segunda-feira, 18 de fevereiro de 2019

Um metal radioativo pode sufocar a formação de mundos aquáticos

Enquanto tendemos a pensar que os oceanos da Terra o tornam um planeta aquático, na verdade é apenas uma pequena fração de um por cento da água em massa.


© Roger Thibaut (teor de alumínio na formação de mundos oceânicos)

Olhando para o Universo, é claro que a água é mais comum do que o nosso próprio planeta implica. Alguns exoplanetas podem ter metade de sua massa como água. Então, o que faz com que alguns sistemas planetários permaneçam úmidos, enquanto outros secam? A resposta pode ser o alumínio.

As grandes quantidades de 26Al, uma forma radioativa de alumínio, podem aquecer e secar os planetesimais, que variam de 8 a 80 km, e colidem para formar planetas. Como resultado, a quantidade de alumínio que um sistema jovem possui pode ser um preditor de quais tipos de planetas irão evoluir lá.

Todas as estrelas tendem a aquecer e secar o material - de seixos a planetesimais - que orbita mais perto da linha de neve. Além da linha de neve, o gelo fica ao redor e é incorporado aos planetas, que podem então manter esse gelo e eventualmente transformá-lo em água, mesmo que mais tarde migrem para mais perto da estrela hospedeira. Por exemplo, nossa própria Terra mantém a água presa sob sua atmosfera, enquanto Marte, mais distante, perdeu sua água. Ambos estão agora dentro da linha de neve, mas provavelmente se formaram mais longe.

O aquecimento do alumínio só é importante para planetesimais de um determinado tamanho. Seixos pequenos não têm 26Al suficiente para causar aquecimento. Planetas de tamanho normal podem ser capazes de reter água através de outros métodos, como ter uma atmosfera. Mas o aquecimento do alumínio afetaria todos os planetesimais de tamanho condizente, não importa o quão próximos ou distantes eles estejam de sua estrela.

Um bom exemplo desse efeito em ação pode ser o sistema TRAPPIST-1. Ele tem sete exoplanetas rochosos circulando uma estrela anã vermelha. Três estão na zona habitável, e todos são considerados temperados o suficiente para receber água. Os pesquisadores ainda não conhecem todos os detalhes do sistema, e as incertezas ainda são altas para muitos dos planetas TRAPPIST-1.

Mas parece que apenas cerca de um por cento de sua massa é feita de água, o que é surpreendente para a maioria dos cientistas planetários. As anãs vermelhas são estrelas frias em comparação com o Sol, o que significa que sua linha de neve deve estar bem próxima, permitindo que muitos materiais gelados para os planetas sejam absorvidos como água. Então, qual o motivo desta água faltante?

O sistema TRAPPIST-1 é estranho. Em qualquer sistema, planetas circulando mais longe da estrela, viajando em órbitas maiores, deveriam ter mais chances de pegar material gelado - eles literalmente percorrem um circuito maior através do espaço. Mas isso não é o que os observadores veem no sistema TRAPPIST-1.

Porém, não há provas de que o aquecimento do alumínio tenha gerado o nosso Sistema Solar ou a relativa secura do TRAPPIST-1.

O novo estudo foi publicado em 11 de fevereiro na Nature Astronomy.

Fonte: Astronomy

domingo, 17 de fevereiro de 2019

O Elmo de Thor

A NGC 2359 é uma nuvem cósmica em forma de capacete com apêndices semelhantes a asas, popularmente chamada de Nebulosa Elmo de Thor.


© Ignacio Diaz Bobillo (Nebulosa Elmo de Thor)

Heroicamente dimensionado até para um deus nórdico, o capacete de Thor tem cerca de 30 anos-luz de diâmetro. Na verdade, o capacete é mais parecido com uma bolha interestelar, soprada como um vento rápido da estrela brilhante e massiva perto do centro da bolha inflando uma região dentro da nuvem molecular circundante.

Conhecida como uma estrela de Wolf-Rayet, a estrela central é um gigante extremamente quente que se acredita estar em um breve estágio de evolução pré-supernova. A NGC 2359 está localizada a cerca de 15.000 anos-luz de distância da Terra na constelação de Canis Major.

A imagem notavelmente detalhada é um coquetel misto de dados de filtros de banda larga e banda estreita que captam estrelas de aparência natural e o brilho das estruturas filamentares da nebulosa. Destaca uma cor azul esverdeada de emissão forte devido a átomos de oxigênio no gás incandescente.

Fonte: NASA

sábado, 16 de fevereiro de 2019

A possibilidade da existência de vulcanismo subterrâneo recente em Marte

Um estudo publicado o ano passado na revista Science sugere que a água líquida está presente por baixo da calota polar sul de Marte. Agora, um novo estudo publicado na revista Geophysical Research Letters, da União Geofísica Americana, argumenta que é necessário que exista uma fonte subterrânea de calor para a água líquida existir sob a calota polar.


© NASA (polo sul de Marte)

A nova pesquisa não toma posição no que toca à existência de água líquida. Ao invés, os autores sugerem que atividade magmática recente, a formação de uma câmara de magma nas últimas centenas de milhares de anos, deve ter ocorrido sob a superfície de Marte para que haja calor suficiente para produzir água líquida abaixo da espessa camada gelada com 1,5 km. Por outro lado, os autores do estudo argumentam que se não tiver havido atividade magmática recente por baixo da superfície de Marte, então provavelmente não há água líquida por baixo da calota de gelo.

A potencial presença de atividade magmática subterrânea recente em Marte suporta a ideia de que Marte é um planeta ativo, geologicamente falando. Este fato pode dar aos cientistas uma melhor compreensão de como os planetas evoluem com o tempo.

O novo estudo pretende aprofundar o debate em torno da possibilidade de água líquida em Marte. A presença de água líquida no Planeta Vermelho tem implicações para potencialmente encontrar vida fora da Terra e também pode servir como um recurso para a exploração humana futura do nosso planeta vizinho.

Marte tem duas camadas gigantes de gelo nos seus polos, ambas com quase dois quilômetros de espessura. Na Terra, é comum a água líquida estar presente debaixo de espessas camadas de gelo, sendo que o calor do planeta faz com que o gelo derreta onde encontra a crosta terrestre.

Marte é muito mais frio do que a Terra, de modo que não ficou claro que tipo de ambiente seria necessário para derreter o gelo na base da calota de gelo.

Os autores do novo estudo assumiram que a detecção de água líquida por baixo da calota polar estava correta e depois trabalharam para descobrir quais os parâmetros necessários para a existência da água. Realizaram a modelagem física de Marte para entender quanto calor está saindo do interior do planeta e se podia haver sal suficiente na base da calota para derreter o gelo. O sal reduz significativamente o ponto de fusão do gelo, de modo que se pensou que o sal podia ter levado ao degelo na base da calota polar.

O modelo mostrou que o sal, por si só, não elevaria a temperatura o suficiente para derreter gelo. Em vez disso, os pesquisadores propõem a necessidade de calor adicional oriundo do interior de Marte.

Uma fonte de calor plausível seria a atividade vulcânica no subsolo do planeta. Argumenta-se que o magma do interior profundo de Marte subiu em direção à superfície há cerca de 300.000 anos. Não quebrou a superfície, como uma erupção vulcânica, mas reuniu-se numa câmara magmática por baixo da superfície. À medida que a câmara de magma arrefecia, liberou calor que derreteu o gelo na base da camada de gelo. A câmara de magma ainda está fornecendo calor para a camada de gelo e gerando água líquida hoje.

A ideia de atividade vulcânica em Marte não é nova, existem muitas evidências de vulcanismo à superfície do planeta. Mas a maioria das características vulcânicas em Marte têm milhões de anos, levando os cientistas a pensar que a atividade vulcânica abaixo e acima da superfície do planeta parou há muito tempo.

O novo estudo, no entanto, propõe que pode ter havido atividade vulcânica subterrânea mais recente. E, de acordo com os autores do estudo, se houve atividade vulcânica há centenas de milhares de anos, existe a possibilidade de que possa estar ocorrendo hoje em dia.

Fonte: American Geophysical Union

terça-feira, 12 de fevereiro de 2019

Disco ao redor de estrela jovem está "polvilhado com sal"

Uma equipe de astrônomos usando o ALMA (Atacama Large Millimeter/submillimeter Array) detectou as "impressões digitais" químicas de cloreto de sódio (NaCl) e outros sais semelhantes emanados do disco empoeirado que rodeia Orion Source I, uma jovem estrela massiva situada numa nuvem de poeira atrás da Nebulosa de Órion.


© ALMA/Gemini (Orion Source I)

A imagem em destaque foi realizada pelo ALMA do disco salgado em torno da jovem estrela massiva Orion Source I (anel azul). A imagem de fundo, no infravermelho próximo, foi obtida com o Observatório Gemini.

Para detectar moléculas no espaço, os astrônomos usam radiotelescópios para procurar as suas assinaturas químicas, picos reveladores nos espectros de rádio e em comprimentos de onda milimétricos. Os átomos e as moléculas emitem estes sinais de várias manerias, dependendo da temperatura dos seus ambientes.

As novas observações do ALMA contêm uma série de assinaturas espectrais. Para criar "impressões digitais" tão fortes e variadas, as diferenças de temperatura onde as moléculas residem devem ser extremas, variando de mais ou menos -175º C para 3.700º C. Um estudo aprofundado destes picos espectrais pode fornecer informações detalhadas sobre o modo como a estrela está aquecendo o disco, o que também seria uma medida útil da luminosidade da estrela.

"Quando olhamos para as informações fornecidas pelo ALMA, vemos cerca de 60 transições diferentes de moléculas como o cloreto de sódio e cloreto de potássio vindas do disco. Isso é impressionante e empolgante," disse Brett McGuire, químico do National Radio Astronomy Observatory (NRAO).
Os cientistas especulam que estes sais vêm de grãos de poeira que colidiram e derramaram os seus conteúdos no disco circundante. As suas observações confirmam que as regiões salgadas traçam a localização do disco circunstelar.

A detecção de sinais em torno de uma estrela jovem é de interesse porque alguns dos átomos constituintes dos sais são metais, tais como sódio e potássio. Isto sugere que podem existir outras moléculas contendo metais neste ambiente. Se assim for, pode ser possível usar observações semelhantes para medir a quantidade de metais em regiões de formação estelar.

As assinaturas salgadas foram encontradas entre 30 e 60 UA das estrelas hospedeiras. Com base nas suas observações, os astrônomos inferem que podem haver até 1x1021 quilogramas de sal nesta região, o equivalente à massa total dos oceanos da Terra.

No futuro, o ngVLA (Next Generation Very Large Array) terá a combinação certa de sensibilidade e cobertura de comprimento de onda para estudar estas moléculas e talvez usá-las como rastreadores para discos de formação planetária.

Orion Source I está sendo formada na Nuvem Molecular I de Órion, uma região de nascimento estelar explosivo previamente observada com o ALMA. "Esta estrela foi expelida da sua nuvem natal a uma velocidade de mais ou menos 10 km/s há cerca de 550 anos," disse John Bally, astrónomo da Universidade do Colorado. "É possível que grãos sólidos de sal tenham sido vaporizados por ondas de choque à medida que a estrela e o seu disco foram abruptamente acelerados por um encontro próximo ou por uma colisão com outra estrela. Resta saber se o vapor de sal está presente em todos os discos que rodeiam as protoestrelas massivas, ou se este vapor assinala eventos violentos como o que observamos com o ALMA."

Um artigo foi aceito para publicação na revista The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

sábado, 9 de fevereiro de 2019

Detectadas moléculas orgânicas em torno de estrela jovem

Astrônomos usando o ALMA (Atacama Large Millimeter/submillimeter Array) detectaram várias moléculas orgânicas complexas em torno da jovem estrela V883 Ori.


© ESO/ALMA (V883 Ori)

Uma explosão repentina da estrela está liberando moléculas dos compostos gelados situados no disco de formação planetária. A composição química do disco é semelhante à dos cometas no Sistema Solar moderno. As observações sensíveis do ALMA permitiram com que os cientistas reconstruíssem a evolução de moléculas orgânicas desde o nascimento do Sistema Solar até aos objetos que vemos hoje.

A equipe de pesquisa, liderada por Jeong-Eun Lee (Universidade de Kyung Hee, Coreia), usou o ALMA para detectar moléculas orgânicas complexas, incluindo metanol (CH3OH), acetona (CH3COCH3), acetaldeído (CH3CHO), formiato de metila (CH3OCHO) e acetonitrilo (CH3CN). Esta é a primeira vez que a acetona foi detectada sem ambiguidade numa região de formação planetária ou disco protoplanetário.

Várias moléculas estão congeladas em torno de partículas de poeira de tamanho microscópico nos discos protoplanetários. O surto repentino da V883 Ori está aquecendo o disco e sublimando o gelo, que libera as moléculas sob a forma de gás. A região, num disco, onde a temperatura atinge o ponto de sublimação das moléculas, tem o nome "linha de neve". Os raios das linhas de neve têm algumas UAs (Unidades Astronômicas) em torno de estrelas jovens normais, mas são ampliadas quase 10 vezes em torno de estrelas explosivas.

"É difícil fotografar um disco à escala de algumas UAs com os telescópios atuais," comentou Lee. "No entanto, em torno de uma estrela com comportamentos explosivos, o gelo derrete numa área mais ampla do disco e é mais fácil ver a distribuição das moléculas. Estamos interessados na distribuição das moléculas orgânicas complexas como blocos de construção da vida."

O gelo, incluindo moléculas orgânicas congeladas, pode estar intimamente relacionado com a origem da vida nos planetas. No nosso Sistema Solar, os cometas são o foco da atenção por causa dos seus ricos elementos gelados. Por exemplo, a lendária exploradora cometária, a sonda Rosetta da ESA, descobriu uma valiosa química orgânica em torno do cometa Churyumov-Gerasimenko. Pensa-se que os cometas se tenham formado nas regiões mais frias e exteriores do Sistema Solar primordial, onde as moléculas estavam contidas no gelo. O estudo da composição química do gelo nos discos protoplanetários está diretamente relacionado com o estudo das moléculas orgânicas nos cometas e com a origem dos elementos básicos da vida.

Graças à visão detalhada do ALMA e à mais larga linha de neve provocada pelo surto estelar, os astrônomos obtiveram a distribuição espacial do metanol e do acetaldeído. A distribuição destas moléculas tem uma estrutura semelhante a um anel com um raio de 60 UA, o equivalente ao dobro do tamanho da órbita de Netuno. Os pesquisadores supõem que dentro deste anel as moléculas são invisíveis porque são obscurecidas por material espesso e empoeirado, e são invisíveis fora deste raio porque estão incorporadas no gelo.

"Dado que os planetas rochosos e gelados são feitos de material sólido, a composição química dos sólidos nos discos é de especial importância. Estes surtos explosivos são oportunidades únicas de analisar sublimados frescos e, portanto, a composição dos sólidos," explicou Yuri Aikawa da Universidade de Tóquio.

A V883 Ori é uma estrela jovem localizada a 1.300 anos-luz da Terra. Esta estrela está passando por uma fase explosiva do tipo FU Orionis, um aumento súbito de luminosidade devido a uma corrente de material que flui do disco para a estrela. Estes surtos duram apenas um século, de modo que as oportunidades para observação são bastante raras. No entanto, dado que estrelas jovens com uma ampla gama de idades sofrem surtos do tipo FU Orionis, os astrônomos esperam poder traçar a composição química do gelo ao longo da evolução de estrelas jovens.

Fonte: National Astronomical Observatory of Japan

quarta-feira, 6 de fevereiro de 2019

Bolhas de estrelas recém-nascidas

Esta região da Grande Nuvem de Magalhães brilha em cores fortes nesta imagem captada pelo instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no Very Large Telescope (VLT) do ESO.


© ESO (N180B)

A região, chamada LHA 120-N 180B (ou N180B) é um tipo de nebulosa conhecida por região HII, onde se formam novas estrelas.

A Grande Nuvem de Magalhães é uma galáxia satélite da Via Láctea, visível essencialmente no hemisfério sul. A apenas 160.000 anos-luz de distância da Terra, esta galáxia encontra-se praticamente à nossa porta. Além de estar próxima de nós, o único braço em espiral da Grande Nuvem de Magalhães aparece-nos praticamente de face, o que nos permite observar facilmente regiões tais como a N180B.

As regiões HII são nuvens interestelares de hidrogênio ionizado, os núcleos de átomos de hidrogênio. Estas regiões são maternidades estelares, onde estrelas massivas são responsáveis pela ionização do gás circundante, fazendo destas nuvens objetos celestes muito bonitos. A forma distinta da N180B é formada por uma enorme bolha de hidrogênio ionizado rodeada por quatro bolhas menores.

No interior desta nuvem resplandescente, o MUSE descobriu um jato a ser lançado por uma estrela jovem, um jovem objeto estelar massivo com uma massa 12 vezes maior que a do nosso Sol. Podemos ver este jato, chamado Herbig-Haro 1177 (ou HH 1177), com todo o detalhe na imagem abaixo.


© ESO (HH 1177)

Trata-se da primeira vez que um tal jato é observado no visível fora da Via Láctea, uma vez que normalmente estes objetos encontram-se obscurecidos pela poeira que os rodeia. No entanto, o meio relativamente livre de poeira da Grande Nuvem de Magalhães permite-nos observar o HH 1177 nos comprimentos de onda do visível. Com uma dimensão de quase 33 anos-luz, trata-se de um dos jatos deste tipo mais compridos alguma vez observados.

O HH 1177 dá-nos informação sobre a vida inicial das estrelas. O raio é altamente colimado, ou seja, quase que não se espalha à medida que viaja. Jatos deste tipo estão normalmente associados aos discos de acreção das suas estrelas, dando-nos informação sobre como é que estrelas muito jovens ganham matéria. Os astrônomos descobriram que tanto as estrelas de baixa massa como as de elevada massa lançam jatos colimados como o HH 1177 por meio de mecanismos semelhantes, o que nos leva a supor que as estrelas massivas se formam do mesmo modo que as suas companheiras de pequena massa.

O MUSE foi recentemente melhorado com a adição da Infraestrutura de Óptica Adaptativa no Modo de Campo Largo, a qual viu a sua primeira luz em 2017. A óptica adaptativa é o processo pelo qual os telescópios do ESO compensam os efeitos de distorção da atmosfera terrestre, transformando estrelas cintilantes em imagens nítidas de alta resolução. Desde a obtenção destes dados, a adição do Modo de Campo Estreito deu ao MUSE uma visão quase tão nítida como a que tem o telescópio espacial Hubble, permitindo-nos assim explorar o Universo com um detalhe sem precedentes.

Este trabalho foi descrito num artigo científico intitulado “An optical parsec-scale jet from a massive young star in the Large Magellanic Cloud” que foi publicado na revista Nature.

Fonte: ESO

Exoplanetas em colisão

Existem atualmente cerca de 2.000 exoplanetas confirmados com raios inferiores a cerca de três raios terrestres, e as medidas de suas densidades revelam uma diversidade surpreendente.


© Z. Leinhardt/T. Denman (exoplanetas em colisão)

Alguns têm densidades mais baixas que Netuno, que são feitos principalmente de materiais voláteis que são menos densos que metais e rochas, mas Netuno tem quase quatro vezes o raio da Terra, enquanto outros parecem ter densidades semelhantes a rochas, tão altas quanto as da Terra. Uma gama tão ampla de composições pode ser o produto das diferentes condições iniciais no processo de formação do planeta, ou pode ser porque algo dramático acontece ao planeta para alterar suas propriedades iniciais à medida que ele evolui.

Os astrônomos do Istituto Nazionale Di Astrofisica (INAF) Aldo S. Bonomo e Mario Damasso e o astrofísico Li Zeng do Harvard–Smithsonian Center for Astrophysics (CfA), juntamente com uma grande equipe de colegas, relatou que uma colisão gigante deve ter ocorrido no sistema exoplanetário Kepler-107. Embora haja alguma evidência observacional para o processo de colisão em nosso próprio Sistema Solar, até agora não houve nenhuma descoberta inequívoca em apoio ao cenário de impacto entre os exoplanetas.

Os astrônomos costumavam pensar que os planetas de baixa densidade, como os gigantes Júpiter, Saturno, Urano e Netuno, são formados por gelos frios e gás nas regiões mais externas do disco protoplanetário de uma jovem estrela; a zona interna constrói planetas a partir de elementos rochosos, como silicatos e ferro, cujas partículas podem sobreviver no ambiente mais quente. Hoje, a imagem se tornou mais complicada com centenas de exoplanetas gigantes de baixa densidade descobertos orbitando perto de suas estrelas. No caso dos efeitos evolutivos, acredita-se que dois processos afetam a densidade de um planeta: perda de massa da atmosfera e/ou superfície do planeta devido à evaporação pela radiação da estrela hospedeira, ou uma colisão gigante entre planetas.

Dos quatro planetas conhecidos em Kepler-107, os dois mais internos têm raios quase idênticos de 1,536 e 1,597 raios terrestres, respectivamente (a incerteza de cada um é apenas cerca de 0,2%). Seus períodos também são semelhantes em 3,18 e 4,90 dias, o que significa que eles orbitam relativamente próximos uns dos outros. Usando o espectrógrafo HARPS-N no Telescopio Nazionale Galileo em La Palma, a equipe determinou as massas do planeta e, portanto, suas densidades.

As observações são surpreendentes, suas densidades são muito diferentes: 5,3 e 12,65 gramas por centímetro cúbico, respectivamente. Para comparação, a densidade da água é de 1 grama por centímetro cúbico e a da Terra é de 5,5 gramas por centímetro cúbico. O fato de um dos planetas ter uma densidade duas vezes maior do que o outro não pode ser facilmente explicado pelos efeitos da radiação estelar, que deveriam ter afetado os dois da mesma maneira. Além disso, é o exterior que é mais denso que o interior. Os astrônomos argumentam que um impacto gigantesco em um planeta, o Kepler-107c (o planeta mais denso), arrancou parte do seu manto inicial de silicato, deixando-o dominado por seu denso núcleo de ferro. Os astrônomos suportam esta hipótese com cálculos teóricos.

"Este é um dos muitos sistemas de exoplanetas interessantes que o telescópio espacial Kepler descobriu e caracterizou. Esta descoberta confirmou trabalhos teóricos anteriores sugerindo que o impacto gigante entre os planetas desempenhou um papel durante a formação do planeta. Espera-se encontrar mais destes exemplos com a missão TESS," observa Li Zeng.

Se rupturas catastróficas ocorrem frequentemente em sistemas planetários, então os astrônomos preveem encontrar muitos outros exemplos como o Kepler-107, já que um número crescente de densidades de exoplanetas é determinado com precisão.

O novo artigo foi publicado na Nature Astronomy.

Fonte: Harvard–Smithsonian Center for Astrophysics

terça-feira, 5 de fevereiro de 2019

Bombardeio de cometas em estrela

Uma chuva de cometas está caindo sobre uma jovem estrela distante, dando aos astrônomos uma nova visão de um processo que moldou nosso Sistema Solar bilhões de anos atrás.


© NASA/JPL-Caltech (ilustração de uma tempestade de cometas em torno de Eta Corvi)

Quando a Terra era um planeta jovem, detritos de cometas atingiam sua superfície, transportando material orgânico que pode ter ajudado o surgimento da vida em nosso mundo rochoso. Nos últimos anos, cientistas identificaram evidências indiretas de um processo semelhante em torno de Eta Corvi, uma estrela do tipo solar a cerca de 59 anos-luz de distância, que é um pouco maior e três vezes mais jovem do que o nosso próprio Sol. Agora, os lampejos de gás recentemente observados, os quais cientistas acreditam que emanam de cometas evaporando no calor da estrela, estão fornecendo evidências mais fortes tanto da existência de planetas ocultos quanto da ocorrência de impactos cataclísmicos.

Detectadas pelo astrônomo Barry Welsh, da Universidade da Califórnia em Berkeley, e por sua colega Sharon Montgomery, da Clarion University, na Pensilvânia, estas lufadas de gás podem ter uma conexão profunda, embora indireta, com nosso próprio lar cósmico. Quando nosso Sol tinha a mesma idade de Eta Corvi, as interações gravitacionais entre os planetas externos do nosso Sistema Solar varreram para a parte interna os remanescentes gelados de sua formação, ocasionando um bombardeio que devassou a Terra e outros planetas rochosos. Este "bombardeio cósmico tardio" (LHB, na sigla em inglês) pode ter sido crucial para a habitabilidade da Terra e para nossa própria existência, ao trazer, do armazenamento profundo nas regiões frias do Sistema Solar externo, os compostos orgânicos e água, elementos essenciais para a vida. E algo parecido com isso parece estar ocorrendo agora em torno de Eta Corvi.

Quando visto em conjunto com observações anteriores que também sugerem influxos de fragmentos de gelo e colisões que abalam o planeta em torno de Eta Corvi, o trabalho de Welsh e de Montgomery constitui o melhor caso para um bombardeio de cometas em curso em torno de outra estrela. O influxo em si fornece dicas sobre planetas envoltos em dois anéis massivos. Acredita-se que uma cadeia de planetas gigantes esteja jogando os cometas para dentro, enquanto pelo menos um corpo rochoso parece ter sido atingido pelos destroços gelados. "Temos uma boa imagem dos diferentes fenômenos que estão ocorrendo no sistema e agora temos uma maneira de conectá-los", diz Sebastian Marino, astrônomo da Universidade de Cambridge que utilizou o Atacama Large Millimeter/submillimeter Array (ALMA) no Chile para estudar Eta Corvi.

Com 1,5 bilhão de anos de idade, Eta Corvi e seu disco já passaram bastante da infância do planeta. Como o nosso próprio Sistema Solar, a estrela possui um par de discos de detritos, embora Eta Corvi esteja um pouco mais distante. Os discos interno e externo estão a 6 e 165 UA (unidades astronômicas, igual à distância entre a Terra e o Sol) da estrela, respectivamente. Em comparação, nosso Cinturão de Asteroides fica a 5 UA do Sol, enquanto o Cinturão de Kuiper, os restos de gelo que sobraram da formação do Sistema Solar, começa apenas com 40 UA. O fato de Eta Corvi brilhar mais e ser mais quente do que o nosso próprio Sol faz com que os cinturões sejam parecidos com os nossos.

A existência de cometas em torno de Eta Corvi não é inesperada. Em 2012, uma equipe de astrônomos liderada por Carey Lisse, no Laboratório de Física Aplicada da Universidade Johns Hopkins, descobriu material incomum no cinturão interno. Usando o telescópio espacial Spitzer da NASA, eles descobriram que nanolosangos microscópicos, juntamente com poeira rica em água e carbono, foram misturados ao cinturão interno. Os pesquisadores concluíram que algum material vindo de fora do cinturão mais externo havia entrado no sistema, provavelmente através de pelo menos um grande cometa, e que a pura força de sua colisão com um planeta rochoso invisível esmagou a rocha rica em carbono e transformou-a em pó de diamante, que então salpicava o cinturão interno.

Trabalhos posteriores de Marino sugeriram que uma cadeia de planetas de tamanho médio, maiores do que a Terra, mas menores do que Júpiter, poderiam arremessar material cometário para dentro da região do cinturão externo, numa espécie de  jogo celestial de batata quente. Neste cenário, a atração gravitacional do planeta mais externo retira o material do cinturão externo e o transporta até que a gravidade do próximo planeta o afaste. Os cometas congelados continuam se movendo, de um planeta para outro, até chegarem ao cinturão interno, onde a luz da estrela derrete suas camadas externas e cria suas “caudas” distintivas de poeira e gás.

Welsh e Montgomery usaram um telescópio de 2,1 metros na Universidade do Texas, no Observatório McDonald de Austin, para estudar Eta Corvi em quatro noites. Durante uma das sessões de uma hora da equipe, eles viram gás quente, que saía de um objeto grande, ou de um aglomerado de objetos menores, bloqueando a luz da estrela. Métodos semelhantes foram usados para identificar cometas em torno de outras estrelas.

As novas observações poderiam ajudar a melhorar nossa compreensão do que aconteceu em nosso próprio Sistema Solar quando o Sol tinha a mesma idade que Eta Corvi tem hoje. Há um grande debate sobre se este evento memorável na história do Sistema Solar ocorreu como um único grande pico ou, em vez disso, a Terra e os outros planetas terrestres experimentaram um ataque mais lento e gradual. Se Eta Corvi é verdadeiramente um análogo confiável para o Sistema Solar pode dirimir as incertezas sobre o tempo e a magnitude da LHB; o que, por sua vez, poderia melhorar a compreensão deste processo à medida que ele se desdobra em outras estrelas.

Até agora, nenhum planeta foi confirmado orbitando Eta Corvi, mas a evidência indireta de sua existência é forte. Enquanto os limites exatos do Cinturão de Kuiper do nosso Sistema Solar são um tanto nebulosos e difusos, o cinturão externo de Eta Corvi é estreito e melhor definido. De acordo com David Nesvorny, um teórico do Southwest Research Institute que modela o desenvolvimento inicial do nosso Sistema Solar, um estreito cinturão sugere fortemente a presença de pelo menos um gigante gasoso nos arredores da faixa.

Tampouco as cadeias de planetas são incomuns. A multiplicidade é a norma para os sistemas exoplanetários, e quase todo tipo de sistema multiplanetário deve prontamente lançar material para a região interna. Atualmente, a maioria das técnicas de detecção de exoplanetas funciona melhor para encontrar mundos próximos de suas estrelas, mas há possibilidade de cadeias de planetas se estenderem para os limites externos de sistemas planetários alienígenas. Os planetas exteriores do Sistema Solar criam esta corrente, embora a gravidade de Júpiter, na maioria das vezes, ejete material para o espaço interestelar, em vez de transportá-lo para mais perto do Sol.

Welsh e Montgomery planejam continuar observando Eta Corvi para fornecer mais uma confirmação do tentador sinal do cometa. Uma nova geração de grandes telescópios terrestres e espaciais programados para começar as operações na próxima década podem ser capazes de fazer imagens do anel interno para ver mais claramente o que está acontecendo lá, talvez até revelando os planetas ocultos da estrela. Enquanto isso, os pesquisadores usaram os telescópios espaciais da NASA Chandra e Spitzer para monitorar a estrela, descartando mundos supermassivos cinco a dez vezes maiores que Júpiter; outras observações estabeleceram um limite superior de seis massas de Júpiter em quaisquer planetas ao redor de Eta Corvi. Pode ser apenas uma questão de tempo até que os astrônomos realmente enxerguem a multiplicidade de mundos de tamanho médio que deve se esconder por ali, e obtenham deles um vislumbre mais profundo de um dos capítulos mais violentos da história do nosso Sistema Solar.

Fonte: Scientific American

sábado, 2 de fevereiro de 2019

Diga adeus a uma das jóias do céu noturno

Durante mais de século e meio, Eta Carinae tem sido uma das estrelas mais luminosas e mais enigmáticas do sul da Via Láctea.


© NASA/N. Smith/J. A. Morse (Eta Carinae)

A imagem acima mostra à esquerda Eta Carinae vista em 2000 pelo telescópio espacial Hubble e à direita o aspecto da estrela em 2032, quando ficar mais brilhante do que a nebulosa.

Parte da sua natureza foi revelada em 1847, quando numa erupção gigante expeliu uma nebulosa chamada Homúnculo. O evento tornou Eta Carinae a segunda estrela mais brilhante do céu depois de Sirius, visível até durante o dia e (mais tarde) facilmente distinguível de outras estrelas similarmente instáveis chamadas Variáveis Azuis Luminosas, cujas nebulosas não são tão claramente visíveis.

Além de tornar Eta Carinae um dos mais belos e frequentemente fotografados objetos do céu noturno, a gigante Nebulosa de Homúnculo contém informações sobre a sua estrela progenitora, que vão desde a energia da sua expansão até ao fluxo bipolar e composição química.

No entanto, daqui a provavelmente uma década, podemos já não ver a nebulosa claramente.

Um estudo recente indica que Homúnculo será ofuscada pelo brilho crescente da própria Eta Carinae. Está crescendo tão depressa que em 2036 a estrela será 10 vezes mais brilhante do que a nebulosa, o que no final a tornará indistinguível de outras Variáveis Azuis Luminosas.

Mas há um lado positivo.

Uma equipe de 17 pesquisadores liderada pelo astrônomo brasileiro Augusto Damineli, com contribuições de Anthony Moffatt da Universidade de Montreal, pensa que o brilho crescente de Eta Carinae não é intrínseco à própria estrela, como é frequentemente aceito. De fato, é provavelmente provocado pela dissipação de uma nuvem de poeira posicionada exatamente à sua frente, a partir da perspetiva da Terra.

Os cientistas postulam em um novo estudo que esta nuvem encobre completamente a estrela e os seus ventos, apagando parte da sua luz que emana para a Terra. A Nebulosa de Homúnculo circundante, em contraste, pode ser vista diretamente porque é 200 vezes maior do que a nuvem obscurecida e o seu brilho fica, portanto, quase inalterado.

Em 2032 (com uma incerteza de mais ou menos quatro anos), a nuvem empoeirada terá se dissipado, de modo que o brilho da estrela central não aumentará mais e Homúnculo se perderá no seu brilho.
E isso vai proporcionar uma oportunidade para um estudo mais aprofundado de Eta Carinae, mostrando até que na realidade não é uma, mas duas estrelas.

"Tem havido uma série de recentes revelações sobre este objeto único no céu, mas esta é uma das mais importantes," realça Moffat. "Pode finalmente permitir-nos sondar a verdadeira natureza do motor central e mostrar que é um sistema binário íntimo constituído por duas estrelas massivas em interação."

O novo estudo foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Université de Montréal

sexta-feira, 1 de fevereiro de 2019

Telescópio Hubble descobre galáxia inesperadamente

Astrônomos usando o telescópio espacial Hubble para estudar algumas das mais antigas e mais fracas estrelas no aglomerado globular NGC 6752 fizeram uma descoberta inesperada.


© Hubble (Bedin 1)

Eles descobriram uma galáxia anã em nossa vizinhança cósmica, a apenas 30 milhões de anos-luz de distância.

O objetivo das observações foi usar as estrelas anãs brancas para medir a idade do aglomerado globular NGC 6752, mas no processo foi descoberta a galáxia Bedin 1.

Nas franjas externas da área observada com a Advanced Camera for Surveys do Hubble, uma coleção compacta de estrelas era visível. Após uma análise cuidadosa de seus brilhos e temperaturas, os astrônomos concluíram que estas estrelas não pertenciam ao aglomerado, que é parte da Via Láctea, mas estão a milhões de anos-luz mais distantes.

O vizinho cósmico Bedin 1 é uma galáxia alongada de tamanho modesto. Ela mede apenas cerca de 3.000 anos-luz em sua maior extensão, uma fração do tamanho da Via Láctea. Não só é pequena, mas também é incrivelmente fraca. Estas propriedades levaram os astrônomos a classificá-la como uma galáxia anã esferoidal.

As galáxias anãs esferoidais são definidas pelo seu pequeno tamanho, baixa luminosidade, falta de poeira e antigas populações estelares. As galáxias elípticas anãs são semelhantes na aparência e nas propriedades às galáxias anãs esferoidais, porém estas têm em geral uma forma aproximadamente esférica e uma luminosidade mais baixa. Sabe-se que existem 36 galáxias deste tipo no Grupo Local de Galáxias, 22 das quais são galáxias satélites da Via Láctea.

Embora as galáxias anãs esferoidais não sejam incomuns, Bedin 1 tem algumas características notáveis. Não só é uma das poucas anãs esferoidais que têm uma distância bem estabelecida, mas também é extremamente isolada. Fica a cerca de 30 milhões de anos-luz da Via Láctea e a 2 milhões de anos-luz da mais próxima grande hospedeira de galáxias plausíveis, a NGC 6744. Isto torna-a possivelmente a menor galáxia anã descoberta até à data.

Das propriedades de suas estrelas, os astrônomos foram capazes de inferir que a galáxia tem 13 bilhões de anos, quase tão antiga quanto o próprio Universo. Por causa de seu isolamento, que resultou em quase nenhuma interação com outras galáxias, e sua idade, Bedin 1 é o equivalente astronômico de um fóssil vivo do Universo primordial.

A descoberta de Bedin 1 foi um achado verdadeiramente casual. Poucas imagens do Hubble permitem que estes objetos sejam vistos e cobrem apenas uma pequena área do céu. Os telescópios futuros com um grande campo de visão, como o telescópio WFIRST, terão câmeras cobrindo uma área muito maior do céu e poderão encontrar muitos destes vizinhos galácticos.

A descoberta é relatada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Osservatorio Astronomico di Padova

Mapeamento de "ecos de luz" de buraco negro recém-descoberto

Cientistas mapearam o ambiente em torno de um buraco negro de massa estelar com 10 vezes a massa do Sol usando o NICER (Neutron star Interior Composition Explorer) da NASA a bordo da Estação Espacial Internacional (ISS).


© Goddard Space Flight Center (buraco negro atraindo matéria de uma estrela companheira)

O NICER detectou raios X do recém-descoberto buraco negro MAXI J1820+070 (ou J1820), à medida que consumia material de uma estrela companheira. Ondas de raios X formaram "ecos de luz" refletidos do turbilhão de gás perto do buraco negro e revelaram mudanças no tamanho e na forma do ambiente.

Anteriormente, estes ecos de luz do disco interior de acreção tinham sido vistos apenas em buracos negros supermassivos, que têm milhões a bilhões de vezes a massa do Sol e que mudam muito lentamente. Os buracos negros de massa estelar como J1820 têm massas muito menores e evoluem muito mais depressa, de modo que possibilita observar mudanças ocorrendo em escalas de tempo humanas.

O J1820 está localizado a aproximadamente 10.000 anos-luz na direção da constelação de Leão. A estrela companheira no sistema foi identificada num levantamento realizado pela missão Gaia da ESA, que permitiu a estimativa de sua distância. Os astrônomos só souberam da presença do buraco negro no dia 11 de março de 2018, quando foi detectada uma explosão pelo MAXI (Monitor of All-sky X-ray Image) da JAXA, também a bordo da ISS. O J1820 passou de um buraco negro totalmente desconhecido para uma das fontes mais brilhantes do céu de raios X ao longo de alguns dias. O NICER foi rapidamente apontado para esta transição dramática e continua seguindo o rescaldo da erupção.

Um buraco negro pode sugar gás de uma estrela companheira próxima para um anel de material chamado disco de acreção. As forças gravitacionais e magnéticas aquecem o disco a milhões de graus, tornando-o quente o suficiente para produzir raios X nas regiões mais internas do disco, perto do buraco negro. As explosões ocorrem quando uma instabilidade no disco provoca uma inundação de gás para o interior, na direção do buraco negro, como uma avalanche. Os motivos das instabilidades de disco não são bem compreendidos.

Acima do disco está a coroa, uma região de partículas subatômicas com mais ou menos um bilhão de graus Celsius que brilha em raios X altamente energéticos. Ainda permanecem muitos mistérios sobre a origem e evolução da coroa. Algumas teorias sugerem que a estrutura poderá representar uma forma inicial dos jatos de partículas velozes que estes tipos de sistemas geralmente emitem.

Os astrofísicos querem entender melhor como a orla interna do disco de acreção e a coroa, por cima, mudam de tamanho e forma à medida que um buraco negro acreta material da sua estrela companheira. Se se conseguir entender como e porque é que estas mudanças ocorrem nos buracos negros de massa estelar ao longo de um período de semanas, os cientistas podem elucidar detalhes sobre a evolução dos buracos negros supermassivos ao longo de milhões de anos e como afetam as galáxias em que residem.

Um dos métodos usados para estudar estas mudanças tem o nome mapeamento de reverberação de raios X, que usa reflexos de raios X da mesma maneira que um sonar usa ondas sonoras para mapear terreno submarino. Alguns raios X da coroa viajam diretamente até nós, enquanto outros iluminam o disco e são refletidos de volta em energias e ângulos diferentes.

O mapeamento de reverberação de raios X dos buracos negros supermassivos mostrou que a orla interna do disco de acreção está muito próxima do horizonte de eventos, o ponto de não retorno. A coroa também é compacta, ficando mais próxima do buraco negro do que grande parte do disco de acreção. Observações anteriores de ecos de raios X de buracos negros estelares, no entanto, sugeriram que a seção interior do disco de acreção podia estar bem distante, até centenas de vezes o tamanho do horizonte de eventos. No entanto, o buraco negro de massa estelar J1820 tem um comportamento mais parecido com o dos seus primos supermassivos.

Durante as observações do J1820 pelo NICER, foi vista uma diminuição no atraso de tempo entre o clarão inicial de raios X oriundos diretamente da coroa e o seu eco do disco, indicando que os raios X viajaram cada vez menos antes de serem refletidos. A 10.000 anos-luz de distância, foi estimado que a coroa se contraiu verticalmente de aproximadamente 161 km para 16,1 km.

Para confirmar que a diminuição no tempo de atraso era provocada por uma mudança na coroa e não no disco, os cientistas usaram um sinal chamado linha K de ferro, produzido quando os raios X da coroa colidem com átomos de ferro no disco, dotando-os de fluorescência. O tempo corre mais devagar em campos gravitacionais mais fortes e a velocidades mais altas, como indicado pela teoria da relatividade de Einstein. Quando os átomos de ferro mais próximos do buraco negro são bombardeados pela luz do núcleo da coroa, os comprimentos de onda de raios X que emitem são esticados porque o tempo move-se mais lentamente para eles do que para o observador (neste caso, o NICER).

A equipe descobriu que a linha K de ferro esticada do J1820 permaneceu constante, o que significa que a orla interna do disco permaneceu perto do buraco negro, semelhante a um buraco negro supermassivo. Se o menor tempo de atraso fosse provocado por uma região interna do disco movendo-se ainda mais para dentro, então a linha K de ferro teria sido esticada ainda mais.

Estas observações fornecem aos cientistas novas informações sobre como o material é afunilado para o buraco negro e como a energia é liberada neste processo.

O artigo que descreve as descobertas foi publicado na revista Nature.

Fonte: Massachusetts Institute of Technology

quarta-feira, 30 de janeiro de 2019

Galáxias ativas apontam para nova física na expansão do cosmos

Ao explorar a história do nosso cosmos com uma grande amostra de galáxias "ativas" distantes observadas pelo XMM-Newton da ESA, uma equipe de astrônomos descobriu que pode haver algo mais na expansão inicial do Universo do que o previsto pelo modelo cosmológico padrão.


© ESA/C. Carreau (ilustração de um quasar)

De acordo com o cenário mais aceito, o nosso Universo contém apenas uma pequena porcentagem de matéria comum. Um-quarto do cosmos é composto por matéria escura, que podemos sentir gravitacionalmente, mas não observar, e o resto consiste na ainda mais misteriosa energia escura que está impulsionando a atual aceleração da expansão do Universo.

Este modelo é baseado numa infinidade de dados recolhidos ao longo das últimas décadas, desde o fundo cósmico de micro-ondas, a primeira luz na história do cosmos, liberada apenas 380.000 anos após o Big Bang e observada em detalhes sem precedentes pela missão Planck da ESA. Estas últimas incluem explosões de supernova, aglomerados galácticos e distorções gravitacionais impressas pela matéria escura em galáxias distantes, e podem ser usadas para traçar a expansão cósmica em épocas recentes da história cósmica, ao longo dos últimos nove bilhões de anos.

Um novo estudo, por Guido Risaliti da Universidade de Florença, Itália, e Elisabeta Lusso da Universidade de Durham, Reino Unido, aponta para outro tipo de rastreador cósmico, os quasares, que preencheriam parte da lacuna entre estas observações, medindo a expansão do Universo até há 12 bilhões de anos.

Os quasares são os núcleos de galáxias onde um buraco negro supermassivo está puxando matéria dos seus arredores a velocidades muito elevadas, brilhando através do espectro eletromagnético. À medida que o material cai para o buraco negro, forma um disco giratório que irradia no visível e no ultravioleta; esta radiação, por sua vez, aquece os elétrons próximos, produzindo raios X.

Há três anos, Guido e Elisabeta perceberam que uma relação bem conhecida entre o brilho ultravioleta e raios X dos quasares podia ser usada para estimar a distância até estas fontes, algo que é notoriamente complicado em astronomia, e, em última análise, estudar a história da expansão do Universo.

As fontes astronômicas cujas propriedades permitem-nos avaliar as suas distâncias são chamadas "velas padrão".

A classe mais notável, as supernovas do tipo Ia, consiste no espetacular desaparecimento das anãs brancas depois de terem engolido demasiado material de uma estrela companheira, gerando explosões de brilho previsível que permitem com que os astrônomos determinem a distância. As observações destas supernovas, no final da década de 1990, revelou a expansão acelerada do Universo nos últimos bilhões de anos.

"A utilização de quasares como velas padrão tem grande potencial, já que podemos observá-los a distâncias muito maiores do que as supernovas do tipo Ia, e assim usá-los para investigar épocas muito mais para trás no Universo," explica Elisabeta.

Com uma amostra considerável de quasares em mão, os astrônomos colocaram agora o seu método em prática, e os resultados são interessantes.

Vasculhando o arquivo do XMM-Newton, recolheram dados de raios X para mais de 7.000 quasares, combinando-os com observações ultravioletas do SDSS (Sloan Digital Sky Survey). Também usaram um novo conjunto de dados, obtidos especialmente com o XMM-Newton em 2017 para observar quasares muito distantes, observando-os como eram quando o Universo tinha apenas dois bilhões de anos. Finalmente, complementaram os dados com um pequeno número de quasares ainda mais longínquos e com alguns relativamente próximos, estudados com os observatórios de raios X Chandra e Swift da NASA, respectivamente.

"Uma amostra tão grande permitiu-nos escrutinar a relação entre a emissão de raios X e ultravioleta por parte dos quasares em grande detalhe, o que refinou em muito a nossa técnica para estimar a distância," explica Guido.

As novas observações do XMM-Newton de quasares distantes são tão boas que a equipe até identificou dois grupos diferentes: 70% das fontes brilham intensamente com raios X de baixa energia, enquanto os restantes 30% emitem quantidades mais baixas de raios X caracterizados por energias mais altas. Para a análise, apenas mantiveram o primeiro grupo de fontes, no qual a relação entre as emissões de raios X e ultravioleta parece mais clara.

Depois de examinarem os dados e de restringir a amostra até mais ou menos 1.600 quasares, os astrônomos ficaram com as melhores observações, levando a estimativas robustas da distância até estas fontes que podiam usar para pesquisar a expansão do Universo.

"Quando combinamos a amostra, que abrange quase 12 bilhões de anos de história cósmica, com a amostra mais local de supernovas do tipo Ia, que cobre apenas aproximadamente os últimos 8 bilhões de anos, encontramos resultados semelhantes nas épocas que se sobrepõem. No entanto, nas fases anteriores que só podemos estudar com os quasares, encontramos uma discrepância entre a evolução observada do Universo e o que poderíamos prever com base no modelo cosmológico padrão," explica Elisabeta.

Ao examinarem este período anteriormente pouco explorado da história cósmica com a ajuda dos quasares, os astrônomos revelaram uma possível tensão no modelo cosmológico padrão, o que poderá exigir a adição de novos parâmetros para reconciliar os dados com a teoria.

"Uma das possíveis soluções seria invocar uma energia escura em evolução, com uma densidade que aumenta com o passar do tempo," diz Guido.

Incidentalmente, este modelo em particular também aliviaria outra tensão que tem mantido os cosmólogos ocupados ultimamente, no que concerne à constante de Hubble, a atual velocidade de expansão do Universo. Esta discrepância foi encontrada em estimativas da constante de Hubble no Universo local, com base em dados de supernovas, independentemente em aglomerados de galáxias e em observações pelo Planck do fundo cósmico de micro-ondas no Universo primordial.

A equipe está ansiosa por observar ainda mais quasares no futuro a fim de refinar os seus resultados. Pistas adicionais poderão vir da missão Euclides da ESA, com lançamento previsto para 2022 e que vai explorar os últimos dez bilhões de anos da expansão cósmica e explorar a natureza da energia escura.

Fonte: ESA

segunda-feira, 28 de janeiro de 2019

Vagando através da água

Esta imagem impressionante combina dados recolhidos com a Advanced Camera for Surveys, instalada no telescópio espacial Hubble e dados do telescópio Subaru no Havaí.


© Hubble/Subaru (galáxia D100)

Ela mostra apenas uma parte da cauda espetacular emergindo de uma galáxia espiral apelidada de D100.

Caudas como essas são criadas por um processo conhecido como decapagem por pressão. Apesar das aparências, o espaço entre as galáxias em um aglomerado está longe de ser vazio; na verdade, ela é preenchida com gás e plasma superaquecidos, que arrasta e puxa as galáxias enquanto elas se movem através dela, um pouco como a resistência que se experimenta quando se atravessa águas profundas.

Isso pode ser forte o suficiente para separar as galáxias, e muitas vezes resulta em objetos com formas e feições peculiares e bizarras, como visto aqui.

A cauda de gás da galáxia D100, que se estende muito além desta imagem para a esquerda, é um exemplo particularmente notável desse fenômeno. A galáxia é um membro do enorme aglomerado Coma. A pressão do plasma quente constituinte do aglomerado removeu o gás da D100 e o arrancou do corpo principal da galáxia e o arrastou para a pluma retratada aqui.

Aglomerados densamente povoados, como o Coma, abrigam milhares de galáxias. Eles são, portanto, os laboratórios perfeitos para estudar o intrigante fenômeno da decapagem por pressão, que, além de produzir belas imagens como essa, pode ter um profundo efeito sobre como as galáxias evoluem e formam novas gerações de estrelas.

Fonte: ESA

A perfeição de DSHARP no ALMA

A imagem abaixo mostra 20 discos protoplanetários captados pelo primeiro Grande Programa do ALMA (Atacama Large Millimeter Array), chamado DSHARP (Disk Substructures at High Angular Resolution Project).


© ESO/ALMA/DSHARP (20 discos protoplanetários)

Nestas observações, que incluiram horas de dados coletados durante vários meses, os pesquisadores obtiveram imagens de quase 20 discos protoplanetários próximos do Sol, no intuito de aprenderem mais sobre as fases iniciais da formação planetária. A enorme quantidade de dados do projeto acaba de ser divulgada.

Pensa-se desde há muito tempo que os sistemas planetários têm a sua origem nos chamados discos protoplanetários; círculos, espirais ou elipses de gás e poeira, que se formam em torno de protoestrelas nas fases iniciais do seu desenvolvimento. No entanto, o processo pelo qual os planetas emergem destes discos difusos não é bem compreendido, tornando-se particularmente desafiante perceber as fases mais iniciais da sua evolução, quando a poeira no seio de um disco coalesce em planetesimais, dando origem a "sementes" de planetas.

Sabe-se que o primeiro estágio de crescimento de um planeta, de grãos individuais a um corpo com a dimensão de alguns quilômetros, deve acontecer rapidamente em termos astronômicos, no entanto a falta de dados observacionais não tem permitido compreender a física por detrás deste crescimento. Felizmente, este aspecto está mudando com a existência de novos telescópios, tais como o ALMA.

Eventualmente, os astrônomos esperam poder prever com precisão que tipo de sistema planetário evoluirá a partir de qualquer disco protoplanetário particular. O programa DSHARP faz-nos avançar em direção a este objetivo ao fornecer-nos uma vista detalhada das subestruturas (os vários padrões de círculos e espirais escuras e claras que podemos ver em cada disco) e ajudando-nos assim a compreender o seu significado.

Fonte: ESO

sábado, 26 de janeiro de 2019

Debate sobre rapidez da expansão do Universo

A questão de quão rapidamente o Universo está se expandindo tem intrigado os astrônomos há quase um século.


© UCLA/Hubble (quasar com imagem dupla)

Estudos diferentes continuam obtendo novas respostas, o que faz com que alguns pesquisadores se perguntem se estão negligenciando um mecanismo fundamental na "maquinaria" que impulsiona o cosmos. Agora, ao descobrirem uma nova maneira de medir quão rapidamente o cosmos está se expandindo, uma equipe liderada por astrônomos da UCLA (University of California, Los Angeles) deu um passo em direção à resolução do debate.

No coração da disputa está a constante de Hubble, um número que relaciona as distâncias com os desvios para o vermelho das galáxias, quanto a luz é esticada enquanto viaja até à Terra através do Universo em expansão. As estimativas da constante de Hubble variam de 67 a 73 quilômetros por segundo por megaparsec, o que significa que dois pontos no espaço separados por 1 megaparsec (o equivalente a 3,26 milhões de anos-luz) estão se afastando um do outro a uma velocidade entre 67 e 73 quilômetros por segundo.

"A constante de Hubble ancora a escala física do Universo," disse Simon Birrer, acadêmico pós-doutorado da UCLA e autor principal do estudo. Sem um valor preciso para a constante de Hubble, os astrônomos não podem determinar com precisão os tamanhos de galáxias remotas, a idade do Universo ou a história de expansão do cosmos.

A maioria dos métodos para derivar a constante de Hubble tem dois ingredientes: uma distância até uma determinada fonte de luz e o desvio para o vermelho desta fonte de luz. Procurando uma fonte de luz que não tinha sido usada nos cálculos de outros cientistas, Birrer e colegas voltaram-se para os quasares, fontes de radiação alimentadas por enormes buracos negros. Os cientistas escolheram um subconjunto específico de quasares, aqueles cuja luz foi curvada pela gravidade de uma galáxia interveniente e pelo seu efeito de lente gravitacional, que produz duas imagens do quasar lado a lado no céu.

A luz das duas imagens toma percursos diferentes até à Terra. Quando o brilho do quasar flutua, as duas imagens piscam uma após a outra, e não ao mesmo tempo. O atraso no tempo entre estas duas cintilações, juntamente com informações sobre o campo gravitacional da galáxia "intrometida", pode ser usado para traçar a viagem da luz e deduzir as distâncias à Terra, tanto do quasar como da galáxia no plano da frente. O conhecimento dos desvios para o vermelho do quasar e da galáxia permitiu que os cientistas estimassem a rapidez com que o Universo está se expandindo.

A equipe da UCLA, como parte da colaboração internacional H0liCOW, tinha aplicado anteriormente a técnica no estudo de quasares com imagem quadruplicada, imagens de um quasar que aparece quatro vezes ao redor de uma galáxia no plano da frente. Mas as imagens quádruplas não são tão comuns; pensa-se que os quasares com imagem dupla sejam aproximadamente cinco vezes mais abundantes do que os de imagem quádrupla.

Para demonstrar a técnica, a equipe estudou um quasar conhecido como SDSS J1206+4332; contaram com dados do telescópio espacial Hubble, dos observatórios Gemini e W. M. Keck e da rede COSMOGRAIL (Cosmological Monitoring of Gravitational Lenses), um programa gerido pela Escola Politécnica Federal de Lausanne, Suíça, cujo objetivo é determinar a constante de Hubble.

Os pesquisadores obtiveram fotos do quasar, todos os dias, durante vários anos, para medir com precisão o desfasamento de tempo entre as imagens duplas. Então, para obter a melhor estimativa possível da constante de Hubble, combinaram os dados reunidos deste quasar com dados previamente recolhidos pela sua colaboração H0liCOW de três quasares de imagem quadruplicada.

A equipe apresentou uma estimativa da constante de Hubble de aproximadamente 72,5 quilômetros por segundo por megaparsec, um número em linha com o que outros cientistas haviam determinado em pesquisas anteriores que usaram distâncias de supernovas, ou seja, explosões estelares em galáxias remotas, como medições fundamentais. No entanto, ambas as estimativas são cerca de 8% mais altas do que uma que se baseia num brilho fraco de todo o céu chamado fundo cósmico de micro-ondas, uma relíquia que remonta a 380.000 anos após o Big Bang, quando a luz viajou pela primeira vez livremente pelo espaço.

Por outro lado, também pode ser que uma medição, ou todas as três, estejam erradas.

Os pesquisadores estão agora à procura de mais quasares a fim de melhorar a precisão da sua medição da constante de Hubble. Os quasares com imagens duplas dão aos cientistas muitas mais fontes de luz úteis para os seus cálculos da constante de Hubble. No entanto, por agora, a equipe focaliza a sua pesquisa em 40 quasares de imagens quadruplicadas, devido ao seu potencial para fornecer informações ainda mais úteis do que os quasares com imagens duplas.

A pesquisa foi publicada na revista científica Monthly Notices of the Royal Astronomical Society.

Fonte: University of California