quarta-feira, 15 de dezembro de 2021

O flash óptico mais rápido emitido por uma supernova recém-nascida

Uma equipe de astrônomos descobriu o flash óptico mais rápido de uma supernova Tipo Ia.

© U. Kyoto (ilustração de supernova após explosão de anã branca)

Muitas estrelas terminam as suas vidas por meio de uma explosão espetacular. A maioria das estrelas massivas explodirá como uma supernova. Embora uma estrela anã branca seja o remanescente de uma estrela de massa intermediária como o nosso Sol, ela pode explodir se a estrela fizer parte de um sistema estelar binário íntimo, onde duas estrelas se orbitam uma à outra. Este tipo de supernova é classificado como supernova Tipo Ia. 

Por causa do brilho uniforme e extremamente alto das supernovas Tipo Ia, cerca de 5 bilhões de vezes mais brilhantes que o nosso Sol, são amplamente usadas como uma vela padrão para medições de distância em astronomia. Como exemplo de maior sucesso, as supernovas Tipo Ia ajudaram os cientistas a descobrir a expansão acelerada do Universo. 

Mas, apesar do grande sucesso da cosmologia das supernovas Tipo Ia, os pesquisadores ainda debatem questões básicas como o aspeto dos sistemas progenitores das supernovas Tipo Ia e o modo como as explosões das supernovas Tipo Ia são iniciadas. Para resolver estes problemas de longa data, uma equipe de astrônomos liderada por Ji-an Jiang, do Instituto Kavli para Física e Matemática do Universo, tentou captar supernovas Tipo Ia até um dia após as suas explosões, de nome supernovas Tipo Ia de fase inicial, usando novas instalações de levantamento de campo amplo, incluindo a câmara Tomo-e Gozen, o primeiro gerador, do mundo, de mosaicos de campo amplo com sensor CMOS. 

Ao verificar regularmente as candidatas a supernova Tipo Ia de fase inicial descobertas pelo levantamento de transientes Tomo-e, uma candidata chamada Tomo-e202004aaelb chamou a atenção de Jiang. "Tomo-e202004aaelb foi descoberta como tendo alto brilho no dia 21 de abril de 2020. Surpreendentemente, o seu brilho mostrou uma variação significativa nos dois dias seguintes e depois comportou-se como uma supernova Tipo Ia de fase inicial normal. Descobrimos várias supernovas Tipo Ia de fase inicial que mostram um excesso de emissão interessante nos primeiros dias das suas explosões, mas nunca tínhamos visto uma emissão precoce tão rápida e proeminente em comprimentos de onda ópticos. Graças ao modo de levantamento de alta cadência e ao excelente desempenho da Tomo-e Gozen, pudemos capturar perfeitamente esta característica pela primeira vez. Um flash precoce tão rápido deve ter origem diferente em comparação com as supernovas Tipo Ia em excesso anteriormente descobertas," disse Jiang. 

As simulações computacionais pelo professor Keiichi Maeda, da Universidade de Kyoto, mostraram que a origem do misterioso e rápido flash óptico pode ser explicada pela energia liberada a partir de uma interação entre o material ejetado da supernova e um material circunstelar denso e confinado logo após a explosão de supernova.

Por meio de observações espectroscópicas pelo telescópio Seimei da Universidade de Kyoto, a equipe descobriu que a supernova é uma variante das supernovas Tipo Ia mais brilhantes. Na primeira análise do espectro obtido logo o flash inicial, destacou-se como algo diferente das supernovas normais. Foi notado que uma classe mais brilhante de supernovas Tipo Ia poderia parecer-se com esta se fossem observadas numa fase tão inicial. A classificação foi subsequentemente confirmada à medida que o espectro evoluía para se parecer cada vez mais com as brilhantes supernovas Tipo Ia.

O resultado mostra que pelo menos uma fração das supernovas Tipo Ia têm origem num ambiente circunstelar denso, o que fornece uma restrição estrita ao sistema progenitor destes fenômenos espetaculares no nosso Universo. Tendo em que conta que Tomo-e202004aaelb (SN 2020hvf) é muito mais brilhante do que as típicas supernovas Tipo Ia usadas como indicador de distância, a descoberta permitirá que os astrônomos testem várias teorias propostas para estas peculiares supernovas superluminosas Tipo Ia.

"Construímos anteriormente modelos teóricos de anãs brancas giratórias de massa super-Chandrasekhar e das suas explosões. Estes modelos massivos podem ser consistentes com o brilho máximo de SN 2020hvf, mas é necessário mais trabalho teórico para explicar as propriedades observacionais detalhadas. A SN 2020hvf forneceu uma oportunidade maravilhosa de colaboração entre a teoria e as observações," disse Ken'ichi Nomoto, cientista sênior do Instituto Kavli para Física e Matemática do Universo. 

Os pesquisadores continuarão procurando a resposta para a questão de longa data da origem das supernovas Tipo Ia, realizando levantamentos transientes com telescópios por todo o mundo. "Usamos as supernovas Tipo Ia para medir a expansão do Universo, embora as suas origens não sejam bem compreendidas. A fotometria das supernovas Tipo Ia de fase inicial fornece informações únicas para entender as suas origens e, portanto, deve contribuir para medições mais precisas da expansão do Universo no futuro próximo," disse o professor Mamoru Doi, da Universidade de Kyoto e cientista do Instituto Kavli para Física e Matemática do Universo.

O estudo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Kavli Institute for the Physics and Mathematics of the Universe

terça-feira, 14 de dezembro de 2021

Estrelas se movendo ao redor do buraco negro supermassivo da Via Láctea

O Interferômetro do Very Large Telescope (VLTI) do Observatório Europeu do Sul (ESO) captou as imagens mais profundas e nítidas obtidas até hoje da região em torno do buraco negro supermassivo localizado no centro da nossa Galáxia.


© ESO/VLTI (estrelas no centro da Via Láctea)

As novas imagens nos permitiram ver 20 vezes mais perto do buraco negro do que o que era possível anteriormente sem o VLTI e ajudaram os astrônomos a encontrar uma estrela previamente desconhecida perto deste objeto supermassivo. Ao seguir as órbitas das estrelas no centro da Via Láctea, a equipe fez a medição mais precisa já feita da massa do buraco negro. 

“Queremos saber mais sobre Sagitário A*, o buraco negro situado no centro da Via Láctea: Qual a sua massa? Será que gira? As estrelas em seu torno se comportam exatamente como o previsto pela Teoria da Relatividade Geral de Einstein? A melhor maneira de responder a estas questões é seguir estrelas que se deslocam em órbitas próximas do buraco negro supermassivo. E aqui demonstramos que podemos fazer isso com uma precisão maior do que nunca,” explica Reinhard Genzel, diretor do Instituto Max Planck de Física Extraterrestre (MPE), na Alemanha, que recebeu o Prêmio Nobel em 2020 pelo seu trabalho de pesquisa sobre Sagitário A*. 

Em uma busca para encontrar ainda mais estrelas perto do buraco negro, a equipe, conhecida como colaboração GRAVITY, desenvolveu uma nova técnica de análise para obter as imagens ainda mais profundas e nítidas do nosso Centro Galáctico. 

Curiosamente, a equipe descobriu uma estrela, a S300, que ainda não tinha sido observada anteriormente, mostrando assim quão potente é este método quando se trata de detectar objetos muito tênues próximos de Sagitário A*. Com suas últimas observações, conduzidas entre março e julho de 2021, a equipe se concentrou em fazer medições precisas das estrelas à medida que se aproximavam do buraco negro, o que incluiu a estrela recordista S29, que se aproximou mais do buraco negro no final de maio de 2021. Ela o ultrapassou a uma distância de apenas 13 bilhões de quilômetros, cerca de 90 vezes a distância Sol-Terra, à impressionante velocidade de 8.740 km/s. Nenhuma outra estrela foi observada passando tão perto ou viajando tão rápido ao redor do buraco negro.

As medições e as imagens obtidas pela equipe foram possíveis graças ao GRAVITY, um instrumento único que a colaboração desenvolveu para o VLTI do ESO. O GRAVITY combina a radiação colectada pelos quatro telescópios principais de 8,2 metros do Very Large Telescope (VLT), usando uma técnica chamada interferometria. Esta técnica é complexa, mas ela fornece uma imagem 20 vezes mais nítida do que as obtidas pelos telescópios individuais, revelando os segredos do Centro Galáctico.

Seguir estrelas em órbitas próximas ao redor de Sagitário A * nos permite sondar com precisão o campo gravitacional ao redor do buraco negro massivo mais próximo da Terra, para testar a Relatividade Geral e determinar as propriedades do buraco negro. As novas observações, combinadas com dados anteriores obtidos da equipe, confirmam que as estrelas seguem percursos exatamente como os previstos pela Relatividade Geral para objetos que se deslocam em torno de um buraco negro com uma massa de 4,3 milhões de vezes a massa solar. Esta é a estimativa mais precisa da massa do buraco negro central da Via Láctea até o momento. 

Os pesquisadores também conseguiram ajustar a distância para Sagitário A*, chegando ao valor de 27.000 anos-luz. Para obter as novas imagens, os astrônomos usaram uma técnica de aprendizagem de máquina, chamada Teoria do Campo de Informação. Foi feito um modelo de como seriam as fontes reais, simularam como o GRAVITY as veria e compararam esta simulação com as observações do GRAVITY. Deste modo foi possível encontrar e seguir estrelas em torno de Sagitário A* com uma profundidade e precisão sem precedentes.

Além das observações GRAVITY, a equipe utilizou também dados do NACO e do SINFONI, dois instrumentos anteriores do VLT, assim como medições do Observatório Keck e do Observatório Gemini do NOIRLab nos EUA. No final desta década, o GRAVITY será atualizado para GRAVITY+ e o instrumento melhorado será também instalado no VLTI do ESO. Pretendendo-se assim aumentar ainda mais a sensibilidade deste instrumento para revelar estrelas ainda mais tênues e ainda mais próximas do buraco negro central. 

A equipe pretende eventualmente descobrir estrelas tão próximas deste objeto que as suas órbitas sentirão os efeitos gravitacionais causados pela rotação do buraco negro. O futuro Extremely Large Telescope (ELT) do ESO, atualmente em construção no deserto chileno do Atacama, permitirá à equipe medir a velocidade destas estrelas com elevado grau de precisão. Com o poder combinado do GRAVITY+ e do ELT, será possível descobrir a velocidade de rotação do buraco negro, ainda desconhecida.

Este trabalho de pesquisa foi apresentado em dois artigos científicos da Colaboração GRAVITY publicados na revista Astronomy & Astrophysics

Fonte: ESO

segunda-feira, 13 de dezembro de 2021

Uma galáxia espiral barrada vista de lado

Nesta imagem, o telescópio espacial Hubble capta uma visão lateral de NGC 3568, uma galáxia espiral barrada a aproximadamente 57 milhões de anos-luz da Via Láctea na constelação de Centaurus.

© Hubble (NGC 3568)

Em 2014, a luz de uma explosão de supernova em NGC 3568 atingiu a Terra, uma explosão repentina de luz causada pela explosão titânica que acompanhou a morte de uma estrela massiva. 

Enquanto a maioria das descobertas astronômicas são devido ao trabalho de equipes de astrônomos profissionais, esta supernova foi descoberta por astrônomos amadores do Backyard Observatory Supernova Search na Nova Zelândia. Astrônomos amadores dedicados costumam fazer descobertas intrigantes, particularmente de fenômenos astronômicos fugazes, como supernovas.

Esta observação do Hubble vem de um tesouro de dados construído para preparar o caminho para a ciência futura com o próximo telescópio espacial James Webb . Ao combinar observações terrestres com dados da Advanced Camera for Surveys do Hubble e Wide Field Camera 3, os astrônomos construíram informações sobre as conexões entre as estrelas jovens e as nuvens de gás frio em que se formam.

Um dos principais objetivos científicos do Webb é explorar o ciclo de vida das estrelas, particularmente como e onde as estrelas nascem. Uma vez que Webb observa em comprimentos de onda infravermelhos, ele será capaz de espiar através das nuvens de gás e poeira em berçários estelares e observar as estrelas novatas em seu interior. A excelente sensibilidade do Webb permitirá até mesmo aos astrônomos investigarem diretamente núcleos protoestelares tênues, ou seja, os primeiros estágios do nascimento de estrelas. 

Fonte: ESA

sexta-feira, 10 de dezembro de 2021

Nova técnica revela a idade de estrela do Cruzeiro do Sul

Uma equipe internacional de astrônomos da Austrália, dos EUA e da Europa desbloqueou pela primeira vez a estrutura interna de Beta Crucis, uma brilhante estrela gigante azul que aparece nas bandeiras da Austrália, do Brasil, da Nova Zelândia, Papua Nova Guiné e Samoa.


© ESO (Mimosa, NGC 4755 e Nebulosa do Saco de Carvão)

A imagem acima mostra Mimosa, a estrela mais brilhante à esquerda, e também o aglomerado aberto NGC 4755 (ou Kappa Crucis) no centro e a Nebulosa do Saco de Carvão à direita.

Com uma abordagem inteiramente nova, foi descoberto que a estrela tem 14,5 vezes a massa do Sol e apenas 11 milhões de anos, o que a torna a estrela mais massiva a ter a sua idade determinada através de asterosismologia.

As descobertas vão fornecer novos detalhes sobre como as estrelas vivem, como morrem e como afetam a evolução química da Galáxia. Para decifrar a idade e a massa da estrela, a equipe combinou a asterosismologia, o estudo dos movimentos regulares de uma estrela, com polarimetria, a medição da orientação das ondas de luz. A asterosismologia baseia-se em ondas sísmicas que saltam em torno do interior de uma estrela e que produzem mudanças mensuráveis na sua luz. O estudo dos interiores de estrelas massivas, que mais tarde explodirão como supernovas, tem sido tradicionalmente difícil. Previu-se em 1979 que a polarimetria tinha o potencial para medir os interiores de estrelas massivas, mas isso não foi possível até agora. 

O estudo de Beta Crucis, também conhecida como Mimosa, combina três tipos diferentes de medições da sua luz: medições espaciais da intensidade da sua luz, obtidas pelos satélites WIRE (Wide-Field Infrared Explorer) e TESS (Transiting Exoplanet Survey Satellite) da NASA, 13 anos de espectroscopia terrestre de alta resolução do ESO e polarimetria obtida no solo pelo Observatório Siding Spring e pelo Observatório Penrith.

A análise dos três tipos de dados de longo prazo, juntos, permitiu identificar as geometrias de modo dominante de Mimosa. Isto abriu caminho para medir a massa e datar a idade da estrela usando métodos sísmicos. Este estudo polarimétrico de Mimosa abre um novo caminho para a asterosismologia de estrelas massivas brilhantes. Embora estas estrelas sejam as fábricas químicas mais produtivas da nossa Galáxia, até agora são as menos analisadas pela asterosismologia, dado o grau de dificuldade de tais estudos.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Australian National University

Descoberto exoplaneta em torno do par de estrelas mais massivo

O Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO) captou uma imagem de um planeta em órbita de b Centauri, um sistema de duas estrelas que pode ser visto a olho nu.

© ESO/VLT (par estelar b Centauri e o exoplaneta b Centauri b)

Esta imagem mostra o par de estrelas mais massivo observado até hoje que acolhe um possui em sua órbita, b Centauri, e o seu planeta gigante b Centauri b. O par estelar é o objeto brilhante que vemos no canto superior esquerdo da imagem, sendo que os anéis brilhantes e escuros são artefatos ópticos. O planeta é visível como um ponto brilhante na parte inferior direita da imagem. O outro ponto brilhante em cima e á direita da imagem é de uma estrela de fundo. Ao captar diferentes imagens em momentos diferentes, os astrônomos conseguiram separar e distinguir o planeta das estrelas de fundo. 

Este sistema estelar trata-se do mais quente e mais massivo descoberto até hoje que abriga planetas, tendo o planeta sido encontrado a uma distância das suas estrelas equivalente a 100 vezes a distância à qual Júpiter orbita o nosso Sol. 

Alguns astrônomos acreditavam que planetas não poderiam existir em torno de estrelas tão massivas e tão quentes, até agora. 

Localizado a aproximadamente 325 anos-luz de distância da Terra na constelação do Centauro, o sistema duplo b Centauri, também conhecido como HIP 71865, tem pelo menos seis vezes a massa do Sol, o que o torna no sistema mais massivo em torno do qual foi confirmada a presença de um planeta. Até agora não tinha ainda sido descoberto nenhum planeta em órbita de estrelas mais massivas do que três massas solares.

A maioria das estrelas massivas são também muito quentes e este sistema não é exceção: a estrela principal é do tipo B e é mais de três vezes mais quente que o Sol. Devido à sua temperatura intensa, a estrela emite grandes quantidades de radiação ultravioleta e raios X.

A elevada massa e temperatura deste tipo de estrelas tem um forte impacto no gás que as rodeia, o que deveria ir contra a formação planetária. Em particular, quanto mais quente a estrela, mais radiação de alta energia é produzida, o que faz com que o material circundante se evapore mais depressa. As estrelas do tipo B são geralmente consideradas muito destrutivas para o meio que as rodeia, por isso é que se acreditava que que deveria ser extremamente difícil formar grandes planetas ao seu redor.

No entanto, esta nova descoberta veio mostrar que os planetas se podem de fato formar em sistemas estelares bastante severos. O planeta descoberto, chamado b Centauri (AB)b ou apenas b Centauri b, é bastante extremo, com dez vezes mais massa que Júpiter, o que o torna num dos planetas mais massivos descoberto até hoje. Além disso, orbita em torno do sistema estelar percorrendo uma das maiores órbitas já descobertas, a uma impressionante distância das suas estrelas de 100 vezes mais do que a distância entre Júpiter e o Sol. EsTa enorme distância ao par de estrelas central pode ser a chave da sobrevivência deste planeta.

Estes resultados foram possíveis graças ao SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch), um sofisticado instrumento montado no VLT, no Chile. E com o auxílio de um coronógrafo, que bloqueou a radiação emitida pelo sistema estelar massivo permitiu aos astrônomos detectar o tênue planeta. O SPHERE tem obtido imagens de vários planetas em órbita de estrelas que não o Sol, incluindo a primeira imagem de dois planetas que orbitam uma estrela do tipo solar. O SPHERE não é, curiosamente, o primeiro instrumento a captar a imagem deste planeta. Como parte de seu estudo, a equipe analisou os dados de arquivo do sistema b Centauri e descobriu que este planeta tinha sido já observado há mais de 20 anos com o telescópio de 3,6 metros do ESO, embora não fosse reconhecido como um planeta na época. Com o Extremely Large Telescope (ELT) do ESO, que deve iniciar as observações no final desta década, e com atualizações ao VLT, os astrônomos poderão descobrir mais sobre a formação e características deste planeta. 

Esta pesquisa foi apresentada em um artigo intitulado "A wide-orbit giant planet in the high-mass b Centauri binary system" e publicado na revista Nature

Fonte: ESO

quarta-feira, 8 de dezembro de 2021

Uma coleção de nebulosas planetárias

Às vezes, os nomes dos objetos são profundamente enganosos. Por exemplo, estrelas-do-mar não são realmente peixes (são equinodermos) e os porquinhos-da-índia não são aparentados com porcos de forma alguma (são roedores).

© Chandra (nebulosas planetárias)

Da mesma forma, as nebulosas planetárias não têm nada a ver com planetas. Eles foram nomeados erroneamente quando cientistas olhando através de pequenos telescópios no século 19 pensaram que estes objetos se pareciam com planetas. Hoje, os astrônomos sabem que uma nebulosa planetária na verdade representa uma fase que estrelas como o nosso Sol experimentam depois de usarem muito de seu combustível.

Após resfriar e expandir através de uma fase de “gigante vermelha”, quando começa a expelir suas camadas externas, esta estrela deixa para trás um tipo de estrela densa e menor chamada anã branca. As conchas de gás previamente lançadas permanecem por um tempo relativamente curto em termos cósmicos - dezenas de milhares de anos - antes de se dissiparem no espaço. Enquanto isso, elas são iluminadas e energizadas pela anã branca no centro do sistema. Isto acontecerá com nosso Sol, mas cerca de 5 bilhões de anos ou mais.

O observatório de raios X Chandra da NASA contribui para a compreensão das nebulosas planetárias ao estudar os processos mais quentes e energéticos ainda em funcionamento nestes belos objetos. Dados de raios X do Chandra revelam ventos sendo afastados da anã branca tão rapidamente que eles criam ondas de choque durante colisões com material de movimento mais lento anteriormente ejetado pela estrela.

A visão excepcional em raios X contribui para a compreensão deste breve, mas importante, estágio da vida das estrelas. Esta galeria contém meia dúzia de nebulosas planetárias que foram observadas tanto pelo Chandra quanto pelo telescópio espacial Hubble, com o último detectando as delicadas estruturas de gás que foram expelidas da estrela.

As cores dos dados do Chandra nas seis nebulosas planetárias foram selecionadas de forma que os raios X sejam claramente distintos dos dados ópticos. A lista de nebulosas planetárias e as cores usadas para os dados do Chandra são as seguintes: NGC 6302 (magenta), IC 418 (ciano), NGC 3242 (azul), NGC 7662 (azul), NGC 7027 (magenta) e NGC 2371 (roxa). 

As nebulosas planetárias variam em distâncias de cerca de 2.200 a 5.700 anos-luz da Terra. Embora todas as seis nebulosas tenham se originado de condições físicas semelhantes e evoluído por processos semelhantes, atualmente elas parecem um pouco diferentes das outras. As diferenças nas formas e estruturas destas nebulosas planetárias podem ser devido às complexidades de uma série de propriedades físicas, incluindo quanto dos ventos da estrela fluem de seus polos, se a estrela efetua precessão enquanto gira, se a estrela tem companheira ou não, e outros fatores.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 7 de dezembro de 2021

Um ano de oito horas

No que diz respeito aos exoplanetas, GJ 367 b não é um "peso-pesado", mas um "peso-pena".

GJ 367 b

© P. Glein (GJ 367 b)

Com metade da massa da Terra, o planeta recém-descoberto é um dos mais leves entre os quase 5.000 exoplanetas conhecidos até agora. 

O exoplaneta leva aproximadamente oito horas para orbitar a sua estrela progenitora. Com um diâmetro de pouco mais de 9.000 quilômetros, GJ 367 b é ligeiramente maior que Marte. O sistema planetário está localizado a pouco menos de 31 anos-luz da Terra e, portanto, é ideal para futuras investigações.

A descoberta demonstra que é possível determinar com precisão as propriedades dos exoplanetas até menores e menos massivos. Estes estudos fornecem uma chave para entender como os planetas terrestres se formam e evoluem. 

Com um período orbital de apenas um-terço do dia terrestre, GJ 367 b é veloz. A partir da determinação precisa do seu raio e massa, GJ 367 b está classificado como um planeta rochoso. Parece ter semelhanças com Mercúrio. Isto coloca-o entre os planetas terrestres de tamanho inferior à Terra.

Um quarto de século após a primeira descoberta de um exoplaneta, o foco mudou para a caracterização mais precisa destes planetas, além do crescimento numérico da lista. Atualmente, é possível construir um perfil muito mais detalhado para a maioria dos exoplanetas conhecidos. Muitos foram descobertos usando o método de trânsito, ou seja, a medição das diferenças na luz emitida, ou magnitude aparente, de uma estrela quando um planeta passa à sua frente. 

O GJ 367 b também foi descoberto usando este método, com a ajuda do TESS (Transiting Exoplanet Survey Satellite) da NASA. GJ 367 b pertence ao grupo de exoplanetas de período muito curto que orbitam a sua estrela em menos de 24 horas.

Após a descoberta deste planeta usando o TESS e o método de trânsito, foi estudado o espectro da sua estrela a partir do solo usando o método de velocidade radial. Determinou-se a massa usando o instrumento HARPS no telescópio de 3,6 metros do ESO. A partir do estudo meticuloso e da combinação de diferentes métodos de avaliação, foram determinados o raio e a massa do planeta: o seu raio corresponde a 72% do raio da Terra e a sua massa equivale a 55% da do nosso planeta. Ao determinar o seu raio e massa com uma precisão de 7 e 14 por cento, respectivamente, os pesquisadores também foram capazes de tirar conclusões sobre a estrutura interna do exoplaneta. É um planeta rochoso de baixa massa, mais é mais denso que a Terra. A alta densidade indica que o planeta é dominado por um núcleo de ferro. 

Estas propriedades são semelhantes às de Mercúrio, com o seu núcleo desproporcionalmente grande de ferro e níquel que o diferencia de outros corpos terrestres do Sistema Solar. No entanto, a proximidade do planeta à sua estrela implica que está exposto à níveis extremamente elevados de radiação, mais de 500 vezes mais fortes do que os níveis a que a Terra recebe. A temperatura da superfície pode chegar aos 1.500º C, uma temperatura na qual todas as rochas e metais seriam derretidos.

A estrela hospedeira deste exoplaneta recém-descoberto, uma anã vermelha chamada GJ 367, tem apenas cerca de metade do tamanho do Sol. Isto é benéfico para esta descoberta pois o sinal de trânsito do planeta em órbita é particularmente significativo. As anãs vermelhas não são apenas menores, como também mais frias do que o Sol. Isto torna os seus planetas associados mais fáceis de encontrar e caracterizar. Estão entre os objetos estelares mais comuns na nossa vizinhança cósmica e, portanto, são alvos adequados para a pesquisa exoplanetária. Os cientistas estimam que estas anãs vermelhas, também conhecidas como "estrelas de classe M", sejam orbitadas por uma média de dois a três planetas.

Um artigo foi publicado na revista Science.

Fonte: Massachusetts Institute of Technology

Quatro filtros diferentes para colorir esta galáxia

Este redemoinho estelar é uma galáxia espiral chamada NCG 7329, que foi fotografada pela Wide Field Camera 3 (WFC3) do telescópio espacial Hubble.

© Hubble (NGC 7329)

Criar uma imagem colorida como esta usando um telescópio como o Hubble não é tão simples quanto apontar e clicar em uma câmera. Normalmente, as câmeras comerciais tentam coletar o máximo possível de luz de todos os comprimentos de onda visíveis, para criar as imagens mais vibrantes possíveis. Em contraste, as imagens brutas coletadas pelo Hubble são sempre monocromáticas, porque os astrônomos geralmente desejam captar faixas muito específicas de comprimentos de onda de luz a qualquer momento, a fim de fazer a ciência melhor e mais precisa possível. 

Para controlar quais comprimentos de onda de luz serão coletados, as câmeras do Hubble são equipadas com uma ampla variedade de filtros, que permitem apenas que determinados comprimentos de onda de luz alcancem os sensores de luz das câmeras (CCDs).

Como as imagens coloridas do Hubble são possíveis, dado que as imagens brutas geradas por ele são monocromáticas? Isso é feito combinando várias observações diferentes do mesmo objeto, obtidas por meio de filtros diferentes. 

Esta imagem, por exemplo, foi processada a partir de observações do Hubble feitas usando quatro filtros diferentes, cada um dos quais abrange uma região diferente do espectro de luz, do ultravioleta ao óptico e infravermelho. Processadores de imagem especializados após  análise podem caracterizar quais cores ópticas melhor correspondem a cada filtro usado, e colorindo a imagem. Finalmente, as imagens tiradas com diferentes filtros são empilhadas. A imagem colorida de uma galáxia distante está completa, com cores tão representativas quanto possível da realidade.

Fonte: ESA

sábado, 4 de dezembro de 2021

Novo tipo de estrela binária há muito tempo prevista

Pesquisadores do Centro para Astrofísica Harvard & Smithsonian observaram um novo tipo de estrela binária que há muito tempo se teorizava existir.

© CfA/M. Weiss (ilustração de novo tipo de estrela binária)

A descoberta finalmente confirma como um tipo raro de estrela no Universo se forma e evolui.

A nova classe estelar foi descoberta pelo pós-doutorado Kareem El-Badry usando o telescópio Shane no Observatório Lick, no estado norte-americano da Califórnia, e dados de vários levantamentos astronômicos. Isto é um elo evolucionário que faltava aos modelos de formação estelar binária e que era procurado há muito tempo.

Quando uma estrela morre, há 97% de probabilidade de se tornar numa anã branca, um objeto denso que se contraiu e escureceu após queimar todo o seu combustível. Mas, em casos raros, uma estrela pode tornar-se numa anã branca de massa extremamente baixa (MEB). Com menos de um-terço da massa do Sol, estas estrelas são um enigma: se os cálculos da evolução estelar estiverem corretos, todas as anãs brancas MEB pareceriam ter mais de 13,8 bilhões de anos, mais velhas do que a idade do próprio Universo e, portanto, fisicamente impossíveis. "O Universo não tem idade suficiente para fazer estas estrelas pela evolução normal," disse El-Badry, membro do Instituto para Teoria e Computação do Centro para Astrofísica. 

Ao longo dos anos, os astrônomos concluíram que a única maneira de formar uma anã branca MEB é com a ajuda de uma companheira binária. A atração gravitacional de uma estrela companheira próxima poderia rapidamente absorver massa de uma estrela até se tornar numa anã branca MEB. Mas as evidências deste cenário não são infalíveis. 

Os astrônomos observaram estrelas massivas normais, como o nosso Sol, acumulando matéria nas anãs brancas, algo a que se chama variáveis cataclísmicas. Também observaram anãs brancas MEB com companheiras anãs brancas normais. Não haviam, no entanto, observado a fase transicional de evolução, ou a transformação intermediária: quando a estrela perdeu a maior parte da sua massa e quase se contraiu para uma anã branca MEB. 

Em 2020, El-Badry, usando novos dados do Gaia, o observatório espacial lançado pela ESA, e do ZTF (Zwicky Transient Facility) no Caltech, reduziu bilhões de estrelas a 50 potenciais candidatas. O astrónomo enfatiza a importância dos dados públicos de levantamentos astronômicos para o seu trabalho. Ele então fez observações detalhadas de 21 estrelas, sendo todas candidatas pré-MEBs. 

Foi descoberto o elo evolucionário entre duas classes de estrelas binárias: as variáveis cataclísmicas e as anãs brancas MEB. Treze das estrelas mostravam sinais de que ainda estavam perdendo massa para a sua companheira. Cada uma delas também era mais quente do que as variáveis cataclísmicas previamente observadas.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard–Smithsonian Center for Astrophysics

quarta-feira, 1 de dezembro de 2021

Um eclipse lunar com bandas azuis

O que faz com que uma faixa azul cruze a Lua durante um eclipse lunar? A faixa azul é real, mas geralmente muito difícil de ver.

© Angel Yu (eclipse lunar)

A imagem HDR apresentada do eclipse lunar da semana passada, tirada de Yancheng, China, foi processada digitalmente para igualar o brilho da Lua e evidenciar as cores. A cor cinza do canto inferior direito é a cor natural da Lua, iluminada diretamente pela luz solar. A parte superior esquerda da Lua não é iluminada diretamente pelo Sol, pois está sendo eclipsada, ela fica na sombra da Terra.

Ela é fracamente iluminada, porém, pela luz do Sol que passou pelas profundezas da atmosfera terrestre. Esta parte da Lua é vermelha como o pôr do Sol da Terra são vermelhos: porque a atmosfera espalha mais luz azul do que vermelha. A incomum faixa azul é diferente, sua cor é criada pela luz do Sol que passou alto na atmosfera da Terra, onde a luz vermelha é melhor absorvida pelo ozônio do que a luz azul. 

Um eclipse total do Sol ocorrerá dia 4 de dezembro de 2021 (próximo sábado), mas, infelizmente, a totalidade será visível apenas perto do Polo Sul da Terra. Parte do eclipse surgirá a partir de 2h29min (BRT), enquanto o total se formará às 4h33min. O fenômeno será visto pela última vez às 6h37min. A totalidade do eclipse irá durar apenas 1 minuto e 54 segundos. 

Ele não poderá ser observado, no entanto, na maior parte do planeta. O principal ponto de aparição do eclipse será na Antártica. A região do mar de Weddell, parte do Oceano Antártico, terá a visualização mais privilegiada do raro fenômeno. Não será possível ver o fenômeno no Brasil. O último eclipse solar total visto pelos brasileiros aconteceu há 27 anos; o próximo, apenas em 2046. 

Um eclipse solar sempre acontece em média duas semanas antes ou depois de um eclipse lunar. Geralmente, são dois eclipses juntos, mas já foram registrados três em uma mesma temporada. O eclipse lunar parcial mais longo do século ocorreu no último dia 19 e foi visto em grande parte do planeta. Segundo a Nasa, quase 97,4% da Lua foi escondida durante o fenômeno, por isso não foi chamado de eclipse lunar total. Ele teve mais de três horas de duração; outro do mesmo tipo não será visto por outros 648 anos. A longa duração estava relacionada à órbita da Lua, que estava perto do seu ponto mais distante da Terra, o apogeu.

Fonte: NASA

O par de buracos negros supermassivos mais próximo da Terra

Com o auxílio do Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), os astrônomos descobriram o par de buracos negros supermassivos mais próximo da Terra encontrado até hoje.

© ESO (imagens próxima e ampliada do par de buracos negros supermassivos)

Os dois objetos apresentam também uma separação muito menor do que qualquer outro par destes objetos descoberto até agora, o que aponta para a sua eventual fusão em um único buraco negro gigante.

Localizado na galáxia NGC 7727 na constelação de Aquário, o par de buracos negros supermassivos está a cerca de 89 milhões de anos-luz de distância da Terra. Apesar de parecer distante, este par bate por uma grande margem o recorde de proximidade de um sistema deste tipo, que era de 470 milhões de anos-luz, tornando-se assim o par de buracos negros conhecido mais próximo de nós.

Os buracos negros supermassivos se escondem no núcleo de galáxias massivas e quando duas destas galáxias se fundem, os seus buracos negros acabam em rota de colisão. O par na NGC 7727 estão separados de apenas 1.600 anos-luz. A pequena separação e velocidade dos dois buracos negros indica que estes objetos se irão fundir num único buraco negro gigante, provavelmente nos próximos 250 milhões de anos.

A fusão de buracos negros como estes pode explicar a existência dos mais massivos buracos negros que existem no Universo. Os astrônomos conseguiram determinar as massas dos dois objetos ao observar como é que a atração gravitacional dos buracos negros influencia o movimento das estrelas que os circundam. O buraco negro maior, localizado bem no centro da NGC 7727, tem uma massa de quase 154 milhões de vezes a massa do Sol, enquanto seu companheiro tem 6,3 milhões de massas solares.

É a primeira vez que as massas são medidas desta forma para um par de buracos negros supermassivos, algo apenas possível devido à proximidade deste sistema à Terra e às observações detalhadas que a equipe obteve no Observatório do Paranal, no Chile, com o MUSE (Multi-Unit Spectroscopic Explorer), um instrumento montado no VLT. A medição das massas com o MUSE e o uso de dados adicionais obtidos com o telescópio espacial Hubble  permitiram à equipe confirmar que os objetos na NGC 7727 eram de fato buracos negros supermassivos. 

Os astrônomos já suspeitavam anteriormente que esta galáxia hospedava dois buracos negros, no entanto a sua presença não tinha ainda sido confirmada, uma vez que não se observam grandes quantidades de radiação de alta energia emitida na sua vizinhança, o que seria uma indicação segura da sua presença.

A descoberta implica que podem existir muitas mais destas relíquias de galáxias fundidas que poderão conter muitos buracos negros massivos à espera de serem descobertos, o que poderá aumentar em 30% o número total de buracos negros supermassivos no Universo local.

Espera-se que a busca por pares de buracos negros supermassivos ocultos de forma semelhante dê um grande salto com o Extremely Large Telescope (ELT) do ESO, previsto para começar as suas operações mais para o final desta década no deserto chileno do Atacama. Com o instrumento HARMONI, que será montado no ELT, será possível detectar objetos como este, mas muito mais longínquos do que é atualmente possível. O ELT do ESO será essencial para a compreensão desses objetos.

Esta pesquisa foi apresentada em um artigo intitulado "First Direct Dynamical Detection of a Dual Super-Massive Black Hole System at sub-kpc Separation" publicado na Astronomy & Astrophysics

Fonte: ESO

terça-feira, 30 de novembro de 2021

Um par de galáxias na Fornalha

Nesta imagem, o telescópio espacial Hubble perscruta a galáxia espiral NGC 1317 na constelação de Fornax (a Fornalha), a mais de 50 milhões de anos-luz da Terra.

© Hubble (NGC 1317)

Esta galáxia faz parte de um par, mas a vizinha maior turbulenta de NGC 1317, NGC 1316, está fora do campo de visão do Hubble. Apesar da ausência aqui de sua galáxia vizinha, a NGC 1317 é acompanhada nesta imagem por dois objetos de partes muito diferentes do Universo. 

O ponto brilhante anelado com um padrão cruzado é uma estrela de nossa própria galáxia cercada por picos de difração, enquanto a mancha alongada mais vermelha é uma galáxia distante situada muito além de NGC 1317. 

Os dados apresentados nesta imagem são de uma vasta campanha de observação de centenas de observações da Wide Field Camera 3 e da Advanced Camera for Surveys do Hubble. Combinadas com dados da rede ALMA no deserto do Atacama, estas observações ajudam os astrônomos a mapear as conexões entre vastas nuvens de gás frio e as estrelas jovens e muito quentes que se formam dentro delas.

A sensibilidade incomparável do ALMA em comprimentos de onda longos identificou vastos reservatórios de gás frio em todo o Universo local, e a visão afiada do Hubble localizou aglomerados de estrelas jovens, bem como mediu suas idades e massas. 

Frequentemente, as descobertas astronômicas mais empolgantes exigem este tipo de trabalho em equipe do telescópio, com instalações de ponta trabalhando juntas e fornecendo aos astrônomos informações em todo o espectro eletromagnético. O mesmo se aplica a futuros telescópios, com as observações do Hubble estabelecendo as bases para a ciência futura com o telescópio espacial James Webb.

Fonte: ESA

Um ano neste planeta gigante e escaldante dura apenas 16 horas

A busca por planetas localizados além do nosso Sistema Solar revelou mais de 4.000 mundos distantes em órbita de estrelas a milhares de anos-luz da Terra.

© NASA/G. Bacon (ilustração do exoplaneta TOI-2109b)

Estes exoplanetas são muito diversificados, desde super-Terras rochosas, passando por diminutos Netunos e até gigantes gasosos colossais. Entre os planetas mais intrigantes descobertos até à data estão os "Júpiteres quentes", enormes bolas de gás com o tamanho do nosso planeta joviano, mas que giram em torno das suas estrelas hospedeiras em menos de 10 dias, em contraste com a lenta órbita de 12 anos de Júpiter.

Os cientistas descobriram até agora cerca de 400 Júpiteres quentes. Mas a origem exata destes gigantes velozes continua sendo um dos maiores mistérios não resolvidos da ciência planetária. Recentemente, astrônomos descobriram um dos Júpiteres ultraquentes mais extremos, um gigante gasoso com cerca de cinco vezes a massa de Júpiter e que completa uma órbita em torno da sua estrela em apenas 16 horas. Esta é a órbita mais curta de qualquer gigante gasoso conhecido até hoje. Devido à sua órbita extremamente íntima e proximidade à estrela, o lado diurno do planeta tem uma temperatura estimada em cerca de 3.500 K, quase tão quente quanto uma pequena estrela. Isto torna o planeta, designado TOI-2109b, o segundo mais quente já detectado. 

A julgar pelas suas propriedades, os astrônomos pensam que TOI-2109b está no processo de "decaimento orbital", ou espiralando para a sua estrela, como água que gira no ralo. A sua órbita extremamente curta fará com que o planeta espirale em direção à sua estrela mais depressa que outros Júpiteres quentes. 

A descoberta, que foi feita inicialmente pelo TESS (Transiting Exoplanet Survey Satellite) da NASA, fornece uma oportunidade única para o estudo do comportamento dos planetas quando são atraídos e engolidos pela sua estrela. A descoberta é o resultado do trabalho de uma grande colaboração que inclui membros da equipe científica do TESS no Massachusetts Institute of Technology (MIT) e pesquisadores de todo o mundo. 

No dia 13 de maio de 2020, o TESS da NASA começou a observar TOI-2109, uma estrela localizada na porção sul da constelação de Hércules, a cerca de 855 anos-luz da Terra. Ao longo de quase um mês, a nave recolheu medições da luz estelar, que então foi analisada em busca de trânsitos, ou seja, quedas periódicas na luz das estrelas que podem indicar um planeta passando em frente e bloqueando uma pequena fração da sua luz. Os dados da missão TESS confirmaram que a estrela hospeda um objeto que transita a cada 16 horas.

Ao analisar medições em vários comprimentos de onda ópticos e infravermelhos, foi determinado que TOI-2109b é cerca de cinco vezes mais massivo que Júpiter, cerca de 35% maior e está extremamente perto da sua estrela progenitora, a uma distância de 2,4 milhões de quilômetros. Mercúrio, em comparação, está a cerca de 58 milhões de quilômetros do Sol. Em comparação com o nosso Sol, a estrela deste planeta é cerca de 50% maior em tamanho e massa. 

A partir das propriedades observadas do sistema, os pesquisadores estimaram que TOI-2109b está espiralando para a sua estrela a um ritmo de 10 a 750 milissegundos por ano, mais depressa do que qualquer Júpiter quente já observado. Tal como a maioria dos Júpiteres quentes, o planeta parece ter bloqueio de marés, com um lado sempre virado para a estrela e o outro em escuridão perpétua, semelhante à Lua em relação à Terra.

Os pesquisadores esperam observar TOI-2109b com ferramentas mais poderosas no futuro próximo, incluindo com o telescópio espacial Hubble e o telescópio espacial James Webb, a ser lançado em breve. Observações mais detalhadas podem iluminar as condições pelas quais os Júpiteres quentes passam ao caírem para a sua estrela. Os Júpiteres ultraquentes, como TOI-2109b, constituem a subclasse mais extrema de exoplaneta.

A descoberta foi publicada no periódico The Astronomical Journal.

Fonte: Massachusetts Institute of Technology

domingo, 28 de novembro de 2021

A anã branca com rotação mais rápida

De acordo com uma equipe de astrônomos liderada pela Universidade de Warwick, uma anã branca que completa uma rotação a cada 25 segundos é a anã branca confirmada com rotação mais rápida.

© U. Warwick/Mark Garlick (ilustração de anã branca em alta rotação)

Os cientistas estabeleceram o período de rotação da estrela pela primeira vez, confirmando-a como um exemplo extremamente raro de um sistema de hélice magnética: a anã branca está puxando plasma gasoso de uma estrela companheira próxima e lançando para o espaço a cerca de 3.000 km/s. 

É apenas a segunda anã branca com hélice magnética a ser identificada em mais de setenta anos graças a uma combinação de instrumentos poderosos e sensíveis que permitiram aos cientistas captar um vislumbre da estrela veloz. 

Uma anã branca é uma estrela que queimou todo o seu combustível e liberou as suas camadas externas, passando agora por um processo de encolhimento e arrefecimento ao longo de milhões de anos. 

A estrela que a equipe da Universidade de Warwick observou, de nome LAMOST J024048.51+195226.9 (J0240+1952, para abreviar), tem o tamanho da Terra, mas pensa-se que seja pelo menos 200.000 vezes mais massiva. Faz parte de um sistema binário e a sua imensa gravidade está atraindo material, na forma de plasma, da sua estrela companheira maior. No passado, este plasma caía no equador da anã branca a alta velocidade, fornecendo a energia que deu origem à rotação vertiginosamente alta. 

Colocando em contexto, uma rotação do planeta Terra leva 24 horas, enquanto o equivalente em J0240+1952 é uns meros 25 segundos. Este valor é quase 20% mais rápido do que a anã branca confirmada com a rotação mais comparável, que completa uma rotação em pouco mais de 29 segundos. 

No entanto, em algum ponto da sua evolução, J0240+1952 desenvolveu um forte campo magnético. O campo magnético atua como uma barreira protetora, fazendo com que a maior parte do plasma em queda seja expulso da anã branca. O restante fluirá em direção aos polos magnéticos da estrela. Este reúne-se em manchas brilhantes à superfície da estrela e conforme giram para dentro e fora de vista, da perspetiva da Terra, provocam pulsações na luz que são observadas, que então possibilitam a medida da rotação da estrela. 

A anã branca está sugando material da sua estrela companheira devido ao seu efeito gravitacional, mas à medida que se aproxima da anã branca, o campo magnético começa a dominar. Este tipo de gás é altamente condutor e adquire muita velocidade com este processo, que o impulsiona para longe da estrela e para o espaço.

A J0240+1952 é uma das únicas duas estrelas com este sistema de hélice magnética descobertas nos últimos setenta anos. Embora o material lançado para fora da estrela tenha sido observado pela primeira vez em 2020, os astrônomos não tinham sido capazes de confirmar a presença da alta rotação, que é um ingrediente principal de uma hélice magnética, pois as pulsações são demasiado rápidas e fracas para a observação por outros telescópios. 

Para visualizar a estrela com esta velocidade pela primeira vez, a equipe da Universidade de Warwick usou o instrumento altamente sensível HiPERCAM. Este foi especialmente acoplado no maior telescópio óptico do mundo atualmente em funcionamento, o GTC (Gran Telescopio Canarias) de 10 metros de diâmetro em La Palma, a fim de captar o máximo de luz possível.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Warwick

Descobertos centenas de novos possíveis exoplanetas

Astrônomos da Universidade da Califórnia em Los Angeles (UCLA) identificaram 366 novos exoplanetas, em grande parte graças a um algoritmo aí desenvolvido.

© NASA (ilustração do exoplaneta Kepler-444)

Entre as suas descobertas mais notáveis está um sistema planetário que compreende uma estrela e pelo menos dois planetas gigantes gasosos, cada um com aproximadamente o tamanho de Saturno e localizados excepcionalmente perto um do outro. 

O número de exoplanetas identificados pelos astrônomos totaliza cerca de 5.000, de modo que a identificação de novas centenas é um avanço significativo. O estudo de um novo grupo tão grande de corpos pode ajudar os cientistas a melhor entender como os planetas se formam e como as órbitas evoluem, e pode fornecer novas informações sobre o quão incomum é o nosso Sistema Solar.

Os astrônomos identificaram os exoplanetas usando dados da missão K2 do telescópio espacial Kepler da NASA. A descoberta foi possível graças a um novo algoritmo de detecção de planetas. 

Um desafio na identificação de novos planetas é que as reduções no brilho estelar podem ter origem no instrumento ou de uma fonte astrofísica alternativa que imita uma assinatura planetária. Descobrir o que é o quê requer investigações extra, o que tradicionalmente é extremamente demorado e só pode ser realizado por meio de inspeção visual. O algoritmo é capaz de separar quais os sinais que indicam exoplanetas e quais os que são meramente ruído. 

A missão original do Kepler teve um fim inesperado em 2013, quando uma falha mecânica deixou a espaçonave incapaz de apontar com precisão para uma região do céu que vinha observando há anos. Mas os astrônomos redirecionaram o telescópio para uma nova missão conhecida como K2, cujo objetivo era identificar exoplanetas em torno de estrelas distantes. Os dados do K2 estão ajudando os cientistas a entender como a localização das estrelas na Galáxia influencia que tipo de planetas são capazes de se formar ao seu redor. 

Infelizmente, o software usado pela missão Kepler original, para identificar possíveis planetas, era incapaz de lidar com as complexidades da missão K2, incluindo a capacidade de determinar o tamanho dos planetas e a sua localização em relação à estrela. O trabalho inicial foi introduzir um sistema automatizado para a missão K2, com software para identificar planetas prováveis nos dados processados. Para o novo estudo, os pesquisadores usaram o novo software para analisar todo o conjunto de dados da missão K2, cerca de 500 terabytes de dados que abrangem mais de 800 milhões de imagens de estrelas, para criar um "catálogo" que em breve será incorporado ao arquivo exoplanetário principal da NASA. Foi usado o supercomputador Hoffman2 da UCLA para processar os dados. 

Além dos 366 novos planetas identificados, o catálogo lista 381 outros planetas que já tinham sido identificados anteriormente. 

A descoberta do sistema planetário com dois planetas gigantes foi significativa porque é raro encontrar gigantes gasosos tão perto da sua estrela hospedeira quanto estavam neste caso.

As descobertas estão descritas num artigo publicado no periódico The Astronomical Journal.

Fonte: University of California