terça-feira, 21 de julho de 2020

Estrela "fugitiva" pode explicar brilho incomum ao redor de buraco negro

No centro de uma galáxia distante, um buraco negro está consumindo lentamente um disco de gás que gira ao seu redor como água num dreno.


© NASA/JPL-Caltech (corrente de detritos cai no disco de buraco negro)

À medida que um fluxo constante de gás é puxado para o interior do buraco negro, partículas ultraquentes reúnem-se perto do buraco negro, acima e abaixo do disco, gerando um brilho de raios X que pode ser visto a 300 milhões de anos-luz de distância, a partir da Terra. Sabemos que estas coleções de gás ultraquente, chamadas coroas, exibem mudanças visíveis na sua luminosidade, brilhando ou escurecendo por um fator de até 100 vezes quando um buraco negro se abastece.

Mas há dois anos, os astrônomos assistiram com admiração os raios X da coroa do buraco negro numa galáxia conhecida como 1ES 1927+654 que desapareceram completamente, diminuindo por um fator de 10.000 em cerca de 40 dias. Quase imediatamente, começou a recuperar, e cerca de 100 dias depois tornou-se quase 20 vezes mais brilhante do que era antes do evento.

Os raios X da coroa de um buraco negro são subprodutos diretos da alimentação do buraco negro, de modo que o desaparecimento desta radiação de 1ES 1927+654 provavelmente significa que o seu suprimento de alimentos foi cortado. Num novo estudo, os cientistas teorizam que uma estrela em fuga pode ter chegado demasiado perto do buraco negro e ter sido destruída. Se fosse este o caso, os detritos em movimento da estrela podiam ter colidido com parte do disco, dispersando brevemente o gás. Normalmente, não são vistas variações como esta na acreção de buracos negros.

Quase todas as galáxias do Universo podem hospedar um buraco negro supermassivo no seu centro, como o de 1ES 1927+654, com massas milhões ou bilhões de vezes maiores que a do nosso Sol. Crescem consumindo o gás que os rodeia, também conhecido como disco de acreção. Dado que os buracos negros não emitem ou refletem luz, não podem ser vistos diretamente, mas a luz das suas coroas e dos seus discos de acreção fornecem uma maneira de aprender mais sobre estes objetos escuros.

A hipótese estelar também é apoiada pelo motivo de que alguns meses antes do desaparecimento do sinal de raios X, observatórios na Terra viram o disco aumentando consideravelmente de brilho em comprimentos de onda visíveis. Isto pode ter resultado da colisão inicial dos detritos estelares com o disco.

O evento de desaparecimento em 1ES 1927+654 é único não apenas por causa da dramática mudança no brilho, mas também devido à profundidade com que os astrônomos foram capazes de o estudar. A explosão de luz visível foi auxiliada por observações de acompanhamento do buraco negro usando o NICER (Neutron star Interior Composition Explorer) da NASA, um telescópio de raios X a bordo da Estação Espacial Internacional (ISS). No total, o NICER observou o sistema 265 vezes ao longo de 15 meses. Monitoramento adicional em raios X foi obtida com o Observatório Swift Neil Gehrels da NASA, que também observou o sistema sob luz ultravioleta, bem como com o NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA e com o Observatório XMM-Newton da ESA.

Quando os raios X da coroa desapareceram, o NICER e o Swift observaram raios X menos energéticos do sistema, de modo que, coletivamente, estes observatórios forneceram um fluxo contínuo de informações durante todo o evento.

Embora uma estrela rebelde pareça a culpada mais provável, os pesquisadores observam que podem existir outras explicações para o evento sem precedentes. Uma característica notável das observações é que a queda geral no brilho não foi uma transição suave: dia a dia, os raios X de baixa energia que o NICER detectou mostravam variação dramática, às vezes mudando o brilho por um fator de 100 em menos de 8 horas. Em casos extremos, sabe-se que as coroas dos buracos negros se tornam 100 vezes mais brilhantes ou mais tênues, mas em escalas de tempo muito mais longas. Tais mudanças rápidas, ocorrendo continuamente durante meses, são extraordinárias.

É possível que este tipo de variabilidade extrema em discos de acreção de buracos negros seja mais comum do que os astrônomos pensem. Muitos observatórios em operação e de próxima geração estão projetados para procurar mudanças a curto prazo nos fenômenos cósmicos, uma prática conhecida como "astronomia no domínio do tempo", que podem revelar mais eventos como este.

Será que este buraco negro ativo vai regressar ao estado em que se encontrava antes do evento de perturbação? Ou será que o sistema foi alterado fundamentalmente? Os astrônomos continuam observando para descobrir.

O novo estudo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Massachusetts Institute of Technology

Uma descoberta com braços fantasmagóricos

Uma característica notável da maioria das galáxias espirais é a multiplicidade de braços espirais arqueados que aparentemente giram do centro da galáxia.


© Hubble/M. Gregg (NGC 4848)

Nesta imagem, tirada com o telescópio espacial Hubble, os impressionantes braços espirais azul-prateados da galáxia NGC 4848 são observados em detalhes formidáveis. Não apenas vemos a seção interna dos braços espirais contendo centenas de milhares de estrelas jovens, brilhantes e azuis, mas o Hubble também captou as extremidades extremamente débeis dos braços espirais externos.

Essa galáxia espiral barrada foi descoberta pela primeira vez em 1865 pelo astrônomo alemão Heinrich Louis d'Arrest. Em sua carreira, Heinrich também descobriu notavelmente o asteroide 76 Freia, o cometa d'Arrest (1851), muitas outras galáxias e também contribuiu para a descoberta de Netuno.

Se você estiver situado no Hemisfério Norte com um grande telescópio, poderá observar a aparência fantasmagórica dessa galáxia tênue na constelação de Coma Berenices.

Fonte: ESA

sábado, 18 de julho de 2020

Planeta Nove é um buraco negro primordial?

Cientistas da Universidade de Harvard e da BHI (Black Hole Initiative) desenvolveram um novo método para encontrar buracos negros no Sistema Solar exterior e, juntamente com ele, determinar de uma vez por todas a verdadeira natureza do hipotético Planeta Nove.


© M. Weiss (surtos de acreção do encontro de cometa com hipotético buraco negro)

O estudo destaca a capacidade do levantamento LSST (Legacy Survey of Space and Time) do futuro Observatório Vera C. Rubin para observar surtos de acreção, cuja presença pode provar ou descartar o Planeta Nove como um buraco negro.

O Dr. Avi Loeb, professor em Harvard, e Amir Siraj, estudante, desenvolveram o novo método para procurar buracos negros no Sistema Solar exterior, com base em surtos que resultam da perturbação de cometas interceptados. O estudo sugere que o LSST tem a capacidade de encontrar buracos negros observando surtos que resultam do impacto de pequenos objetos da nuvem de Oort.

"Nas proximidades de um buraco negro, pequenos corpos que se aproximam dele 'derreterão' como resultado do aquecimento da acumulação de gás do meio interestelar para o buraco negro," diz Siraj. "Depois de derreterem, os pequenos corpos estão sujeitos a perturbações de maré pelo buraco negro, seguidas da acreção do corpo perturbado pelas marés no buraco negro". "Dado que os buracos negros são intrinsecamente escuros, a radiação que a matéria emite a caminho da entrada do buraco negro é a única maneira de iluminar este ambiente escuro," acrescentou Loeb.

As pesquisas futuras de buracos negros primordiais podem ser informadas pelo novo cálculo. "Este método pode detectar ou descartar buracos negros de massa planetária até à orla da nuvem de Oort, ou cerca de 100.000 UA," explicou Siraj. "Poderá ser capaz de colocar novos limites na fração de matéria escura contida nos buracos negros primordiais."

Espera-se que o LSST tenha a sensibilidade necessária para detectar surtos de acreção, enquanto a tecnologia atual não o consegue fazer sem orientação. "O LSST tem um amplo campo de visão, cobrindo o céu inteiro repetidamente e procurando surtos transientes," disse Loeb. "Outros telescópios são bons em apontar para um alvo conhecido, mas nós não sabemos exatamente onde procurar o Planeta Nove. Conhecemos apenas a ampla região em que pode residir". Siraj acrescentou: "A capacidade do LSST em examinar o céu duas vezes por semana é extremamente valiosa. Além disso, a sua profundidade sem precedentes permitirá a detecção de explosões resultantes de objetos impactantes relativamente pequenos, que são mais frequentes do que os grandes."

O estudo concentra-se no famoso Planeta Nove como o primeiro candidato à detecção. Assunto de muita especulação, a maioria das teorias sugere que o Planeta Nove é um planeta ainda por detectar, mas também pode sinalizar a existência de um buraco negro de massa planetária.

"O Planeta Nove é uma explicação convincente para o agrupamento observado de alguns objetos localizados além da órbita de Netuno. Se a existência do Planeta Nove for confirmada através de uma pesquisa eletromagnética direta, será a primeira detecção de um novo planeta no Sistema Solar em dois séculos, sem contar com Plutão", disse Siraj.

Uma falha na detecção de luz do Planeta Nove, ou outros modelos recentes, como a sugestão de enviar sondas para medir a influência gravitacional, tornaria o modelo do buraco negro intrigante. "Tem havido muita especulação sobre explicações alternativas para as órbitas anômalas observadas no Sistema Solar exterior. Uma das ideias apresentadas foi a possibilidade de o Planeta Nove ser um buraco negro do tamanho de uma laranja com uma massa de cinco a dez vezes a da Terra."

O foco no Planeta Nove é baseado na importância científica sem precedentes que uma hipotética descoberta de um buraco negro de massa planetária no Sistema Solar teria, bem como no interesse continuado em entender o que existe por aí. A periferia do Sistema Solar é o nosso quintal. Imediatamente levanta questões: porque é que está ali? Como é que obteve as suas propriedades? Será que moldou a história do Sistema Solar? Será que existem mais como ele?"

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 17 de julho de 2020

Explosão termonuclear lança sobrevivente de supernova

De acordo com um novo estudo pela Universidade de Warwick, uma estrela anã branca expulsou-se ela própria da sua órbita com outra estrela numa "supernova parcial" e está agora viajando pela nossa Galáxia.


© U. Warwick/Mark Garlick (material expelido pela supernova)

Isto abre a possibilidade de muitos outros sobreviventes de supernovas viajarem sem serem descobertos pela Via Láctea, bem como outros tipos de supernovas que ocorrem em outras galáxias que nunca foram vistas antes.

A pesquisa analisou uma anã branca que se descobriu anteriormente ter uma composição atmosférica incomum. Revela que a estrela pertencia muito provavelmente a um binário e que sobreviveu à sua explosão de supernova, que a enviou e à sua companheira a "voar" pela Via Láctea em direções opostas.

As anãs brancas são os núcleos remanescentes de gigantes vermelhas, depois destas estrelas morrerem e liberarem as suas camadas externas, arrefecendo ao longo de bilhões de anos. A maioria das anãs brancas têm atmosferas compostas quase inteiramente de hidrogênio ou hélio, com evidências ocasionais de carbono ou oxigênio extraídos do núcleo da estrela.

Esta estrela, designada SDSS J1240+6710 e descoberta em 2015, parecia não conter hidrogênio nem hélio, composta ao invés por uma mistura incomum de oxigênio, nêonio, magnésio e silício. Usando o telescópio espacial Hubble, os cientistas também identificaram carbono, sódio e alumínio na atmosfera da estrela, todos produzidos nas primeiras reações termonucleares de uma supernova.

No entanto, há uma clara ausência do que é conhecido como o "grupo de ferro" dos elementos ferro, níquel, cromo e manganês. Estes elementos mais pesados são normalmente gerados por fusão nuclear a partir dos mais leves e são característicos das supernovas termonucleares. A ausência de elementos do grupo de ferro na estrela SDSS J1240+6710 sugere que a estrela passou apenas por uma supernova parcial antes que a queima nuclear terminasse.

Os cientistas foram capazes de medir a velocidade da anã branca e descobriram que viaja a 900.000 km/h. Também possui uma massa particularmente baixa para uma anã branca - apenas 40% da massa do nosso Sol , o que seria consistente com a perda de massa de uma supernova parcial.

O professor Boris Gaensicke, autor principal do artigo científico e do Departamento de Física da Universidade de Warwick, Reino Unido, disse: "Esta estrela é única porque possui todas as principais características de uma anã branca, mas tem uma velocidade muito alta e abundâncias incomuns que não fazem sentido quando combinadas com a sua baixa massa.

"Tem uma composição química que é a impressão digital da queima nuclear, uma massa baixa e uma velocidade muito alta: todos estes fatos implicam que deve ter vindo de algum tipo de sistema binário íntimo e deve ter sido submetida a ignição termonuclear. Teria sido um tipo de supernova, mas um tipo que nunca vimos antes."

Os cientistas teorizam que a supernova perturbou a órbita da anã branca com a sua parceira quando ejetou muito abruptamente uma grande proporção da sua massa. Ambas as estrelas teriam sido transportadas em direções opostas, à sua velocidade orbital. Isto explicaria a alta velocidade da estrela.

As supernovas termonucleares mais bem estudadas são as do "Tipo Ia", que levaram à descoberta da energia escura, e agora são rotineiramente usadas para mapear a estrutura do Universo. Mas existem evidências crescentes de que as supernovas termonucleares podem ocorrer sob condições muito diferentes.

A SDSS J1240+6710 pode ser a sobrevivente de um tipo de supernova que ainda não foi "apanhada em flagrante". Sem o níquel radioativo que alimenta o brilho duradouro das supernovas do Tipo Ia, a explosão que lançou SDSS J1240+6710 pela Galáxia teria sido um breve flash de luz difícil de descobrir.

O professor Gaensicke acrescenta: "O estudo das supernovas termonucleares é um campo imenso e há uma grande quantidade de esforços observacionais para encontrar supernovas em outras galáxias. A dificuldade é que vemos a estrela quando explode, mas é muito difícil conhecer as propriedades da estrela antes de explodir.

"Estamos agora descobrindo que existem diferentes tipos de anãs brancas que sobrevivem às supernovas sob diferentes condições e, usando as composições, massas e velocidades que possuem, podemos descobrir a que tipo de supernova foram submetidas. O estudo das sobreviventes de supernovas na nossa Via Láctea vai ajudar a entender as miríades de supernovas que vemos nas outras galáxias."

O professor Kepler de Souza Oliveira Filho da Universidade Federal do Rio Grande do Sul, Brasil, quem originalmente descobriu esta estrela, disse: "O fato de uma anã branca de baixa massa ter passado por queima de carbono é um testemunho dos efeitos da evolução da interação binária e dos seus efeitos sobre a evolução química do Universo."

O Dr. Robert Raddi, da Universidade Politécnica da Catalunha, Espanha, que realizou a análise cinemática, disse: "Mais uma vez, a sinergia entre a astrometria muito precisa do Gaia e a análise espectroscópica ajudou a restringir as propriedades impressionantes de uma anã branca única, que provavelmente se formou numa supernova termonuclear e foi ejetada a alta velocidade como consequência da explosão."

A pesquisa foi descrita no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Warwick

segunda-feira, 13 de julho de 2020

A Mancha de Clyde

Uma das características mais notáveis de Júpiter é sua Grande Mancha Vermelha: uma gigantesca tempestade, que acontece há séculos, no maior planeta do nosso Sistema Solar.


© NASA/Juno/Kevin M. Gill (Mancha de Clyde)

Próximo da Grande Mancha Vermelha, uma nova tempestade foi descoberta: a Mancha de Clyde, que é menor, branca e, provavelmente, se formou há menos tempo.

A tempestade recebeu esse nome em homenagem ao astrônomo amador que a descobriu. Clyde Foster, diretor da seção Shallow Sky da Sociedade Astronômica da África do Sul, observava Júpiter com seu telescópio Schmidt-Cassegrain de 14", em uma manhã de 31 de maio de 2020, na África do Sul. Ele percebeu um ponto mais brilhante que o comum, no hemisfério sul do planeta, próximo à Grande Mancha Vermelha.

Outros astrônomos australianos estavam observando Júpiter, horas antes, e não notaram esse ponto. Isso indica que a tempestade se formou nesse meio-tempo, ao contrário da Grande Mancha Vermelha, que está em atividade há centenas de anos.

Alguns dias depois, a sonda Juno, da NASA, realizou um sobrevoo próximo à superfície de Júpiter e pode observar melhor a descoberta de Clyde Foster. 

Isso porque a órbita da Juno é uma elipse bem achatada, então a nave tira a maioria dessas fotos nesses sobrevoos, que acontecem a cada 53 dias, mais ou menos. O local exato da mancha nem estava no caminho da Juno, mas os astrônomos da NASA desviaram a nave um pouquinho para poder observá-la.

A Mancha de Clyde é constituída por nuvens em erupção em camadas superiores da atmosfera de Júpiter, que é formada por gases. A faixa de latitude onde a oval branca se formou é conhecida como Cinturão Temperado do Sul, onde normalmente as turbulências ultrapassam as camadas superiores de nuvens da atmosfera jupiteriana.

Fonte: NASA

domingo, 12 de julho de 2020

O trajeto cósmico em direção à formação de estrelas e planetas

O gás molecular nas galáxias é organizado numa hierarquia de estruturas.


© MPIA/T. Müller/J. Henshaw (fluxos da velocidade do gás na galáxia espiral NGC 4321)

O material molecular nas gigantescas nuvens de gás molecular viaja por intricadas redes de gás filamentar em direção aos centros congestionados de gás e poeira, onde é comprimido em estrelas e planetas. Para melhor entender este processo, uma equipe de astrônomos liderada por Jonathan Henshaw do Instituto Max Planck para Astronomia mediu o movimento do gás que flui das escalas galácticas até escalas dos aglomerados de gás em que as estrelas se formam. Os resultados mostram que o gás que corre através de cada escala está ligado dinamicamente: enquanto a formação estelar e planetária ocorre nas escalas menores, este processo é controlado por uma cascata de fluxos de matéria que começam em escalas galácticas.

O gás molecular nas galáxias é posto em movimento por mecanismos físicos, como rotação de galáxias, explosões de supernovas, campos magnéticos, turbulência e gravidade, moldando a estrutura do gás. Compreender como estes movimentos afetam diretamente a formação de estrelas e planetas é difícil, porque exige a quantificação do movimento dos gases numa variabilidade enorme de escalas espaciais e, em seguida, a vinculação deste movimento às estruturas físicas que observamos. As instalações astrofísicas modernas mapeiam agora rotineiramente grandes áreas do céu, com alguns mapas contendo milhões de pixels, cada com centenas a milhares de medições independentes de velocidade. Como resultado, a medição destes movimentos é cientificamente e tecnologicamente desafiadora.

A fim de enfrentar estes desafios, os astrônomos decidiram medir movimentos de gás ao longo de uma variedade de ambientes diferentes usando observações do gás na Via Láctea e numa galáxia próxima. Estes movimentos são detectados medindo a aparente mudança na frequência de luz emitida por moléculas, mudança esta provocada pelo movimento relativo entre a fonte de luz e o observador; um fenômeno conhecido como efeito Doppler. Aplicando um novo software a equipe conseguiu analisar milhões de medições.

Os pesquisadores descobriram que os movimentos do gás molecular frio parecem flutuar em velocidade, lembrando a aparência de ondas à superfície do oceano. Estas flutuações representam o movimento do gás.

Para melhor entender a natureza dos fluxos de gás, foram selecionadas várias regiões para uma análise mais detalhada, usando técnicas estatísticas avançadas para procurar diferenças entre as flutuações. Ao combinar uma variedade de medições diferentes, foi possível determinar como as flutuações da velocidade dependem da escala espacial.

A equipe descobriu que as flutuações de velocidade associadas com a estrutura espaçada de modo equidistante mostravam todas um padrão distinto. As flutuações parecem ondas oscilando ao longo das cristas dos filamentos, têm uma amplitude e comprimento de onda bem definidos.

Em contraste, foi descoberto que as flutuações de velocidade medidas ao longo das nuvens moleculares gigantes, em escalas intermediárias entre nuvens inteiras e os minúsculos núcleos no seu interior, não mostram escala característica óbvia, porque os fluxos de gás turbulento que criam estas estruturas formam uma cascata caótica.

Os resultados foram publicados na revista científica Nature Astronomy.

Fonte: Max Planck Institute for Astronomy

sábado, 11 de julho de 2020

O poder coletivo dos corpos escuros e gelados do Sistema Solar

Os confins do nosso Sistema Solar são um lugar estranho, cheios de corpos escuros e gelados com alcunhas como Sedna, Biden e Goblin, cada um dos quais com várias centenas de quilômetros de diâmetro.


© JILA/Steven Burrows (corpos separados do Sistema Solar)

Dois novos estudos realizados por pesquisadores da Universidade do Colorado em Boulder, EUA, podem ajudar a resolver um dos maiores mistérios sobre estes mundos distantes: o porquê de tantos não orbitarem o Sol da maneira que deviam.

As órbitas destes extravagantes corpos menores, que os cientistas chamam de "objetos separados", inclinam-se e desviam-se do plano do Sistema Solar, entre outros comportamentos incomuns.

Alguns cientistas sugeriram que um objeto muito grande podia ser o culpado, como o conhecido planeta teórico, "Planeta Nove", por espalhar objetos no seu rastro. Mas pode ser um objeto menor.

Baseando-se em simulações exaustivas de computador, os pesquisadores defendem que estes objetos separados podem eles próprios ter perturbado as suas órbitas, através de pequenos impulsos gravitacionais acumulados ao longo de milhões de anos.

O Sistema Solar exterior é muito escuro. Normalmente, a única maneira de observar estes objetos é quando os raios solares colidem com a sua superfície e são dirigidos para os telescópios terrestres.

Enquanto a maior parte dos corpos no Sistema Solar tendem a orbitar o Sol num disco achatado, as órbitas destes mundos gelados podem ter grandes inclinações. Muitos também tendem a agrupar-se apenas numa região do céu noturno, um pouco semelhante a uma bússola que aponta apenas para o norte.

No processo foi descoberto algo incomum: os objetos gelados nas simulações começaram a orbitar o Sol como normal. Mas, com o tempo, começaram a empurrar e a puxarem-se uns aos outros. Como resultado, as suas órbitas foram ficando esquisitas até parecem-se com as órbitas reais. O mais notável foi que fizeram isto tudo sozinhos, os asteroides e os planetas menores não precisavam de um planeta grande para os impelir para órbitas fora do comum.

Individualmente, todas as interações gravitacionais entre estes corpos pequenos são fracas; mas, em grande número, tornam-se importantes.

As descobertas também vêm com uma grande ressalva. Para fazer com que a teoria de "gravidade coletiva" funcione, o Sistema Solar exterior já precisou de conter uma enorme quantidade de material. Estes objetos devem totalizar algo na ordem das 20 massas terrestres.

De uma forma ou de outra, os cientistas podem em breve ter mais certezas. Um novo telescópio, denominado Observatório Vera C. Rubin, vai em 2022 entrar em funcionamento no Chile e começar a observar novos aspectos sobre esta região tão desconhecida do espaço.

Os resultados foram publicados nos periódicos The Astronomical Journal e The Astronomical Journal Letters.

Fonte: University of Colorado

quarta-feira, 8 de julho de 2020

Quando uma estrela supergigante engole uma estrela morta

Quase meio século atrás, o físico Kip Thorne, ganhador do Prêmio Nobel de 2017, e a astrônoma Anna Żytkow sugeriram que uma estrela estranha, poderia estar escondida no cosmos, apenas esperando ser encontrada por quem soubesse procurar isto. Os astrônomos denominaram esses híbridos estelares teóricos de objetos Thorne-Żytkow.


© Astronomy (ilustração de objeto Thorne-Żytkow)

A possível existência de objetos Thorne-Żytkow (TZOs) veio à tona quando seus pesquisadores homônomos fizeram simulações em computador. Foi descoberto que uma estrela de nêutrons - um minúsculo remanescente estelar ultra-denso deixado para trás quando uma estrela se torna supernova - poderia ser devorada por uma estrela supergigante vermelha.

De acordo com as simulações, se as estrelas se aproximarem demais, em vez de uma estrela ser ejetada, as duas estrelas poderão se fundir. A estrela de nêutrons de massa solar do tamanho de uma cidade continuaria vivendo dentro de seu hospedeiro muito maior, quase como um parasita cósmico. Mas mesmo que a física realmente permita a existência de tais estrelas, encontrá-las será difícil.

Em um estudo publicado em 1975 no periódico Astrophysical Journal, Thorne e Żytkow sugeriram que essas estrelas pareceriam quase idênticas às supergigantes vermelhas como Betelgeuse na constelação de Órion. Estrelas supergigantes são relativamente comuns e são algumas das maiores e mais jovens do Universo. Os objetos TZOs seriam muito semelhantes aos supergigantes vermelhos, mas suspeita-se que sobrevivam até 10 vezes mais.

As supergigantes vermelhas comuns, como outras estrelas, são alimentadas por fusão nuclear em seus núcleos. Então, quando essa energia se esgota, a gravidade contida leva a implodir antes de irromper como uma supernova. Mas os TZOs podem viver vidas tão longas porque não dependem da fusão nuclear sustentada em seus núcleos para evitar o colapso. Em vez disso, o núcleo da estrela de nêutrons de uma TZO, que já é extremamente compactada, evita amplamente o colapso gravitacional rápido das camadas circundantes.

Os astrônomos têm duas teorias diferentes sobre como os TZOs se formam, e ambos dependem dos objetos iniciais que começam suas vidas como duas estrelas gigantes em um sistema binário próximo. Em uma teoria, a maior das duas estrelas explodiria como uma supernova primeiro, deixando para trás uma estrela de nêutrons. Mas com o tempo, a supergigante restante continuaria a crescer para fora até engolir completamente o restante da estrela de nêutrons nas proximidades.

Outra possibilidade para a formação de TZOs é que, quando uma estrela explode como uma supernova assimétrica, seu núcleo remanescente pode receber um poderoso impulso. Isso poderia potencialmente disparar a estrela de nêutrons nas entranhas da gigante vermelha restante.

Mas não importa como elas se formem, os astrônomos anunciaram em 2014 que podem ter descoberto o primeiro objeto Thorne-Żytkow. A estrela estava escondida a cerca de 200.000 anos-luz de distância na Pequena Nuvem de Magalhães, uma galáxia anã que orbita a Via Láctea.

Foi encontrado pela astrônoma Emily Levesque, agora na Universidade de Washington, com a ajuda de sua equipe de pesquisadores. Para encontrar a suspeita de TZO, o grupo de Levesque usou o Observatório Apache Point do Novo México para estudar duas dúzias de estrelas supergigantes vermelhas na Via Láctea, bem como um dos telescópios Magalhães no Chile para estudar outro grupo de supergigantes na Pequena Nuvem de Magalhães.

Ao revisar os dados, uma estrela em particular se destacou. O sistema, denominado HV 2112, foi inicialmente catalogado como variável em 1908 pela pioneira astrônoma Henrietta Swan Leavitt. Na época, porém, pensava-se que era uma supergigante vermelha vivendo seus dias de morte antes de se tornar uma supernova.

No entanto, mais de 100 anos depois que Leavitt notou pela primeira vez o objeto estranho, a análise de Levesque e sua equipe revelou assinaturas químicas incomuns que eles pensavam serem os sinais reveladores de um objeto mítico de Thorne-Żytkow. Os pesquisadores viram quantidades excessivas de lítio, cálcio e outros elementos, que eles só poderiam explicar através das reações nucleares únicas que ocorreriam dentro de um TZO.

Mas eles não podiam ter certeza absoluta; a HV 2112 também parecia ter outras impressões digitais químicas estranhas que não eram esperadas. Com base nesses mistérios restantes, a equipe sugere que os modelos teóricos não apreciaram completamente as nuances dos objetos Thorne-Żytkow ou a HV 2112 simplesmente não era um TZO.

A natureza bizarra da descoberta provocou manchetes na época. Mas para os astrônomos, também foi uma descoberta importante porque ofereceu evidências para estrelas movidas por processos além da fusão nuclear.

Mas quatro anos depois, em 2018, outro grupo de astrônomos alavancou novos detalhes para essa descoberta única. Eles fizeram sua própria análise da HV 2112 e a compararam com estrelas semelhantes, mas não encontraram os mesmos níveis de excesso de cálcio ou outros elementos detectados pela equipe de Levesque. A nova análise mostrou um excesso de lítio, mas, além disso, os resultados sugeriram que essa estrela era basicamente uma supergigante vermelha comum.

Embora a equipe possa ter frustrado os sonhos da HV 2112 de ser diferente, eles ofereceram a esperança de um candidato substituto. Foi encontrado outro possível objeto Thorne-Żytkow, catalogado como HV 11417, que exibia alguns sinais reveladores que os astrônomos previam que os objetos devessem ter.

Um aspecto que as duas equipes concordam é que, quando se trata de objetos de Thorne-Żytkow, tanto a teoria quanto a observação ainda têm um longo caminho a percorrer.

Fonte: Astronomy

sábado, 4 de julho de 2020

Novas ideias sobre um exoplaneta extremamente quente

Medições do TESS (Transiting Exoplanet Survey Satellite) da NASA permitiram aos astrônomos melhorar bastante a sua compreensão do ambiente bizarro de KELT-9b, um dos exoplanetas mais quentes conhecidos.


© Chris Smith (ilustração do exoplaneta KELT-9b)

É um exoplaneta gigante numa órbita muito íntima, quase polar, em torno de uma estrela que gira rapidamente, e estas características complicam a capacidade de entender a estrela e os seus efeitos no planeta.

Localizado a cerca de 670 anos-luz de distância na direção da constelação de Sagitário, KELT-9b foi descoberto em 2017 porque o planeta passou em frente da sua estrela durante uma parte da sua órbita, um evento chamado trânsito. Os trânsitos diminuem regularmente a luz da estrela por uma quantidade minúscula, mas detectável. Os trânsitos de KELT-9b foram observados pela primeira vez pelo levantamento de trânsitos KELT, um projeto que recolheu observações com dois telescópios robóticos localizados no estado norte-americano do Arizona e na África do Sul.

Entre 18 de julho e 11 de setembro de 2019, como parte da campanha de um ano da missão para observar o céu do norte, o TESS observou 27 trânsitos de KELT-9b, obtendo medições a cada dois minutos. Estas observações permitiram a modelagem da estrela incomum e o seu impacto no planeta.

O KELT-9b é um mundo gigante de gás cerca de 1,8 vezes maior que Júpiter, com 2,9 vezes a sua massa. As forças de marés bloquearam a sua rotação, de modo que o mesmo lado está sempre virado para a sua estrela. O exoplaneta gira em torno da sua estrela em apenas 36 horas numa órbita que o transporta quase diretamente acima de ambos os polos da estrela.

O KELT-9b recebe 44.000 vezes mais energia da sua estrela do que a Terra do Sol. Isto eleva a temperatura diurna do planeta a cerca de 4.300º C, mais quente do que as superfícies de algumas estrelas. Este aquecimento intenso também faz com que a atmosfera do planeta escape para o espaço.

A sua estrela hospedeira também é estranha. Tem aproximadamente o dobro do tamanho do Sol e é, em média, 56% mais quente. Mas gira 38 vezes mais depressa do que o Sol, completando uma rotação em apenas 16 horas. A sua rápida rotação distorce a forma da estrela, achatando-a nos polos e ampliando a sua secção central. Isto faz com que os polos da estrela aqueçam e brilhem enquanto a sua região equatorial esfria e escurece, um fenômeno chamado escurecimento gravitacional. O resultado é uma diferença de temperatura à superfície da estrela de quase 800º C.

A cada órbita, KELT-9b sofre por duas vezes toda a gama de temperaturas estelares, produzindo o que equivale a uma sequência sazonal muito peculiar. O planeta passa ao "verão" quando orbita sobre cada polo e ao "inverno" quando passa sobre a parte central e mais fria da estrela. Assim, KELT-9b tem dois verões e dois invernos por ano, cada estação durando aproximadamente nove horas.

A órbita polar de KELT-9b, em torno da sua estrela achatada, produz trânsitos distintamente desequilibrados. O planeta começa o seu trânsito perto dos polos brilhantes da estrela e depois bloqueia cada vez menos luz à medida que passa sobre o equador mais escuro da estrela. Esta assimetria fornece pistas sobre as mudanças de temperatura e brilho na superfície da estrela e permitiram a reconstrução da sua forma não redonda, a sua orientação no espaço, a sua variabilidade de temperaturas de superfície e outros fatores que afetam o planeta.

Este trabalho ajuda a unificar o escurecimento gravitacional com outras técnicas que medem o alinhamento planetário, revelando segredos sobre a formação e sobre a história evolutiva dos planetas em torno de estrelas de massa elevada.

As novas descobertas foram publicadas no periódico The Astronomical Journal.

Fonte: Goddard Space Flight Center

quarta-feira, 1 de julho de 2020

Colisão de buracos negros pode ter "explodido com luz"

Quando dois buracos negros espiralam um em direção ao outro e finalmente colidem, emitem ondulações no espaço e no tempo chamadas ondas gravitacionais.


© Caltech/R. Hurt (ilustração de buraco negro e disco circundante de gás)

Considerando que os buracos negros não emitem luz, não se espera que estes eventos tenham brilho, ou radiação eletromagnética. Mas alguns teóricos criaram maneiras pelas quais uma fusão de buracos negros pode explodir com luz. Agora, pela primeira vez, os astrônomos viram evidências de um destes cenários de produção de luz.

Com a ajuda do ZTF (Zwicky Transient Facility) do Caltech e localizado no Observatório Palomar perto de San Diego, EUA, os cientistas descobriram o que poderá ser um surto de luz de um par de buracos negros. A fusão dos buracos negros foi testemunhada pela primeira vez pelo LIGO (Laser Interferometer Gravitational-wave Observatory) e pelo detector europeu Virgo no dia 21 de maio de 2019, num evento chamado S190521g. À medida que os buracos negros se fundiam, agitando o espaço e o tempo, liberaram ondas gravitacionais.

Enquanto isto acontecia, o ZTF realizava o seu levantamento robótico do céu que captava todos os tipos de objetos que liberam luz, entram em erupção ou de outro modo variam no céu noturno. Uma liberação de luz que o levantamento captou, gerada por um buraco negro supermassivo ativo e distante, ou quasar, chamado J1249+3449, foi identificado na região do evento de ondas gravitacionais S190521g.

"Este buraco negro supermassivo era já ativo anos antes deste surto mais abrupto," diz Matthew Graham, professor de astronomia no Caltech e cientista do projeto ZTF. "O surto ocorreu na escala de tempo certa e no local certo, para coincidir com o evento de ondas gravitacionais. No nosso estudo, concluímos que o surto provavelmente foi o resultado de uma fusão de buracos negros, mas não podemos descartar completamente outras possibilidades."

Como é que dois buracos negros em fusão podem liberar luz? No cenário delineado por Graham e colegas, dois buracos negros parceiros estavam aninhados dentro de um disco ao redor de um buraco negro muito maior. No centro da maioria das galáxias, esconde-se um buraco negro supermassivo. É rodeado por um aglomerado de estrelas e remanescentes estelares, incluindo buracos negros.

Depois da fusão dos buracos negros, o novo buraco negro, agora maior, é lançado numa direção aleatória e varre o gás no disco. A reação do gás devido ao movimento brusco do buraco negro que cria o clarão brilhante, visível com telescópios.

Prevê-se que tal surto comece dias ou semanas após a liberação inicial de ondas gravitacionais produzidas durante a fusão. Neste caso, o ZTF não captou o evento imediatamente, mas quando os cientistas voltaram para examinar as imagens de arquivo do ZTF meses depois, encontraram um sinal que começou dias após o evento de ondas gravitacionais de maio de 2019. O ZTF observou o surto desaparecendo lentamente ao longo de um período de um mês.

Tentou-se obter uma visão mais detalhada da luz do buraco negro supermassivo, ou seja, um espectro da luz, mas quando foi observado, a liberação de luz já havia desaparecido. Um espectro teria fornecido mais apoio à ideia de que o surto tinha vindo da fusão de buracos negros dentro do disco do buraco negro supermassivo. No entanto, os pesquisadores dizem que foram capazes de descartar outras possíveis causas para o surto observado, incluindo uma supernova ou um evento de perturbação de marés, que ocorre quando um buraco negro essencialmente engloba uma estrela.

Além disso, a equipe afirma que não é provável que o surto de luz tenha ocorrido devido aos fenômenos habituais do buraco negro supermassivo, que regularmente se alimenta do disco circundante. Usando o CRTS (Catalina Real-Time Transient Survey), liderado pelo Caltech, foram capazes de avaliar o comportamento do buraco negro ao longo dos últimos 15 anos e descobriram que a sua atividade era relativamente normal até maio de 2019, quando se intensificou repentinamente.

"Os buracos negros supermassivos como este têm erupções a toda a hora. Não são objetos silenciosos, mas o momento, tamanho e localização deste surto foi espetacular," diz Mansi Kasliwal, professor assistente de astronomia no Caltech. "A razão pela qual a busca por explosões como esta é tão importante é que ajuda bastante a responder as questões da astrofísica e da cosmologia. Se pudermos fazer isto novamente e detectar a luz das fusões de outros buracos negros, podemos definir melhor os locais de origem destes objetos e aprender mais sobre as suas origens."

O buraco negro recém-formado deverá provocar outro surto nos próximos anos. O processo de fusão deu ao objeto um impulso que deverá fazer com que este entre novamente no disco do buraco negro supermassivo, produzindo outra liberação de luz que o ZTF deverá conseguir observar.

O novo estudo foi publicado no periódico Physical Review Letters.

Fonte: California Institute of Technology

Um mistério cósmico: O desaparecimento de uma estrela massiva

Com o auxílio do Very Large Telescope (VLT) do ESO, os astrônomos descobriram a ausência de uma estrela instável massiva numa galáxia anã.


© ESO/L. Calçada (ilustração de estrela azul variável)

Os cientistas acham que isso pode indicar que a estrela se tornou menos brilhante e parcialmente obscurecida por poeira. Uma explicação alternativa seria que a estrela colapsou em um buraco negro sem produzir uma supernova. Se for confirmado, esta pode ser a primeira detecção direta de uma tal estrela gigante terminando a sua vida desta maneira.

Entre 2001 e 2011, várias equipes de astrônomos estudaram uma misteriosa estrela massiva, localizada na galáxia anã Kinman, tendo as suas observações indicado que este objeto se encontrava num estado final de evolução.

Pesquisadores queriam saber mais sobre como é que estrelas muito massivas terminam as suas vidas e a estrela na galáxia anã Kinman parecia ser o alvo perfeito para este estudo. No entanto, em 2019, quando apontaram o VLT para a galáxia distante, não conseguiram encontrar a assinatura da estrela. Em vez disso, e surpreendentemente, descobriu-se que a estrela tinha desaparecido!

Localizada a cerca de 75 milhões de anos-luz de distância, na constelação de Aquário, a galáxia anã Kinman está muito longe para que os astrônomos possam observar estrelas individuais, no entanto podem ser detectadas as assinaturas de algumas delas. Entre 2001 e 2011, a radiação emitida pela galáxia mostrou de forma consistente evidências da existência de uma estrela variável azul luminosa cerca de 2,5 milhões de vezes mais brilhante que o Sol. As estrelas deste tipo são instáveis, mostrando ocasionalmente variações drásticas no seu espectro e brilho. Apesar destas variações, as variáveis azuis luminosas apresentam traços específicos que podem ser identificados, mas estavam ausentes dos dados que a equipe coletou em 2019. O que teria acontecido com a estrela? Seria altamente incomum que uma estrela massiva deste tipo desaparecesse sem produzir uma explosão de supernova muito brilhante.

Em agosto de 2019, o grupo observou a estrela com o instrumento ESPRESSO, utilizando os quatro telescópios de 8 metros do VLT simultaneamente. No entanto, não foram encontrados nenhuns dos sinais que apontavam anteriormente para a presença da estrela luminosa. Alguns meses mais tarde, o grupo utilizou o instrumento X-shooter, montado também no VLT, e mais uma vez não se observaram sinais alguns da estrela.

Foram analisados em seguida dados anteriores recolhidos com os instrumentos X-shooter e UVES, ambos montados no VLT, situado no deserto chileno do Atacama, e também dados de outros telescópios.

Os dados mais antigos indicavam que a estrela na galáxia anã Kinman poderia estar passando por um forte período de explosão que, muito provavelmente, terminou algum tempo depois de 2011. As estrelas variáveis azuis luminosas tais como esta têm tendência para sofrer enormes erupções ao longo das suas vidas, fazendo com que a sua taxa de perda de massa e luminosidade aumentem drasticamente.

Baseando-se nas suas observações e modelos, os astrônomos sugeriram duas explicações para o desaparecimento da estrela e ausência de uma supernova, relacionadas com esta possível explosão. A explosão pode ter resultado na transformação da estrela variável azul luminosa numa estrela menos luminosa, que pode também estar parcialmente escondida por poeira. Alternativamente, a equipe diz que a estrela pode também ter colapsado em um buraco negro, sem produzir uma explosão de supernova. Este último evento seria, contudo, muito raro: o nosso conhecimento atual relativo ao final da vida das estrelas massivas indica que a maioria delas termine a sua vida sob a forma de supernovas.

Estudos futuros são necessários para confirmar o que aconteceu com esta estrela. O Extremely Large Telescope (ELT) do ESO, planejado para começar a operar em 2025, será capaz de distinguir estrelas em galáxias distantes, como a galáxia anã Kinman, o que irá ajudar a resolver mistérios cósmicos como este.

Esta pesquisa foi apresentada no artigo intitulado “The possible disappearance of a massive star in the low metallicity galaxy PHL 293B”, que foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

terça-feira, 30 de junho de 2020

Descobertas duas super-Terras em órbita de anã vermelha próxima

Os exoplanetas mais próximos fornecem-nos as melhores oportunidades para estudos detalhados, incluindo a busca por evidências de vida localizadas além do Sistema Solar.


© Mark Garlick (ilustração do sistema multiplanetário Gliese 887)

Uma pesquisa liderada pela Universidade de Göttingen, Alemanha, por astrônomos do projeto RedDots, detectou um sistema de super-Terras em órbita da estrela próxima Gliese 887, a anã vermelha mais brilhante do céu. As super-Terras são exoplanetas com uma massa maior do que a da Terra, mas substancialmente inferior às dos nossos gigantes gelados locais, Urano e Netuno. As super-Terras recém-descobertas ficam perto da zona habitável da anã vermelha, onde a água pode existir no estado líquido, e podem ser mundos rochosos.

A equipe de astrônomos do RedDots monitorou a anã vermelha usando o espectrógrafo HARPS do ESO no Chile. Usaram uma técnica chamada "oscilação Doppler", que lhes permite medir as pequenas oscilações da estrela provocadas pela atração gravitacional dos planetas. Os sinais regulares correspondem a órbitas de apenas 9,3 e 21,8 dias, indicando duas super-Terras, Gliese 887b e Gliese 887c, ambas maiores que a Terra e movendo-se rapidamente, muito mais depressa que Mercúrio. Os cientistas estimam que a temperatura de Gliese 887c seja de aproximadamente 70ºC.

Gliese 887 é uma das estrelas mais próximas do Sol, a cerca de 11 anos-luz de distância. É muito mais tênue e tem aproximadamente metade do tamanho do nosso Sol, o que significa que a zona habitável está muito mais próxima de Gliese 887 do que a distância Terra-Sol. 

O RedDots descobriu mais dois fatos interessantes sobre Gliese 887. O primeiro é que a anã vermelha tem muito poucas manchas estelares, ao contrário do nosso Sol. Se Gliese 887 fosse tão ativa quanto o nosso Sol, é provável que um vento estelar forte, ou seja, o fluxo de material que pode erodir a atmosfera de um planeta, simplesmente varresse as atmosferas dos planetas. Isto significa que os planetas recém-descobertos podem reter as suas atmosferas ou ter atmosferas mais espessas que a da Terra, e potencialmente hospedar vida, mesmo que GJ887 receba mais luz do que a Terra. O outro aspecto interessante é que o brilho de Gliese 887 é quase constante. Portanto, será relativamente fácil detectar as atmosferas do sistema de super-Terras, tornando-o um alvo principal do telescópio espacial James Webb, o sucessor do telescópio espacial Hubble.

A Dra. Sandra Jeffers, da Universidade de Göttingen e autora principal do estudo, conclui: "Estes planetas vão fornecer as melhores possibilidades para estudos mais detalhados, incluindo a busca por vida fora do nosso Sistema Solar."

Os resultados foram publicados na revista Science.

Fonte: University of Göttingen