domingo, 12 de julho de 2020

O trajeto cósmico em direção à formação de estrelas e planetas

O gás molecular nas galáxias é organizado numa hierarquia de estruturas.


© MPIA/T. Müller/J. Henshaw (fluxos da velocidade do gás na galáxia espiral NGC 4321)

O material molecular nas gigantescas nuvens de gás molecular viaja por intricadas redes de gás filamentar em direção aos centros congestionados de gás e poeira, onde é comprimido em estrelas e planetas. Para melhor entender este processo, uma equipe de astrônomos liderada por Jonathan Henshaw do Instituto Max Planck para Astronomia mediu o movimento do gás que flui das escalas galácticas até escalas dos aglomerados de gás em que as estrelas se formam. Os resultados mostram que o gás que corre através de cada escala está ligado dinamicamente: enquanto a formação estelar e planetária ocorre nas escalas menores, este processo é controlado por uma cascata de fluxos de matéria que começam em escalas galácticas.

O gás molecular nas galáxias é posto em movimento por mecanismos físicos, como rotação de galáxias, explosões de supernovas, campos magnéticos, turbulência e gravidade, moldando a estrutura do gás. Compreender como estes movimentos afetam diretamente a formação de estrelas e planetas é difícil, porque exige a quantificação do movimento dos gases numa variabilidade enorme de escalas espaciais e, em seguida, a vinculação deste movimento às estruturas físicas que observamos. As instalações astrofísicas modernas mapeiam agora rotineiramente grandes áreas do céu, com alguns mapas contendo milhões de pixels, cada com centenas a milhares de medições independentes de velocidade. Como resultado, a medição destes movimentos é cientificamente e tecnologicamente desafiadora.

A fim de enfrentar estes desafios, os astrônomos decidiram medir movimentos de gás ao longo de uma variedade de ambientes diferentes usando observações do gás na Via Láctea e numa galáxia próxima. Estes movimentos são detectados medindo a aparente mudança na frequência de luz emitida por moléculas, mudança esta provocada pelo movimento relativo entre a fonte de luz e o observador; um fenômeno conhecido como efeito Doppler. Aplicando um novo software a equipe conseguiu analisar milhões de medições.

Os pesquisadores descobriram que os movimentos do gás molecular frio parecem flutuar em velocidade, lembrando a aparência de ondas à superfície do oceano. Estas flutuações representam o movimento do gás.

Para melhor entender a natureza dos fluxos de gás, foram selecionadas várias regiões para uma análise mais detalhada, usando técnicas estatísticas avançadas para procurar diferenças entre as flutuações. Ao combinar uma variedade de medições diferentes, foi possível determinar como as flutuações da velocidade dependem da escala espacial.

A equipe descobriu que as flutuações de velocidade associadas com a estrutura espaçada de modo equidistante mostravam todas um padrão distinto. As flutuações parecem ondas oscilando ao longo das cristas dos filamentos, têm uma amplitude e comprimento de onda bem definidos.

Em contraste, foi descoberto que as flutuações de velocidade medidas ao longo das nuvens moleculares gigantes, em escalas intermediárias entre nuvens inteiras e os minúsculos núcleos no seu interior, não mostram escala característica óbvia, porque os fluxos de gás turbulento que criam estas estruturas formam uma cascata caótica.

Os resultados foram publicados na revista científica Nature Astronomy.

Fonte: Max Planck Institute for Astronomy

sábado, 11 de julho de 2020

O poder coletivo dos corpos escuros e gelados do Sistema Solar

Os confins do nosso Sistema Solar são um lugar estranho, cheios de corpos escuros e gelados com alcunhas como Sedna, Biden e Goblin, cada um dos quais com várias centenas de quilômetros de diâmetro.


© JILA/Steven Burrows (corpos separados do Sistema Solar)

Dois novos estudos realizados por pesquisadores da Universidade do Colorado em Boulder, EUA, podem ajudar a resolver um dos maiores mistérios sobre estes mundos distantes: o porquê de tantos não orbitarem o Sol da maneira que deviam.

As órbitas destes extravagantes corpos menores, que os cientistas chamam de "objetos separados", inclinam-se e desviam-se do plano do Sistema Solar, entre outros comportamentos incomuns.

Alguns cientistas sugeriram que um objeto muito grande podia ser o culpado, como o conhecido planeta teórico, "Planeta Nove", por espalhar objetos no seu rastro. Mas pode ser um objeto menor.

Baseando-se em simulações exaustivas de computador, os pesquisadores defendem que estes objetos separados podem eles próprios ter perturbado as suas órbitas, através de pequenos impulsos gravitacionais acumulados ao longo de milhões de anos.

O Sistema Solar exterior é muito escuro. Normalmente, a única maneira de observar estes objetos é quando os raios solares colidem com a sua superfície e são dirigidos para os telescópios terrestres.

Enquanto a maior parte dos corpos no Sistema Solar tendem a orbitar o Sol num disco achatado, as órbitas destes mundos gelados podem ter grandes inclinações. Muitos também tendem a agrupar-se apenas numa região do céu noturno, um pouco semelhante a uma bússola que aponta apenas para o norte.

No processo foi descoberto algo incomum: os objetos gelados nas simulações começaram a orbitar o Sol como normal. Mas, com o tempo, começaram a empurrar e a puxarem-se uns aos outros. Como resultado, as suas órbitas foram ficando esquisitas até parecem-se com as órbitas reais. O mais notável foi que fizeram isto tudo sozinhos, os asteroides e os planetas menores não precisavam de um planeta grande para os impelir para órbitas fora do comum.

Individualmente, todas as interações gravitacionais entre estes corpos pequenos são fracas; mas, em grande número, tornam-se importantes.

As descobertas também vêm com uma grande ressalva. Para fazer com que a teoria de "gravidade coletiva" funcione, o Sistema Solar exterior já precisou de conter uma enorme quantidade de material. Estes objetos devem totalizar algo na ordem das 20 massas terrestres.

De uma forma ou de outra, os cientistas podem em breve ter mais certezas. Um novo telescópio, denominado Observatório Vera C. Rubin, vai em 2022 entrar em funcionamento no Chile e começar a observar novos aspectos sobre esta região tão desconhecida do espaço.

Os resultados foram publicados nos periódicos The Astronomical Journal e The Astronomical Journal Letters.

Fonte: University of Colorado

quarta-feira, 8 de julho de 2020

Quando uma estrela supergigante engole uma estrela morta

Quase meio século atrás, o físico Kip Thorne, ganhador do Prêmio Nobel de 2017, e a astrônoma Anna Żytkow sugeriram que uma estrela estranha, poderia estar escondida no cosmos, apenas esperando ser encontrada por quem soubesse procurar isto. Os astrônomos denominaram esses híbridos estelares teóricos de objetos Thorne-Żytkow.


© Astronomy (ilustração de objeto Thorne-Żytkow)

A possível existência de objetos Thorne-Żytkow (TZOs) veio à tona quando seus pesquisadores homônomos fizeram simulações em computador. Foi descoberto que uma estrela de nêutrons - um minúsculo remanescente estelar ultra-denso deixado para trás quando uma estrela se torna supernova - poderia ser devorada por uma estrela supergigante vermelha.

De acordo com as simulações, se as estrelas se aproximarem demais, em vez de uma estrela ser ejetada, as duas estrelas poderão se fundir. A estrela de nêutrons de massa solar do tamanho de uma cidade continuaria vivendo dentro de seu hospedeiro muito maior, quase como um parasita cósmico. Mas mesmo que a física realmente permita a existência de tais estrelas, encontrá-las será difícil.

Em um estudo publicado em 1975 no periódico Astrophysical Journal, Thorne e Żytkow sugeriram que essas estrelas pareceriam quase idênticas às supergigantes vermelhas como Betelgeuse na constelação de Órion. Estrelas supergigantes são relativamente comuns e são algumas das maiores e mais jovens do Universo. Os objetos TZOs seriam muito semelhantes aos supergigantes vermelhos, mas suspeita-se que sobrevivam até 10 vezes mais.

As supergigantes vermelhas comuns, como outras estrelas, são alimentadas por fusão nuclear em seus núcleos. Então, quando essa energia se esgota, a gravidade contida leva a implodir antes de irromper como uma supernova. Mas os TZOs podem viver vidas tão longas porque não dependem da fusão nuclear sustentada em seus núcleos para evitar o colapso. Em vez disso, o núcleo da estrela de nêutrons de uma TZO, que já é extremamente compactada, evita amplamente o colapso gravitacional rápido das camadas circundantes.

Os astrônomos têm duas teorias diferentes sobre como os TZOs se formam, e ambos dependem dos objetos iniciais que começam suas vidas como duas estrelas gigantes em um sistema binário próximo. Em uma teoria, a maior das duas estrelas explodiria como uma supernova primeiro, deixando para trás uma estrela de nêutrons. Mas com o tempo, a supergigante restante continuaria a crescer para fora até engolir completamente o restante da estrela de nêutrons nas proximidades.

Outra possibilidade para a formação de TZOs é que, quando uma estrela explode como uma supernova assimétrica, seu núcleo remanescente pode receber um poderoso impulso. Isso poderia potencialmente disparar a estrela de nêutrons nas entranhas da gigante vermelha restante.

Mas não importa como elas se formem, os astrônomos anunciaram em 2014 que podem ter descoberto o primeiro objeto Thorne-Żytkow. A estrela estava escondida a cerca de 200.000 anos-luz de distância na Pequena Nuvem de Magalhães, uma galáxia anã que orbita a Via Láctea.

Foi encontrado pela astrônoma Emily Levesque, agora na Universidade de Washington, com a ajuda de sua equipe de pesquisadores. Para encontrar a suspeita de TZO, o grupo de Levesque usou o Observatório Apache Point do Novo México para estudar duas dúzias de estrelas supergigantes vermelhas na Via Láctea, bem como um dos telescópios Magalhães no Chile para estudar outro grupo de supergigantes na Pequena Nuvem de Magalhães.

Ao revisar os dados, uma estrela em particular se destacou. O sistema, denominado HV 2112, foi inicialmente catalogado como variável em 1908 pela pioneira astrônoma Henrietta Swan Leavitt. Na época, porém, pensava-se que era uma supergigante vermelha vivendo seus dias de morte antes de se tornar uma supernova.

No entanto, mais de 100 anos depois que Leavitt notou pela primeira vez o objeto estranho, a análise de Levesque e sua equipe revelou assinaturas químicas incomuns que eles pensavam serem os sinais reveladores de um objeto mítico de Thorne-Żytkow. Os pesquisadores viram quantidades excessivas de lítio, cálcio e outros elementos, que eles só poderiam explicar através das reações nucleares únicas que ocorreriam dentro de um TZO.

Mas eles não podiam ter certeza absoluta; a HV 2112 também parecia ter outras impressões digitais químicas estranhas que não eram esperadas. Com base nesses mistérios restantes, a equipe sugere que os modelos teóricos não apreciaram completamente as nuances dos objetos Thorne-Żytkow ou a HV 2112 simplesmente não era um TZO.

A natureza bizarra da descoberta provocou manchetes na época. Mas para os astrônomos, também foi uma descoberta importante porque ofereceu evidências para estrelas movidas por processos além da fusão nuclear.

Mas quatro anos depois, em 2018, outro grupo de astrônomos alavancou novos detalhes para essa descoberta única. Eles fizeram sua própria análise da HV 2112 e a compararam com estrelas semelhantes, mas não encontraram os mesmos níveis de excesso de cálcio ou outros elementos detectados pela equipe de Levesque. A nova análise mostrou um excesso de lítio, mas, além disso, os resultados sugeriram que essa estrela era basicamente uma supergigante vermelha comum.

Embora a equipe possa ter frustrado os sonhos da HV 2112 de ser diferente, eles ofereceram a esperança de um candidato substituto. Foi encontrado outro possível objeto Thorne-Żytkow, catalogado como HV 11417, que exibia alguns sinais reveladores que os astrônomos previam que os objetos devessem ter.

Um aspecto que as duas equipes concordam é que, quando se trata de objetos de Thorne-Żytkow, tanto a teoria quanto a observação ainda têm um longo caminho a percorrer.

Fonte: Astronomy

sábado, 4 de julho de 2020

Novas ideias sobre um exoplaneta extremamente quente

Medições do TESS (Transiting Exoplanet Survey Satellite) da NASA permitiram aos astrônomos melhorar bastante a sua compreensão do ambiente bizarro de KELT-9b, um dos exoplanetas mais quentes conhecidos.


© Chris Smith (ilustração do exoplaneta KELT-9b)

É um exoplaneta gigante numa órbita muito íntima, quase polar, em torno de uma estrela que gira rapidamente, e estas características complicam a capacidade de entender a estrela e os seus efeitos no planeta.

Localizado a cerca de 670 anos-luz de distância na direção da constelação de Sagitário, KELT-9b foi descoberto em 2017 porque o planeta passou em frente da sua estrela durante uma parte da sua órbita, um evento chamado trânsito. Os trânsitos diminuem regularmente a luz da estrela por uma quantidade minúscula, mas detectável. Os trânsitos de KELT-9b foram observados pela primeira vez pelo levantamento de trânsitos KELT, um projeto que recolheu observações com dois telescópios robóticos localizados no estado norte-americano do Arizona e na África do Sul.

Entre 18 de julho e 11 de setembro de 2019, como parte da campanha de um ano da missão para observar o céu do norte, o TESS observou 27 trânsitos de KELT-9b, obtendo medições a cada dois minutos. Estas observações permitiram a modelagem da estrela incomum e o seu impacto no planeta.

O KELT-9b é um mundo gigante de gás cerca de 1,8 vezes maior que Júpiter, com 2,9 vezes a sua massa. As forças de marés bloquearam a sua rotação, de modo que o mesmo lado está sempre virado para a sua estrela. O exoplaneta gira em torno da sua estrela em apenas 36 horas numa órbita que o transporta quase diretamente acima de ambos os polos da estrela.

O KELT-9b recebe 44.000 vezes mais energia da sua estrela do que a Terra do Sol. Isto eleva a temperatura diurna do planeta a cerca de 4.300º C, mais quente do que as superfícies de algumas estrelas. Este aquecimento intenso também faz com que a atmosfera do planeta escape para o espaço.

A sua estrela hospedeira também é estranha. Tem aproximadamente o dobro do tamanho do Sol e é, em média, 56% mais quente. Mas gira 38 vezes mais depressa do que o Sol, completando uma rotação em apenas 16 horas. A sua rápida rotação distorce a forma da estrela, achatando-a nos polos e ampliando a sua secção central. Isto faz com que os polos da estrela aqueçam e brilhem enquanto a sua região equatorial esfria e escurece, um fenômeno chamado escurecimento gravitacional. O resultado é uma diferença de temperatura à superfície da estrela de quase 800º C.

A cada órbita, KELT-9b sofre por duas vezes toda a gama de temperaturas estelares, produzindo o que equivale a uma sequência sazonal muito peculiar. O planeta passa ao "verão" quando orbita sobre cada polo e ao "inverno" quando passa sobre a parte central e mais fria da estrela. Assim, KELT-9b tem dois verões e dois invernos por ano, cada estação durando aproximadamente nove horas.

A órbita polar de KELT-9b, em torno da sua estrela achatada, produz trânsitos distintamente desequilibrados. O planeta começa o seu trânsito perto dos polos brilhantes da estrela e depois bloqueia cada vez menos luz à medida que passa sobre o equador mais escuro da estrela. Esta assimetria fornece pistas sobre as mudanças de temperatura e brilho na superfície da estrela e permitiram a reconstrução da sua forma não redonda, a sua orientação no espaço, a sua variabilidade de temperaturas de superfície e outros fatores que afetam o planeta.

Este trabalho ajuda a unificar o escurecimento gravitacional com outras técnicas que medem o alinhamento planetário, revelando segredos sobre a formação e sobre a história evolutiva dos planetas em torno de estrelas de massa elevada.

As novas descobertas foram publicadas no periódico The Astronomical Journal.

Fonte: Goddard Space Flight Center

quarta-feira, 1 de julho de 2020

Colisão de buracos negros pode ter "explodido com luz"

Quando dois buracos negros espiralam um em direção ao outro e finalmente colidem, emitem ondulações no espaço e no tempo chamadas ondas gravitacionais.


© Caltech/R. Hurt (ilustração de buraco negro e disco circundante de gás)

Considerando que os buracos negros não emitem luz, não se espera que estes eventos tenham brilho, ou radiação eletromagnética. Mas alguns teóricos criaram maneiras pelas quais uma fusão de buracos negros pode explodir com luz. Agora, pela primeira vez, os astrônomos viram evidências de um destes cenários de produção de luz.

Com a ajuda do ZTF (Zwicky Transient Facility) do Caltech e localizado no Observatório Palomar perto de San Diego, EUA, os cientistas descobriram o que poderá ser um surto de luz de um par de buracos negros. A fusão dos buracos negros foi testemunhada pela primeira vez pelo LIGO (Laser Interferometer Gravitational-wave Observatory) e pelo detector europeu Virgo no dia 21 de maio de 2019, num evento chamado S190521g. À medida que os buracos negros se fundiam, agitando o espaço e o tempo, liberaram ondas gravitacionais.

Enquanto isto acontecia, o ZTF realizava o seu levantamento robótico do céu que captava todos os tipos de objetos que liberam luz, entram em erupção ou de outro modo variam no céu noturno. Uma liberação de luz que o levantamento captou, gerada por um buraco negro supermassivo ativo e distante, ou quasar, chamado J1249+3449, foi identificado na região do evento de ondas gravitacionais S190521g.

"Este buraco negro supermassivo era já ativo anos antes deste surto mais abrupto," diz Matthew Graham, professor de astronomia no Caltech e cientista do projeto ZTF. "O surto ocorreu na escala de tempo certa e no local certo, para coincidir com o evento de ondas gravitacionais. No nosso estudo, concluímos que o surto provavelmente foi o resultado de uma fusão de buracos negros, mas não podemos descartar completamente outras possibilidades."

Como é que dois buracos negros em fusão podem liberar luz? No cenário delineado por Graham e colegas, dois buracos negros parceiros estavam aninhados dentro de um disco ao redor de um buraco negro muito maior. No centro da maioria das galáxias, esconde-se um buraco negro supermassivo. É rodeado por um aglomerado de estrelas e remanescentes estelares, incluindo buracos negros.

Depois da fusão dos buracos negros, o novo buraco negro, agora maior, é lançado numa direção aleatória e varre o gás no disco. A reação do gás devido ao movimento brusco do buraco negro que cria o clarão brilhante, visível com telescópios.

Prevê-se que tal surto comece dias ou semanas após a liberação inicial de ondas gravitacionais produzidas durante a fusão. Neste caso, o ZTF não captou o evento imediatamente, mas quando os cientistas voltaram para examinar as imagens de arquivo do ZTF meses depois, encontraram um sinal que começou dias após o evento de ondas gravitacionais de maio de 2019. O ZTF observou o surto desaparecendo lentamente ao longo de um período de um mês.

Tentou-se obter uma visão mais detalhada da luz do buraco negro supermassivo, ou seja, um espectro da luz, mas quando foi observado, a liberação de luz já havia desaparecido. Um espectro teria fornecido mais apoio à ideia de que o surto tinha vindo da fusão de buracos negros dentro do disco do buraco negro supermassivo. No entanto, os pesquisadores dizem que foram capazes de descartar outras possíveis causas para o surto observado, incluindo uma supernova ou um evento de perturbação de marés, que ocorre quando um buraco negro essencialmente engloba uma estrela.

Além disso, a equipe afirma que não é provável que o surto de luz tenha ocorrido devido aos fenômenos habituais do buraco negro supermassivo, que regularmente se alimenta do disco circundante. Usando o CRTS (Catalina Real-Time Transient Survey), liderado pelo Caltech, foram capazes de avaliar o comportamento do buraco negro ao longo dos últimos 15 anos e descobriram que a sua atividade era relativamente normal até maio de 2019, quando se intensificou repentinamente.

"Os buracos negros supermassivos como este têm erupções a toda a hora. Não são objetos silenciosos, mas o momento, tamanho e localização deste surto foi espetacular," diz Mansi Kasliwal, professor assistente de astronomia no Caltech. "A razão pela qual a busca por explosões como esta é tão importante é que ajuda bastante a responder as questões da astrofísica e da cosmologia. Se pudermos fazer isto novamente e detectar a luz das fusões de outros buracos negros, podemos definir melhor os locais de origem destes objetos e aprender mais sobre as suas origens."

O buraco negro recém-formado deverá provocar outro surto nos próximos anos. O processo de fusão deu ao objeto um impulso que deverá fazer com que este entre novamente no disco do buraco negro supermassivo, produzindo outra liberação de luz que o ZTF deverá conseguir observar.

O novo estudo foi publicado no periódico Physical Review Letters.

Fonte: California Institute of Technology

Um mistério cósmico: O desaparecimento de uma estrela massiva

Com o auxílio do Very Large Telescope (VLT) do ESO, os astrônomos descobriram a ausência de uma estrela instável massiva numa galáxia anã.


© ESO/L. Calçada (ilustração de estrela azul variável)

Os cientistas acham que isso pode indicar que a estrela se tornou menos brilhante e parcialmente obscurecida por poeira. Uma explicação alternativa seria que a estrela colapsou em um buraco negro sem produzir uma supernova. Se for confirmado, esta pode ser a primeira detecção direta de uma tal estrela gigante terminando a sua vida desta maneira.

Entre 2001 e 2011, várias equipes de astrônomos estudaram uma misteriosa estrela massiva, localizada na galáxia anã Kinman, tendo as suas observações indicado que este objeto se encontrava num estado final de evolução.

Pesquisadores queriam saber mais sobre como é que estrelas muito massivas terminam as suas vidas e a estrela na galáxia anã Kinman parecia ser o alvo perfeito para este estudo. No entanto, em 2019, quando apontaram o VLT para a galáxia distante, não conseguiram encontrar a assinatura da estrela. Em vez disso, e surpreendentemente, descobriu-se que a estrela tinha desaparecido!

Localizada a cerca de 75 milhões de anos-luz de distância, na constelação de Aquário, a galáxia anã Kinman está muito longe para que os astrônomos possam observar estrelas individuais, no entanto podem ser detectadas as assinaturas de algumas delas. Entre 2001 e 2011, a radiação emitida pela galáxia mostrou de forma consistente evidências da existência de uma estrela variável azul luminosa cerca de 2,5 milhões de vezes mais brilhante que o Sol. As estrelas deste tipo são instáveis, mostrando ocasionalmente variações drásticas no seu espectro e brilho. Apesar destas variações, as variáveis azuis luminosas apresentam traços específicos que podem ser identificados, mas estavam ausentes dos dados que a equipe coletou em 2019. O que teria acontecido com a estrela? Seria altamente incomum que uma estrela massiva deste tipo desaparecesse sem produzir uma explosão de supernova muito brilhante.

Em agosto de 2019, o grupo observou a estrela com o instrumento ESPRESSO, utilizando os quatro telescópios de 8 metros do VLT simultaneamente. No entanto, não foram encontrados nenhuns dos sinais que apontavam anteriormente para a presença da estrela luminosa. Alguns meses mais tarde, o grupo utilizou o instrumento X-shooter, montado também no VLT, e mais uma vez não se observaram sinais alguns da estrela.

Foram analisados em seguida dados anteriores recolhidos com os instrumentos X-shooter e UVES, ambos montados no VLT, situado no deserto chileno do Atacama, e também dados de outros telescópios.

Os dados mais antigos indicavam que a estrela na galáxia anã Kinman poderia estar passando por um forte período de explosão que, muito provavelmente, terminou algum tempo depois de 2011. As estrelas variáveis azuis luminosas tais como esta têm tendência para sofrer enormes erupções ao longo das suas vidas, fazendo com que a sua taxa de perda de massa e luminosidade aumentem drasticamente.

Baseando-se nas suas observações e modelos, os astrônomos sugeriram duas explicações para o desaparecimento da estrela e ausência de uma supernova, relacionadas com esta possível explosão. A explosão pode ter resultado na transformação da estrela variável azul luminosa numa estrela menos luminosa, que pode também estar parcialmente escondida por poeira. Alternativamente, a equipe diz que a estrela pode também ter colapsado em um buraco negro, sem produzir uma explosão de supernova. Este último evento seria, contudo, muito raro: o nosso conhecimento atual relativo ao final da vida das estrelas massivas indica que a maioria delas termine a sua vida sob a forma de supernovas.

Estudos futuros são necessários para confirmar o que aconteceu com esta estrela. O Extremely Large Telescope (ELT) do ESO, planejado para começar a operar em 2025, será capaz de distinguir estrelas em galáxias distantes, como a galáxia anã Kinman, o que irá ajudar a resolver mistérios cósmicos como este.

Esta pesquisa foi apresentada no artigo intitulado “The possible disappearance of a massive star in the low metallicity galaxy PHL 293B”, que foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

terça-feira, 30 de junho de 2020

Descobertas duas super-Terras em órbita de anã vermelha próxima

Os exoplanetas mais próximos fornecem-nos as melhores oportunidades para estudos detalhados, incluindo a busca por evidências de vida localizadas além do Sistema Solar.


© Mark Garlick (ilustração do sistema multiplanetário Gliese 887)

Uma pesquisa liderada pela Universidade de Göttingen, Alemanha, por astrônomos do projeto RedDots, detectou um sistema de super-Terras em órbita da estrela próxima Gliese 887, a anã vermelha mais brilhante do céu. As super-Terras são exoplanetas com uma massa maior do que a da Terra, mas substancialmente inferior às dos nossos gigantes gelados locais, Urano e Netuno. As super-Terras recém-descobertas ficam perto da zona habitável da anã vermelha, onde a água pode existir no estado líquido, e podem ser mundos rochosos.

A equipe de astrônomos do RedDots monitorou a anã vermelha usando o espectrógrafo HARPS do ESO no Chile. Usaram uma técnica chamada "oscilação Doppler", que lhes permite medir as pequenas oscilações da estrela provocadas pela atração gravitacional dos planetas. Os sinais regulares correspondem a órbitas de apenas 9,3 e 21,8 dias, indicando duas super-Terras, Gliese 887b e Gliese 887c, ambas maiores que a Terra e movendo-se rapidamente, muito mais depressa que Mercúrio. Os cientistas estimam que a temperatura de Gliese 887c seja de aproximadamente 70ºC.

Gliese 887 é uma das estrelas mais próximas do Sol, a cerca de 11 anos-luz de distância. É muito mais tênue e tem aproximadamente metade do tamanho do nosso Sol, o que significa que a zona habitável está muito mais próxima de Gliese 887 do que a distância Terra-Sol. 

O RedDots descobriu mais dois fatos interessantes sobre Gliese 887. O primeiro é que a anã vermelha tem muito poucas manchas estelares, ao contrário do nosso Sol. Se Gliese 887 fosse tão ativa quanto o nosso Sol, é provável que um vento estelar forte, ou seja, o fluxo de material que pode erodir a atmosfera de um planeta, simplesmente varresse as atmosferas dos planetas. Isto significa que os planetas recém-descobertos podem reter as suas atmosferas ou ter atmosferas mais espessas que a da Terra, e potencialmente hospedar vida, mesmo que GJ887 receba mais luz do que a Terra. O outro aspecto interessante é que o brilho de Gliese 887 é quase constante. Portanto, será relativamente fácil detectar as atmosferas do sistema de super-Terras, tornando-o um alvo principal do telescópio espacial James Webb, o sucessor do telescópio espacial Hubble.

A Dra. Sandra Jeffers, da Universidade de Göttingen e autora principal do estudo, conclui: "Estes planetas vão fornecer as melhores possibilidades para estudos mais detalhados, incluindo a busca por vida fora do nosso Sistema Solar."

Os resultados foram publicados na revista Science.

Fonte: University of Göttingen

Galáxia espiral "floculenta"

O padrão espiral mostrado pela galáxia nesta imagem do telescópio espacial Hubble é impressionante devido à sua natureza delicada e emplumada.


© Hubble (NGC 2775)

Esses braços espirais "floculentos" indicam que a história recente da formação de estrelas da galáxia, conhecida como NGC 2775, tem sido relativamente silenciosa. Não há praticamente nenhuma formação estelar na parte central da galáxia, que é dominada por uma protuberância galáctica incomumente grande e relativamente vazia, onde todo o gás foi convertido em estrelas há muito tempo.

A NGC 2275 é classificada como uma galáxia espiral "floculenta", localizada a 67 milhões de anos-luz de distância na constelação de Câncer.

Milhões de estrelas azuis jovens e brilhantes brilham nos complexos braços em espiral em forma de pena, entrelaçados com faixas escuras de poeira. Pensa-se que complexos dessas estrelas azuis quentes desencadeiam a formação de estrelas nas nuvens de gás próximas. Os padrões gerais em espiral dos braços em forma de pena são formados pelo cisalhamento das nuvens de gás à medida que a galáxia gira. A natureza floculenta da espiral contrasta com as espirais das galáxias de aspecto grandioso, que têm braços espirais proeminentes e bem definidos.

Fonte: NASA

segunda-feira, 29 de junho de 2020

O curioso movimento da estrela Bat Shadow

A jovem estrela HBC 672 é conhecida pelo apelido de Bat Shadow por causa de sua sombra em forma de asa.


© Hubble (Bat Shadow)

O telescópio espacial Hubble agora observou pela primeira vez um curioso movimento da sombra no disco da estrela. A estrela reside em um viveiro estelar chamado Nebulosa da Serpente, a cerca de 1.300 anos-luz de distância da Terra.

O Hubble captou uma impressionante imagem do disco invisível e formador de planetas da estrela em 2018. Este disco lança uma sombra enorme através de uma nuvem mais distante em uma região formadora de estrelas, como uma mosca vagando no feixe de uma lanterna projetando em uma parede.

Agora, os astrônomos observaram por acaso os movimentos da Bat Shadow. Eles combinaram as imagens antigas e novas, a sombra parecia ter se movido.

A sombra é tão grande, cerca de 200 vezes o diâmetro do nosso Sistema Solar, que a luz não viaja instantaneamente através dela. De fato, leva cerca de 45 dias para a luz viajar da estrela até a borda mais bem definida da sombra.

Os pesquisadores calculam que um planeta que deforma o disco orbitará sua estrela em nada menos que 180 dias. Eles estimam que seria a mesma distância da estrela que a Terra está do Sol. A forma de seus dois picos e dois mergulhos explicaria o movimento da sombra. Especula-se que um planeta está incorporado no disco, inclinado ao plano do disco. Se não for um planeta, uma explicação menos provável é uma companheira estelar de menor massa orbitando a HBC 672 fora do plano do disco. Provavelmente, este não seja o motivo, com base na espessura do disco, e também não há evidências atuais para uma companheira binária.

O disco é uma estrutura circular de gás, poeira e rocha, e é pequeno e distante demais para ser visto, mesmo pelo Hubble. No entanto, com base na sombra projetada, os cientistas sabem que sua relação altura/raio é de 1:5.

Um artigo foi publicado no periódico Astrophysical Journal.

Fonte: ESA

domingo, 28 de junho de 2020

Descoberto um exoplaneta em órbita de jovem estrela única

Há mais de uma década que os astrônomos procuram planetas em órbita de AU Microscopii, uma estrela próxima ainda rodeada por um disco de detritos deixado para trás durante a sua formação.


© NASA/Chris Smith (ilustração do planeta AU Mic b)

Agora, os cientistas usaram dados do TESS (Transiting Exoplanet Survey Satellite) e do aposentado telescópio espacial Spitzer para relatar a descoberta de um planeta tão grande quanto Netuno que completa uma órbita em torno da jovem estrela em pouco mais de uma semana.

O sistema, conhecido pela abreviação AU Mic, fornece um laboratório único para estudar como os planetas e as suas atmosferas se formam, evoluem e interagem com as suas estrelas.

AU Mic é uma estrela anã vermelha e fria, com uma idade estimada entre 20 a 30 milhões de anos, sendo pelo menos 150 vezes mais nova que o nosso Sol. A estrela é tão jovem que brilha principalmente do calor gerado quando a sua própria gravidade a puxou para dentro e comprimiu. Menos de 10% da energia da estrela vem da fusão do hidrogênio em hélio no seu núcleo, o processo que alimenta estrelas como o nosso Sol.

O sistema está localizado a 31,9 anos-luz de distância na direção da constelação do hemisfério sul de Microscópio. Faz parte de uma coleção próxima de estrelas chamada Grupo Móvel de Beta Pictoris, cujo nome refere-se a uma estrela maior e mais quente, do tipo-A, que abriga dois planetas e também é rodeada por um disco de detritos.

Embora os sistemas tenham a mesma idade, os seus planetas são marcadamente diferentes. O planeta AU Mic b quase que abraça a sua estrela, completando uma órbita a cada 8,5 dias. Tem menos de 58 vezes a massa da Terra, colocando-o na categoria de mundos semelhantes a Netuno. Beta Pictoris b e c, no entanto, são pelo menos 50 vezes mais massivos do que Au Mic b e levam 21 e 3,3 anos, respetivamente, orbitando a sua estrela.

Pensa-se que AU Mic b se formou longe da estrela e migrou para dentro até à sua órbita atual, algo que pode acontecer à medida que os planetas interagem gravitacionalmente com um disco de gás ou com outros planetas. Por outro lado, a órbita de Beta Pictoris b não parece ter migrado muito. As diferenças entre estes sistemas com idades semelhantes podem mostrar a formação e migração dos planetas.

A detecção de planetas em torno de estrelas como AU Mic representa um desafio particular. Estas estrelas tempestuosas possuem fortes campos magnéticos e podem estar cobertas por manchas estelares, ou seja, regiões mais frias, mais escuras e altamente magnetizadas parecidas com as manchas solares, que frequentemente desencadeiam fortes explosões estelares. Tanto as manchas como as suas proeminências contribuem para as mudanças de brilho da estrela.

Em julho e agosto de 2018, quando o TESS estava observando AU Mic, a estrela produziu várias erupções, algumas das quais eram mais poderosas do que as mais fortes já registadas no Sol. Os pesquisadores realizaram uma análise detalhada para remover estes efeitos dos dados do TESS.

Quando um planeta passa em frente da sua estrela, da perspetiva da Terra, um evento denominado trânsito, a sua passagem provoca uma distinta queda de brilho estelar. O TESS monitora grandes áreas do céu durante 27 dias de cada vez. Durante este longo olhar, as câmaras da missão captaram regularmente instantâneos que permitem com que os cientistas rastreiem alterações no brilho estelar.

Quedas regulares no brilho de uma estrela assinalam a possibilidade de um planeta em trânsito. Geralmente, são necessários pelo menos dois trânsitos observados para reconhecer a presença de um planeta.

Como a quantidade de luz bloqueada por um trânsito depende do tamanho do planeta e da sua distância orbital, os trânsitos observados pelo TESS e pelo Spitzer forneceram uma medição direta do tamanho de AU Mic b. A análise destas medições mostra que o planeta é aproximadamente 8% maior do que Netuno.

Observações com instrumentos acoplados a telescópios terrestres fornecem limites superiores para a massa do planeta. À medida que um planeta se desloca, a sua gravidade puxa a estrela hospedeira, que se move levemente em resposta. Os instrumentos sensíveis de telescópios grandes podem detectar a velocidade radial da estrela, o seu movimento para a frente e para trás ao longo da nossa linha de visão. Graças à combinação de observações com o Observatório W. M. Keck e com o IRTF (InfraRed Telescope Facility) da NASA no Havaí, juntamente com o ESO no Chile, a equipe concluiu que AU Mic b tem uma massa equivalente a pouco menos que 58 Terras.

Durante décadas, AU Mic intrigou os astrônomos como um possível lar para planetas, graças à sua proximidade, juventude e brilhante disco de detritos. Agora que o TESS e o Spitzer encontraram lá um planeta, a história completa-se. AU Mic é um sistema importante, um laboratório próximo para entender a formação e a evolução de estrelas e de planetas que continuará a ser estudado nas próximas décadas.

Esta descoberta foi relatada nas revistas Nature e Astronomy & Astrophysics.

Fonte: Instituto de Astrofísica de Canarias

Objeto misterioso na "divisão de massa"

Quando as estrelas mais massivas morrem, colapsam sob a sua própria gravidade e deixam para trás buracos negros; quando estrelas um pouco menos massivas morrem, explodem numa supernova e deixam para trás remanescentes densos e mortos de estrelas chamadas estrelas de nêutrons.


© F. Elavsky/A. Geller (gráfico das massas de buracos negros)

Este gráfico mostra as massas dos buracos negros detectados através de observações eletromagnéticas (roxo), os buracos negros medidos por observações de ondas gravitacionais (azul), as estrelas de nêutrons medidas por observações eletromagnéticas (amarelo) e as estrelas de nêutrons detectadas através de ondas gravitacionais (laranja). Um evento chamado GW190814 é realçado no meio do gráfico como a fusão de um buraco negro com um objeto misterioso de massa equivalente a 2,6 vezes a do Sol.

Há décadas que os astrônomos se interessam pela divisão que fica entre as estrelas de nêutrons e os buracos negros: a estrela de nêutrons mais pesada que se conhece não tem mais do que 2,5 vezes a massa do nosso Sol, e o buraco negro mais leve tem aproximadamente 5 massas solares. A questão que permanecia: existe alguma coisa neste intervalo de massas?

Agora, num novo estudo pelos detectores LIGO (Laser Interferometer Gravitational-Wave Observatory) e Virgo, os cientistas anunciaram a descoberta de um objeto com 2,6 massas solares, colocando-o firmemente na divisão de massa. O objeto foi encontrado no dia 14 de agosto de 2019, quando se fundiu com um buraco negro com 23 massas solares, criando ondas gravitacionais detectadas na Terra pelo LIGO e Virgo.

Este objeto é a estrela de nêutrons mais pesada ou o buraco negro mais leve que se conhece?

A fusão cósmica descrita no estudo, GW190814, resultou num buraco negro final com aproximadamente 25 vezes a massa do Sol (alguma da massa fundida foi convertida num surto energético de ondas gravitacionais). O recém-formado buraco negro fica a cerca de 800 milhões de anos-luz da Terra.

Antes da fusão dos dois objetos, as suas massas diferiam por um fator de 9, tornando-se na relação de massa mais extrema já conhecida para um evento de ondas gravitacionais. Outro evento relatado recentemente pelo LIGO-Virgo, chamado GW190412, ocorreu entre dois buracos negros com uma relação de massa de aproximadamente 4:1.

"É um desafio para os modelos teóricos atuais formar pares, em fusão, de objetos compactos com uma taxa de massa tão grande na qual o parceiro mais leve reside no hiato de massa entre buracos negros e estrelas de nêutrons. Esta descoberta implica que estes eventos ocorrem com muito mais frequência do que o previsto, tornando-o num objeto de baixa massa realmente intrigante," disse Vicky Kalogera, professora da Universidade Northwestern. "O objeto misterioso pode ser uma estrela de nêutrons fundindo-se com um buraco negro, uma possibilidade excitante esperada teoricamente, mas ainda não confirmada observacionalmente. No entanto, com 2,6 vezes a massa do nosso Sol, excede as previsões modernas para a massa máxima das estrelas de nêutrons, e pode ao invés ser o buraco negro mais leve já detectado".

Quando os cientistas do LIGO e do Virgo avistaram esta fusão, imediatamente enviaram um alerta à comunidade astronômica. Dúzias de telescópios terrestres e espaciais continuaram à procura, no espetro eletromagnético, de sinais do evento, sem resultados positivos. Até agora, essas contrapartes de luz nos sinais das ondas gravitacionais foram vistas apenas uma vez, num evento chamado GW170817. O evento, descoberto pela rede LIGO-Virgo em agosto de 2017, envolveu uma colisão escaldante de duas estrelas de nêutrons que foi subsequentemente testemunhada por dúzias de telescópios na Terra e no espaço. As colisões de estrelas de nêutrons são eventos caóticos que lançam matéria para o espaço em todas as direções e, portanto, espera-se que emitam luz. Inversamente, pensa-se que as fusões que envolvem buracos negros não produzem luz.

De acordo com os cientistas do LIGO e do Virgo, o evento de agosto de 2019 não foi visto pelos telescópios que observam no espetro eletromagnético por várias razões. Em primeiro lugar, este evento estava seis vezes mais distante do que o evento observado em 2017, dificultando a captação de qualquer sinal de luz. Em segundo lugar, se a colisão tivesse envolvido dois buracos negros, provavelmente não teria emitido luz. Em terceiro lugar, se o objeto menor tivesse sido de fato uma estrela de nêutrons, o seu buraco negro parceiro, 9 vezes mais massivo, teria engolido a estrela toda; uma estrela de nêutrons consumida inteira por um buraco negro não emite luz.

Como é possível saber se o objeto misterioso era uma estrela de neutrões ou um buraco negro? Observações futuras com o LIGO, Virgo e possivelmente outros telescópios podem captar eventos semelhantes que ajudariam a revelar se objetos adicionais existem na divisão de massas.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: California Institute of Technology

terça-feira, 23 de junho de 2020

Raios X de estrela fornecem pistas dos primeiros dias do nosso Sol

Ao detectar um surto de raios X de uma estrela muito jovem com o observatório de raios X Chandra da NASA, pesquisadores redefiniram a linha temporal de quando estrelas como o Sol começam a liberar radiação altamente energética para o espaço. Isto é significativo porque pode ajudar a responder a algumas perguntas sobre os primeiros dias do nosso Sol e também sobre o Sistema Solar de hoje.


© NASA/M. Weiss (ilustração de HOPS 383)

A imagem mostra o objeto onde os astrônomos descobriram o surto de raios X. HOPS 383 é chamada uma "protoestrela" jovem porque está na fase inicial da evolução estelar que ocorre logo após o início do colapso de uma grande nuvem de gás e poeira. Uma vez amadurecida, HOPS 383, localizada a cerca de 1.400 anos-luz da Terra, terá uma massa equivalente a mais ou menos metade da massa do Sol.

A ilustração mostra HOPS 383 rodeada por um casulo de material com a forma de um donut (castanho escuro), contendo cerca de metade da massa da protoestrela, que está  caindo em direção à estrela central. Grande parte da luz da estrela em HOPS 383 é incapaz de perfurar este casulo, mas os raios X do surto (azul) são poderosos o suficiente para o fazer. A radiação infravermelha emitida por HOPS 383 é espalhada pelo interior do casulo (branco e amarelo).

As observações do Chandra, em dezembro de 2017, revelaram o surto de raios X, que durou cerca de 3 horas e 20 minutos. O rápido aumento e a lenta diminuição da quantidade de raios X são semelhantes ao comportamento dos raios X de estrelas jovens mais evoluídas que HOPS 383. Não foram detectados raios X oriundos da protoestrela fora deste período, o que implica que durante estas vezes HOPS 383 era pelo menos dez vezes mais fraca, em média, do que o surto no seu máximo. Também é 2.000 vezes mais potente do que o surto de raios X mais brilhante observado no Sol, uma estrela de meia-idade com massa relativamente baixa.

À medida que o material do casulo cai para dentro em direção ao disco, há também um êxodo de gás e poeira. Este fluxo exterior remove momento angular do sistema, permitindo que o material caia do disco para a jovem protoestrela em crescimento. Um fluxo deste tipo foi visto em HOPS 383 e é possível que os poderosos surtos de raios X como o observado pelo Chandra podem retirar elétrons dos átomos. Isto pode ser importante para direcionar o fluxo por forças magnéticas.



© NASA/Chandra/N. Grosso (HOPS 383 Timelapse)

Além disso, quando a estrela expeliu raios X, provavelmente também teria impulsionado fluxos energéticos de partículas que colidiram com grãos de poeira localizados na orla interna do disco de material que gira em torno da protoestrela. Supondo que algo semelhante aconteceu no nosso Sol, as reações nucleares provocadas por esta colisão podem explicar as abundâncias incomuns de elementos em certos tipos de meteoritos encontrados na Terra.

Não foi detectado nenhum outro surto em HOPS 383 ao longo de três observações com o Chandra, totalizando um tempo de exposição pouco inferior a um dia. Os astrônomos vão precisar de observações de raios X mais longas para determinar a frequência de tais explosões durante esta fase inicial de desenvolvimento de estrelas como o nosso Sol.

Fonte: Harvard-Smithsonian Center for Astrophysics