Quando o telescópio espacial James Webb da NASA for lançado em 2021, uma das contribuições mais esperadas para a astronomia será o estudo dos exoplanetas. Uma das questões mais prementes da ciência exoplanetária é: será que um pequeno planeta rochoso, em órbita íntima de uma estrela anã vermelha, consegue reter uma atmosfera?
© STScI (exoplaneta rochoso em órbita de uma anã vermelha)
Uma equipe de astrônomos propõe um novo método de usar o telescópio espacial James Webb para determinar se um exoplaneta rochoso tem uma atmosfera. A técnica, que envolve a medição da temperatura do planeta enquanto passa por trás da sua estrela e volta depois a ser visível, é significativamente mais rápida do que os métodos tradicionais de detecção atmosférica, como a espectroscopia de transmissão.
"Descobrimos que o Webb podia facilmente inferir a presença ou ausência de uma atmosfera em torno de uma dúzia de exoplanetas rochosos com menos de 10 horas de tempo de observação por planeta," disse Jacob Bean da Universidade de Chicago.
Os astrônomos estão particularmente interessados em exoplanetas que orbitam estrelas anãs vermelhas por várias razões. Estas estrelas, menores e mais frias que o Sol, são o tipo mais comum de estrela na nossa Galáxia. Além disso, dado que as anãs vermelhas são pequenas, um planeta que passe à sua frente parece bloquear uma fração maior da luz estelar caso a estrela fosse maior, como o nosso Sol. Isto torna o planeta que orbita uma anã vermelha mais fácil de detectar por meio desta técnica de "trânsito".
As anãs vermelhas também produzem muito menos calor do que o nosso Sol, de modo que para desfrutar de temperaturas habitáveis, um planeta precisaria de orbitar muito perto de uma anã vermelha. Para estar na zona habitável - a área em torno da estrela onde pode existir água líquida à superfície de um planeta - o planeta tem que orbitar muito mais perto da estrela do que Mercúrio está do Sol. Como resultado, transitará a estrela mais frequentemente, facilitando observações repetidas.
Mas um planeta que orbita tão perto de uma anã vermelha está sujeito a condições adversas. As anãs vermelhas jovens são muito ativas, lançando enormes proeminências e erupções de plasma. A estrela também emite um forte vento de partículas carregadas. Todos estes efeitos podem potencialmente destruir a atmosfera de um planeta, deixando para trás uma rocha nua.
A perda atmosférica é crucial à habitabilidade dos planetas. Outra característica fundamental dos exoplanetas que orbitam perto de anãs vermelhas também o é para a nova técnica: espera-se que sofram bloqueio de maré, o que significa que têm sempre o mesmo lado voltado para a estrela. Como resultado, vemos diferentes fases do planeta em diferentes pontos da sua órbita. Quando cruza a face da estrela, vemos apenas o lado noturno do planeta. Mas quando está prestes a viajar para trás da estrela (um evento conhecido como eclipse secundário), ou quando está apenas emergindo de trás da estrela, podemos observar o lado diurno.
Se um exoplaneta rochoso não possuir atmosfera, o seu lado diurno será muito quente, assim como vemos com a Lua ou Mercúrio. No entanto, se um exoplaneta rochoso tiver uma atmosfera, espera-se que a presença desta mesma atmosfera diminua a temperatura diurna medida pelo telescópio espacial James Webb. Isto pode ser feito de duas maneiras. Uma atmosfera espessa pode transportar o calor do lado diurno para o lado noturno através de ventos. Uma atmosfera mais fina pode ainda conter nuvens, que refletem parte da luz estelar, diminuindo assim a temperatura do lado diurno do planeta.
"Sempre que acrescentamos uma atmosfera, estamos diminuindo a temperatura do lado diurno. Portanto, se virmos algo mais frio que rocha nua, inferiremos que provavelmente é sinal de uma atmosfera," explicou Daniel Koll do MIT (Massachusetts Institute of Technology).
O telescópio espacial James Webb é ideal para fazer estas medições porque possui um espelho muito maior do que outros telescópios, como o Hubble ou o Spitzer da NASA, que permite recolher mais luz e estudar os comprimentos de onda infravermelhas apropriados.
Os cálculos da equipe mostram que o telescópio espacial James Webb deverá ser capaz de detectar a assinatura de calor da atmosfera de um planeta num a dois eclipses secundários, apenas algumas horas de observação. Em contraste, a detecção de uma atmosfera através de observações espectroscópicas normalmente exige oito ou mais trânsitos para estes mesmos planetas.
A espectroscopia de transmissão, que estuda a luz estelar filtrada pela atmosfera do planeta, também sofre interferência devido a nuvens ou neblinas, que podem mascarar as assinaturas moleculares da atmosfera. Neste caso, o gráfico espectral, em vez de mostrar linhas de absorção pronunciadas devido a moléculas, seria essencialmente plano.
A linha plana pode significar que o Universo está repleto de planetas mortos que não têm atmosfera, ou que o Universo está repleto de planetas que têm atmosferas diversas, mas parecem todos iguais porque são nublados,
A equipe enfatizou que uma temperatura mais baixa do que o esperado para o lado diurno será uma pista importante, mas que não confirma a existência de uma atmosfera. Quaisquer dúvidas remanescentes sobre a presença de uma atmosfera podem ser descartadas com estudos de acompanhamento usando outros métodos como a espectroscopia de transmissão.
A verdadeira força da nova técnica será determinar qual a fração dos exoplanetas rochosos que provavelmente possui uma atmosfera. Aproximadamente uma dúzia de exoplanetas que são bons candidatos para este método foram detectados neste último ano. É provável que mais sejam encontrados quando o telescópio espacial James Webb ficar operacional.
O TESS (Transiting Exoplanet Survey Satellite) está encontrando muitos destes planetas.
O método do eclipse secundário tem uma limitação chave: funciona melhor em planetas demasiado quentes para estarem na zona habitável. No entanto, determinar se estes planetas quentes hospedam atmosferas tem implicações importantes para os planetas na zona habitável.
O telescópio espacial James Webb será o principal observatório científico espacial do mundo quando for lançado em 2021. Vai resolver mistérios do nosso Sistema Solar, olhar para mundos distantes em torno de outras estrelas e investigar as misteriosas estruturas e origens do nosso Universo e o nosso lugar nele.
Uma série de quatro artigos foram publicados no periódico The Astrophysical Journal.
Fonte: Jet Propulsion Laboratory