidamente, colapsará numa anã branca," descreve Rolf Chini.

Como gigante vermelha, 49 Lib já não será capaz de manter a sua matéria aglomerada, passando pelo mesmo processo que a sua parceira padeceu quando se transformou em anã branca. Parte da matéria da 49 Lib será atraída pela companheira extinta. "Caso este parceiro estelar não consiga livrar-se da matéria via pequenas erupções, explodirá completamente como uma supernova," conclui Chini.

Fonte: Ruhr-Universität Bochum

O ALMA começa a observar o Sol

Os astrônomos utilizaram as capacidades do Atacama Large Millimeter/submillimeter Array (ALMA), instalado no Chile, para obter imagens da radiação milimétrica emitida pela cromosfera do Sol, a região que se situa logo acima da fotosfera e que forma a superfície visível do Sol.

mancha solar gigante a 1,25 mm

© ESO (mancha solar gigante a 1,25 mm)

A equipe da campanha solar, um grupo internacional de astrônomos com membros da Europa, América do Norte e Leste Asiático, produziu as imagens no intuito de demonstrar as capacidades do ALMA no estudo da atividade solar em comprimentos de onda maiores dos que os que se encontram normalmente disponíveis nos observatórios solares na Terra.

Os astrônomos estudam o Sol e investigam a sua superfície dinâmica e atmosfera energética de muitas maneiras há vários séculos. No entanto, para se compreender melhor o funcionamento do Sol, é necessário estudá-lo em todo o espectro electromagnético, incluindo na região do milímetro e do submilímetro, a qual pode ser observada pelo ALMA.

Uma vez que o Sol é muitos bilhões de vezes mais brilhante que os fracos objetos que o ALMA observa normalmente, as antenas do ALMA foram especialmente concebidas para poderem obter imagens do Sol com extremo detalhe usando a técnica de interferometria rádio, e evitando assim danos devido ao intenso calor da luz solar focada. Deste trabalho resultaram uma série de imagens que demonstram a visão única do ALMA e a sua capacidade em estudar o nosso Sol. Os dados da campanha de observação solar estão sendo divulgados esta semana à comunidade astronômica mundial, para análise e estudo subsequentes.

A equipe observou uma mancha solar enorme nos comprimentos de onda de 1,25 mm e 3 mm, usando duas das bandas receptoras do ALMA. As imagens revelam diferenças em temperatura entre partes da cromosfera do Sol. A compreensão do aquecimento e da dinâmica da cromosfera é uma área importante de pesquisa, que será abordada no futuro com o ALMA.

mancha solar gigante a 3 mm

© ESO (mancha solar gigante a 3 mm)

As manchas solares são estruturas transientes que aparecem em regiões onde o campo magnético do Sol é muito forte e se encontra extremamente concentrado. Têm temperaturas mais baixas que as regiões ao redor e é por isso que aparecem relativamente escuras.

A diferença entre as duas imagens deve-se aos diferentes comprimentos de onda da radiação emitida que se estão observando. As observações em comprimentos de onda mais curtos conseguem penetrar mais profundamente no Sol, o que significa que as imagens a 1,25 mm mostram uma camada da cromosfera mais profunda, e consequentemente mais próxima da fotosfera, que as imagens obtidas a um comprimento de onda de 3 mm.

O ALMA é o primeiro observatório do qual o ESO é parceiro que permite aos astrônomos estudar a nossa estrela mais próxima, o nosso Sol. Todas as outras infraestruturas do ESO, existentes ou passadas, precisam de ser protegidas da intensa radiação solar de modo a evitar danos. As novas capacidades do ALMA farão com que a comunidade do ESO se expanda para incluir os astrônomos solares.

Fonte: ESO

Imagem revela um tesouro de buracos negros

Esta é a imagem em raios X mais profunda já obtida, feita com mais de 7 milhões de segundos de observação no observatório de raios X Chandra da NASA.

concentração de buracos negros

© CDF-S (concentração de buracos negros)

Estes dados fornecem aos astrônomos o melhor olhar para o crescimento de buracos negros ao longo de bilhões de anos logo após o Big Bang.

A imagem é do Chandra Deep Field-South (CDF-S). O CDF-S completo cobre uma região aproximadamente circular no céu com uma área de cerca de dois terços da Lua cheia. No entanto, as regiões exteriores da imagem, onde a sensibilidade à emissão de raios X é mais baixa, não são mostradas aqui. As cores nesta imagem representam diferentes níveis de energia de raios X detectados pelo Chandra. Aqui os raios X de menor energia são vermelhos, a faixa média é verde, e os raios X de energia mais alta são azuis.

A região central desta imagem contém a maior concentração de buracos negros supermassivos já vistos, equivalente a cerca de 5.000 objetos que se encaixam na área do céu coberto pela Lua cheia e cerca de um bilhão sobre o céu inteiro.

Os pesquisadores usaram uma combinação de dados do CDF-S com do Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) e do Great Observatories Origins Deep Survey (GOODS), ambos incluindo dados do telescópio espacial Hubble para estudar galáxias e buracos negros entre um e dois bilhões de anos após o Big Bang.

Em uma parte do estudo, a equipe examinou a emissão de raios X de galáxias detectadas nas imagens do Hubble, a distâncias entre 11,9 e 12,9 bilhões de anos-luz da Terra. Cerca de 50 destas galáxias distantes foram detectadas individualmente com o Chandra. A equipe então usou uma técnica chamada empilhamento de raios X para investigar a emissão de neste comprimento de onda das 2.076 galáxias distantes que não foram detectadas individualmente. Foram somadas todas as contagens de raios X próximas às posições destas galáxias, permitindo obter uma sensibilidade muito maior. Através do empilhamento, a equipe conseguiu atingir tempos de exposição em torno de 8 bilhões de segundos, ou seja, equivalentes a cerca de 260 anos.

Usando estes dados, a equipe encontrou evidências de que buracos negros no Universo primitivo crescem principalmente em rajadas, e não através do lento acúmulo de matéria. A equipe também pode ter encontrado dicas sobre os tipos de embriões que formam buracos negros supermassivos. Se os buracos negros supermassivos nascem como embriões "leves" que pesam cerca de 100 vezes a massa do Sol, a taxa de crescimento necessária para atingir uma massa de cerca de um bilhão de vezes o Sol no Universo inicial pode ser tão alta que desafia os modelos atuais para este crescimento. Se os buracos negros supermassivos nascem com mais massa, a taxa de crescimento requerida não é tão alta. Os dados no CDF-S sugerem que os embriões "pesados" de buracos negros supermassivos pode ter massas de cerca de 10.000 a 100.000 vezes a do Sol.

Estes dados em raios X profundos como os do CDF-S fornecem informações úteis para a compreensão das propriedades físicas dos primeiros buracos negros supermassivos. O número relativo de objetos luminosos e fracos, caracterizado pela forma da "função de luminosidade", depende da mistura das várias quantidades físicas envolvidas no crescimento do buraco negro, incluindo a massa dos embriões dos buracos negros e a taxa na qual eles estão absorvendo o material. Os dados oriundos do CDF-S mostram uma função de luminosidade "plana", isto é, um número relativamente grande de objetos brilhantes, que pode ser utilizada para inferir combinações possíveis destas quantidades físicas. No entanto, resultados definitivos só podem vir de observações adicionais.

O artigo sobre o crescimento de buracos negros no Universo primordial foi conduzido por Fabio Vito da Universidade Estadual da Pensilvânia e foi publicado numa edição do Monthly Notices da Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 16 de janeiro de 2017

Misterioso objeto na galáxia Cygnus A

Na semana passada, na reunião da American Astronomical Society, em Grapevine, Texas, os astrônomos fizeram um anúncio que atraiu o interesse de vários pesquisadores: uma coisa muito brilhante apareceu em uma galáxia bem conhecida.

Cygnus A

© VLA/C. Carilli (Cygnus A)

É a galáxia elíptica Cygnus A, também conhecida como 3C 405. Ela é uma das fontes de rádio mais brilhantes no céu. Encontra-se a aproximadamente 800 milhões de anos-luz de nós (redshift de 0,056). Em seu núcleo fica um buraco negro supermassivo, enquanto dois jatos são lançados para fora de cada lado e iluminam o meio intergaláctico. Esta atividade produz a radiação de rádio que torna o Cygnus A tão brilhante.

Usando o recentemente atualizado Karl G. Jansky Very Large Array (VLA) no Novo México, Rick Perley do National Radio Astronomy Observatory (NRAO) e seus colegas deram uma olhada na Cygnus A, sendo que é a primeira vez que o instrumento foi apontado para a galáxia desde 1989.

As novas observações mostraram uma surpresa: um novo objeto secundário, a sudoeste do buraco negro central. Este objeto não estava na imagem de rádio de 1989. Observações adicionais de alta resolução com o Very Long Baseline Array (VLBA) também captaram o objeto, claramente distinto do núcleo da galáxia. Está a aproximadamente 1.300 anos-luz do centro.

buraco negro supermassivo e o objeto identificado em Cygnus A

© G. Canalizo (buraco negro supermassivo e o objeto identificado em Cygnus A)

Esta imagem infravermelha de cor falsa obtida pelo telescópio telescópio Keck II mostra a galáxia Cygnus A. Seu buraco negro supermassivo central é a grande mancha vermelha escura, mas esta imagem de 2003 revela uma segunda fonte misteriosa (circundada) nas proximidades.

O que quer que seja é duas vezes mais brilhante que a supernova mais brilhante conhecida nestas frequências. Na verdade, é muito mais brilhante do que qualquer sinal de rádio transitório conhecido, exceto para acúmulo de buracos negros supermassivos e eventos de ruptura de marés, explosões criadas quando um buraco negro absorve uma estrela.

A equipe vasculhou outros arquivos e encontrou o objeto em 2003 em observações infravermelhas com o telescópio Keck e em algumas imagens do telescópio espacial Hubble. O objeto é tão vermelho que não aparece bem em comprimentos de onda ópticos, e nesta faixa a resolução do telescópio espacial não é tão boa quanto a da óptica adaptativa do telescópio Keck.

Claire Max, que atua como diretora dos Observatórios da Universidade da Califórnia (que administra os observatórios Keck e Lick), rebuscou através dos dados do telescópio Keck e descobriu que, de fato, os astrônomos já haviam descoberto esta fonte. Em 2003 ela, Gabriela Canalizo (agora na Universidade da Califórnia, Riverside), e seus colegas haviam tropeçado com a fonte misteriosa. Eles também haviam encontrado em algumas imagens do Hubble e não em outros; eles não tinham certeza se isso era porque a fonte estava tremulando, ou simplesmente que o Hubble não tinha captado o suficiente para vê-lo consistentemente.

O objeto parecia ser um aglomerado compacto de velhas estrelas vermelhas, núcleo descendente de uma galáxia muito menor que Cygnus A tinha capturado. Esta fusão menor também pode explicar por que o buraco negro da grande galáxia "se acendeu", que foi evidenciada num artigo de 2003 do periódico Astrophysical Journal.

Por outro lado, Canalizo e colegas passaram a sugerir em 2004 que a fonte poderia em vez disso ser uma borda interior quente da rosquinha empoeirada que envolve o buraco negro.

A equipe da Perley também concorda com uma fusão. Mas ele defendeu em vez disso que a radiação poderia vir de um segundo buraco negro, o núcleo restante da galáxia capturada. Se assim for, então Cygnus A é uma das poucas galáxias que parece hospedar um buraco negro binário central.

No final de sua apresentação da reunião da American Astronomical Society, Perley pediu que outros astrônomos averiguassem os arquivos das observações para que pudessem apontar quando esta fonte apareceu. Sua equipe também está olhando em raios X, mas dado que o núcleo central é tão brilhante, eles não são otimistas de suas chances de ver algo, a menos que haja alguma variabilidade.

Fonte: Sky & Telescope

domingo, 15 de janeiro de 2017

Júpiter crescente e a Grande Mancha Vermelha

Esta imagem que mostra o planeta Júpiter numa fase crescente e em destaque a icônica Grande Mancha Vermelha, foi criada pelo cientista cidadão Roman Tkachenko, usando os dados do instrumento da JunoCam, a câmera a bordo da sonda Juno.

Júpiter crescente e a Grande Mancha Vermelha

© NASA/JPL-Caltech/Roman Tkachenko (Júpiter crescente e a Grande Mancha Vermelha)

Abaixo da Grande Mancha Vermelha, uma tempestade avermelhada de longa duração conhecida como Oval BA também é visível. Nota-se na imagem também uma série de tempestades esbranquiçadas e de forma ovalada, conhecidas informalmente como Colar de Pérolas.

A imagem foi realizada no dia 11 de Dezembro de 2016, às 8:30 da manhã, hora de Brasília, quando a nave espacial Juno realizou seu terceiro sobrevôo próximo de Júpiter. No momento em que esta imagem foi efetuada a sonda estava a cerca de 458.800 km de distância do planeta.

As imagens brutas da JunoCam estão disponíveis para o público que possa processar da maneira que quiser e postar no site, sendo que os melhores processamentos são escolhidos e citados. Para participar acesse: http://www.missionjuno.swri.edu/junocam

Fonte: NASA

A Lua é mais antiga do que se pensava

Uma equipe liderada pela UCLA (Universidade da Califórnia, em Los Angeles), EUA, relata que a Lua tem pelo menos 4,51 bilhões de anos e é 40 a 140 milhões de anos mais velha do que os cientistas pensavam anteriormente.

Mare Ingenii na Lua

© NASA/The Project Apollo Archive (Mare Ingenii na Lua)

Os resultados foram baseados numa análise de minerais da Lua chamados zircões que foram trazidos para a Terra pela missão Apollo 14 em 1971. Foi encontrado zirconita ou zircão, que trata-se de um silicato de zircônio (ZrSiO4).

A idade da Lua tem sido um tema muito debatido, embora os cientistas tenham tentado resolver a questão ao longo de muitos anos e usando uma ampla variedade de técnicas científicas.

"Finalmente definimos uma idade mínima para a Lua; já estava na hora de sabermos a sua idade e agora sabemos," comenta Mélanie Barboni, a autora principal do estudo e geoquímica do Departamento de Ciências da Terra, Planetárias e do Espaço da UCLA.

A Lua foi formada por uma violenta colisão frontal entre a Terra primitiva e um "embrião planetário" de nome Theia, relatou a equipe de geoquímicos e colegas da mesma universidade em 2016.

A pesquisa mais recente significa que a Lua se formou "apenas" cerca de 60 milhões de anos após o nascimento do Sistema Solar, um ponto importante porque fornece informações críticas para os astrônomos e cientistas planetários que procuram compreender a evolução inicial da Terra e do nosso Sistema Solar.

Isto tem sido uma tarefa difícil porque o que lá estava antes do impacto gigante foi apagado. Embora os cientistas não possam saber o que ocorreu antes da colisão com Theia, estes achados são importantes porque vão ajudar os cientistas a discernir os grandes eventos que a seguiram.

Geralmente é difícil determinar a idade das rochas lunares porque a maioria delas contém uma miscelânea de fragmentos de várias outras rochas. Mas a equipe foi capaz de analisar oito zircões em estado puro. Especificamente, ela examinou como o urânio que contêm decaiu para o chumbo (num laboratório da Universidade de Princeton) e como o lutécio que contêm decaiu para háfnio (usando um espectrômetro de massa na UCLA). Os cientistas analisaram estes elementos juntos para determinar a idade da Lua.

"Os zircões são os melhores relógios da Natureza. São o melhor mineral na preservação da história geológica e na revelação da sua origem," comenta Kevin McKeegan, professor de geoquímica e cosmoquímica da UCLA.

A colisão da Terra com Theia criou uma lua liquefeita que depois solidificou. Os cientistas acreditam que a maior parte da superfície da Lua estava coberta com magma logo após a sua formação. As medições do urânio-chumbo revelam quando os zircões apareceram pela primeira vez no oceano de magma inicial da Lua, que mais tarde arrefeceu e formou o manto e a crosta; as medições de lutécio-háfnio revelam quando o magma se formou, o que aconteceu mais cedo.

"A Mélanie conseguiu descobrir a idade real da Lua, que remonta à sua pré-história antes de solidificar, não à sua solidificação," comenta Edward Young, professor de geoquímica e cosmoquímica da UCLA.

Os estudos anteriores determinaram a idade da Lua com base em rochas lunares que haviam sido contaminadas por colisões múltiplas. McKeegan realça que essas rochas indicavam a data de alguns outros eventos, "mas não a idade da Lua."

Os pesquisadores da Universidade da Califórnia em Los Angeles continuam estudando os zircões trazidos pelos astronautas das Apollo e a história inicial da Lua.

Os resultados foram publicados na revista Science Advances.

Fonte: University of California

Estrelas mais distantes da Via Láctea foram capturadas de outra galáxia

As 11 estrelas mais distantes conhecidas da nossa Galáxia estão localizadas a cerca de 300.000 anos-luz da Terra, bem além do disco espiral da Via Láctea.

  simulação da captura de estrelas pela Via Láctea

  © Marion Dierickx/CfA (simulação da captura de estrelas pela Via Láctea)

Nesta imagem gerada por computador, a oval vermelha marca o disco da nossa Galáxia e o ponto vermelho mostra a localização da anã de Sagitário.

Uma nova pesquisa feita por astrônomos de Harvard mostra que metade destas estrelas podem ter sido arrancadas de outra galáxia: a anã de Sagitário. Além disso, são membros de um longo fluxo estelar que se estende um milhão de anos-luz no espaço, ou 10 vezes o diâmetro da nossa Galáxia.

"Os fluxos de estrelas que foram mapeados até agora são como riachos em comparação com o rio gigante de estrelas que prevemos observar eventualmente," afirma Marion Dierickx do Harvard-Smithsonian Center for Astrophysics.

A anã de Sagitário é uma das dúzias de pequenas galáxias que rodeiam a Via Láctea. Ao longo da história do Universo, completou várias órbitas em torno da nossa Galáxia. Em cada passagem, as marés gravitacionais da Via Láctea influenciavam a galáxia menor, puxando-a e distorcendo-a como um elástico.

Dierickx e o seu orientador de doutoramento, o teórico Avi Loeb de Harvard, usaram modelos computacionais para simular os movimentos da anã de Sagitário ao longo dos últimos 8 bilhões de anos. Eles variaram a sua velocidade inicial e ângulo de aproximação à Via Láctea para determinar quais os cenários que melhor correspondiam às observações atuais.

"A velocidade de partida e o ângulo de aproximação têm um grande efeito na órbita, assim como a velocidade e o ângulo de um lançamento de um míssil afeta a sua trajetória," explica Loeb.

No início da simulação, a anã de Sagitário tinha uma massa na ordem das 10 bilhões de massas solares, ou cerca de 1% da massa da Via Láctea. Os cálculos de Dierickx mostram que, ao longo do tempo, a infeliz anã perdeu cerca de um-terço das suas estrelas e um total de nove-décimos da sua matéria escura. Isto resultou em três fluxos estelares distintos que alcançam um milhão de anos-luz a partir do centro da Via Láctea. Os fluxos estendem-se até à orla do halo da Via Láctea e são das maiores estruturas observáveis no céu.

Além disso, cinco das onze estrelas mais distantes na nossa Galáxia têm posições e velocidades que coincidem ao que seria de esperar de estrelas capturadas da anã de Sagitário. As outras seis não parecem ser de Sagitário, mas podem ter sido removidas de uma galáxia anã diferente.

Os projetos de mapeamento como o SDSS (Sloan Digital Sky Survey) traçaram um dos três fluxos previstos por estas simulações, mas não em toda a extensão que os modelos sugerem. Instrumentos futuros como o LSST (Large Synoptic Survey Telescope), que irá detectar estrelas muito mais tênues no céu, deverão ser capazes de identificar os outros fluxos.

"Existem lá fora ainda mais 'intrusos' de Sagitário, à espera de serem encontrados," comenta Dierickx.

As descobertas foram aceitas para publicação na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Uma galáxia vista de lado

A grande galáxia espiral NGC 891 se espalha por cerca de 100 anos-luz e é vista quase que exatamente de lado desde a nossa perspectiva.

NGC 891

© Adam Block (NGC 891)

De fato, localizada a cerca de 30 milhões de anos-luz de distância da Terra na constelação de Andrômeda, a NGC 891 se parece muito com a nossa galáxia, a Via Láctea.

Numa primeira olhada, ela tem um disco galáctico de estrelas fino e plano e um bulbo central cortado no meio por regiões de poeira escura. Mas o que se destaca mesmo na aparência da NGC 891, vista de lado, são os filamentos de poeira que se estendem por centenas de anos-luz acima e abaixo da linha central.

A poeira provavelmente foi expelida do disco por explosões de supernovas ou pela intensa atividade de formação de estrelas. Galáxias mais apagadas podem ser vistas perto do disco nesta imagem profunda da NGC 891.

Fonte: NASA