Um exoplaneta em órbita de uma estrela anã vermelha, situada a 40 anos-luz de distância da Terra, pode ser o novo detentor do título “melhor local para procurar sinais de vida para além do Sistema Solar".
© M. Weiss/CfA (exoplaneta rochoso LHS 1140b)
Com o auxílio do instrumento HARPS montado em La Silla, e outros telescópios em todo o mundo, uma equipe internacional de astrônomos descobriu uma “super-Terra” em órbita na zona de habitabilidade de uma estrela anã vermelha. A zona de habitabilidade define-se como uma zona na órbita de uma estrela onde um planeta possui temperatura adequada para que possa existir água líquida à sua superfície. Este mundo é um pouco maior do que a Terra, mas possui mais massa e muito provavelmente ainda mantém sua atmosfera. Este aspecto, juntamente com o fato de passar em frente da sua estrela hospedeira ao longo da sua órbita, torna-o num dos mais interessantes alvos futuros para estudos atmosféricos.
A recentemente descoberta super-Terra LHS 1140b orbita na zona de habitabilidade de uma fraca estrela anã vermelha, chamada LHS 1140, situada na constelação da Baleia. As anãs vermelhas são menores e mais frias que o Sol e, embora LHS 1140b esteja dez vezes mais próximo da sua estrela do que a Terra está do Sol, recebe apenas cerca de metade da luz de sua estrela, quando comparado com a Terra, situando-se no meio da zona de habitabilidade. A partir da Terra vemos a sua órbita quase de perfil e quando o exoplaneta passa em frente da estrela bloqueia um pouco da luz estelar emitida, algo que acontece uma vez por órbita, a cada 25 dias.
“Trata-se do exoplaneta mais interessante que descobrimos na última década,” explica o autor principal deste estudo Jason Dittmann, do Harvard-Smithsonian Center for Astrophysics (Cambridge, EUA). “Não podíamos desejar um melhor alvo para realizar uma das maiores buscas da ciência, a procura de vida fora da Terra.”
“As atuais condições da anã vermelha são particularmente favoráveis, LHS 1140 gira mais lentamente e emite menos radiação de alta energia que outras estrelas de baixa massa semelhantes,” explica o membro da equipe Nicola Astudillo-Defru do Observatório de Genebra, na Suíça.
Apesar do planeta se situar numa zona onde a vida tal como a conhecemos pode potencialmente existir, este corpo celeste não entrou muito provavelmente nesta região antes de 40 milhões de anos após a formação da estrela anã vermelha. Durante esta fase, o exoplaneta pode ter estado sujeito ao passado ativo e volátil da sua estrela progenitora. Uma anã vermelha pode facilmente remover a água da atmosfera de um planeta que está se formando na sua vizinhança, levando a um efeito de estufa descontrolado, semelhante ao que observamos em Vênus.
Para que a vida tal como a conhecemos possa existir, um planeta tem que ter água em sua superfície e possuir atmosfera. Sabe-se que quando as anãs vermelhas são jovens emitem radiação que pode ser prejudicial às atmosferas dos planetas que as orbitam. Neste caso, o grande tamanho do planeta aponta para que um oceano de magma possa ter existido na sua superfície durante milhões de anos. Este oceano de lava fervente pode ter alimentado a atmosfera com vapor, muito depois da estrela ter atingido o seu atual estado calmo e de brilho constante, tendo assim fornecido água ao planeta.
A descoberta foi inicialmente feita pela infraestrutura MEarth, que detectou os primeiros apagões característicos na luz estelar quando o planeta passa em frente à estrela. O instrumento HARPS (High Accuracy Radial velocity Planet Searcher) do ESO fez em seguida as cruciais observações de acompanhamento que confirmaram a presença de um exoplaneta do tipo super-Terra. O HARPS também ajudou a determinar o período orbital e permitiu que tanto a massa do exoplaneta como a sua densidade fossem deduzidas.
Os astrônomos estimaram que a idade do planeta é pelo menos de 5 bilhões de anos e deduziram também que tem um diâmetro 1,4 vezes maior do que o da Terra, quase 18.000 km. A massa é cerca de 7 vezes maior que a da Terra e por isso a sua densidade é muito mais elevada, o que aponta para que o exoplaneta seja muito provavelmente constituído por rochas com um núcleo denso de ferro.
Esta super-Terra pode ser a melhor candidata descoberta até agora para futuras observações para estudar e caracterizar a sua atmosfera, se esta existir. Dois dos membros europeus da equipe, Xavier Delfosse e Xavier Bonfils, ambos no CNRS e no IPAG em Grenoble, França, concluem: “O sistema LHS 1140 pode vir a ser um alvo ainda mais importante para a futura caracterização de planetas na zona de habitabilidade do que o Proxima b ou o TRAPPIST-1. Este tem sido um ano extraordinário no que concerne descobertas de exoplanetas!”
O planeta em órbita de Proxima b encontra-se muito mais próximo da Terra, mas muito provavelmente não transita em frente à sua estrela, o que torna muito difícil determinar se possui ou não uma atmosfera. Contrariamente ao sistema TRAPPIST-1, não se encontraram mais exoplanetas em torno de LHS 1140. Pensa-se que os sistemas com planetas múltiplos sejam comuns em torno de anãs vermelhas, pelo que é possível que exoplanetas adicionais não tenham sido detectados até agora por serem muito pequenos.
Em particular, observações a serem realizadas em breve com o telescópio espacial Hubble da NASA/ESA mostrarão exatamente quanta radiação de alta energia está sendo enviada para LHS 1140b, por isso a sua capacidade de poder suportar vida poderá ser melhor limitada.
Num futuro não muito distante,quando novos telescópios como o Extremely Large Telescope do ESO estiverem operacionais, é muito provável que possamos fazer observações detalhadas das atmosferas de exoplanetas e o LHS 1140b é um candidato excepcional para tais estudos.
Este trabalho foi descrito no artigo científico intitulado “A temperate rocky super-Earth transiting a nearby cool star”, de J. A. Dittmann et al., que foi publicado hoje na revista Nature.
Fonte: ESO