quinta-feira, 4 de maio de 2023

Um binário de contato irá resultar na colisão de dois buracos negros

De acordo com um novo estudo efetuado por pesquisadores da UCL (University College London) e da Universidade de Potsdam, duas estrelas massivas que se tocam vão eventualmente acabar por chocar, gerando ondas no tecido do espaço-tempo.

© UCL (ilustração da estrela binária)

A estrela menor, mais brilhante e mais quente (esquerda), que tem 32 vezes a massa do nosso Sol, está atualmente perdendo massa para a companheira maior (direita), que tem 55 vezes a massa do nosso Sol. Uma é branca e a outra azul porque são muito quentes, cujas temperaturas são: 43.000 K e 38.000 K, respetivamente.

O estudo analisou um sistema binário (duas estrelas que se orbitam uma à outra em torno de um centro de gravidade mútuo), analisando a luz das estrelas obtida a partir de uma série de telescópios terrestres e espaciais. Os pesquisadores descobriram que as estrelas, localizadas na Pequena Nuvem de Magalhães, estão em contato parcial e trocam material entre si, com uma estrela atualmente se "alimentando" da outra. Completam uma órbita uma em torno da outra a cada três dias e são as estrelas mais massivas que se tocam (conhecidas como binários de contato) até agora observadas. 

Comparando os resultados das suas observações com modelos teóricos da evolução de estrelas binárias, descobriram que, no modelo mais adequado, a estrela que está sendo devorada se transformará num buraco negro e este se alimentará da estrela companheira. A estrela sobrevivente irá tornar-se um buraco negro pouco tempo depois. O primeiro buraco negro se formará daqui a menos de um milhão de anos e o segundo daqui a menos de 4 milhões de anos, mas se orbitarão um ao outro durante bilhões de anos antes de colidirem com uma força tal que será capaz de gerar ondas gravitacionais, ondulações no tecido do espaço-tempo, que poderiam, teoricamente, ser detectadas com instrumentos na Terra. 

Através aos detectores de ondas gravitacionais Virgo e LIGO, foram detectadas dúzias de fusões de buracos negros nos últimos anos. Mas até agora ainda não foi observado estrelas que, segundo as previsões, colapsariam para buracos negros desta dimensão e se fundiriam numa escala de tempo inferior ou mesmo comparável à idade do Universo. O modelo mais adequado sugere que estas estrelas se fundirão, já como buracos negros, dentro de 18 bilhões de anos. Encontrar estrelas nesta trajetória evolutiva, tão perto da nossa Via Láctea, é uma excelente oportunidade para aprender ainda mais sobre a formação destes buracos negros binários. 

Os buracos negros que os astrónomos veem fundir-se hoje formaram-se há bilhões de anos, quando o Universo tinha níveis mais baixos de ferro e de outros elementos mais pesados. A proporção destes elementos pesados aumentou com a idade do Universo, o que torna menos provável a fusão entre buracos negros. Isto porque as estrelas com uma maior proporção de elementos mais pesados têm ventos mais fortes e desintegram-se mais cedo. 

A bem estudada Pequena Nuvem de Magalhães, a cerca de 210.000 anos-luz da Terra, tem, por uma peculiaridade da natureza, cerca de um-sétimo das abundâncias de ferro e outros metais pesados da nossa Galáxia. Neste aspecto, imita as condições do passado longínquo do Universo. Mas, ao contrário das galáxias mais antigas e distantes, está suficientemente perto para que os astrônomos possam medir as propriedades de estrelas individuais e binárias. 

© James Webb (aglomerado estelar NGC 346)

A imagem mostra o aglomerado estelar NGC 346, onde a estrela binária está localizada (quadrado vermelho). 

Neste estudo foram medidas diferentes bandas de luz provenientes da estrela binária (análise espectroscópica), utilizando dados obtidos ao longo de vários períodos de tempo por instrumentos do telescópio espacial Hubble e pelo instrumento MUSE (Multi Unit Spectroscopic Explorer) no VLT (Very Large Telescope) do ESO no Chile, entre outros telescópios, em comprimentos de onda que vão do ultravioleta ao óptico e ao infravermelho próximo. 

Com estes dados, a equipe conseguiu calcular a velocidade radial das estrelas, ou seja, o movimento que fazem em direção a nós ou para longe de nós, bem como as suas massas, brilho, temperatura e órbitas. Em seguida, combinaram estes parâmetros com o modelo evolutivo que melhor se ajustava. A sua análise espectroscópica indicou que grande parte do invólucro exterior da estrela menor tinha sido arrancado pela sua companheira maior. Observaram também que o raio de ambas as estrelas excedia o seu lóbulo de Roche, isto é, a região em volta de uma estrela onde o material está gravitacionalmente ligado a esta estrela, confirmando que algum do material da estrela menor está transbordando e sendo transferido para a estrela companheira. 

Um artigo foi aceito para publicação no periódico Astronomy & Astrophysics

Fonte: University College London

Descobertas nuvens de gás distantes com restos das primeiras estrelas

Com o auxílio do Very Large Telescope (VLT) do ESO, os pesquisadores descobriram pela primeira vez as impressões digitais deixadas pela explosão das primeiras estrelas do Universo.

© ESO (ilustração da nuvem de gás contendo diferentes elementos químicos)

Os cientistas detectaram três nuvens de gás distantes, cuja composição química corresponde à que se espera das primeiras explosões estelares. Estes resultados ajudam-nos a compreender melhor a natureza das primeiras estrelas que se formaram após o Big Bang.

Os pesquisadores pensam que as primeiras estrelas que se formaram no Universo eram muito diferentes das que vemos atualmente. Quando surgiram, há 13,5 bilhões de anos, estas estrelas continham apenas hidrogênio e hélio, os elementos químicos mais simples que existem na natureza. Minutos após o Big Bang, os únicos elementos presentes no Universo eram os três mais leves: hidrogênio, hélio e vestígios minúsculos de lítio. Os elementos mais pesados formaram-se, muito mais tarde, nas estrelas. 

Estas estrelas primordiais, que se pensa que eram dezenas ou centenas de vezes mais massivas do que o nosso Sol, morreram rapidamente em poderosas explosões de supernova, enriquecendo pela primeira vez o gás circundante com elementos mais pesados. Gerações posteriores de estrelas formaram-se a partir deste gás enriquecido e, por sua vez, ejetaram também elementos mais pesados no meio interestelar no momento da sua morte. 

Mas se as primeiras estrelas já desapareceram há muito tempo, como é que os astrônomos podem saber mais sobre elas? As estrelas primordiais podem ser estudadas de forma indireta através da detecção dos elementos químicos que dispersaram no seu meio após a sua morte.

Utilizando dados obtidos com o VLT, no Chile, a equipe encontrou três nuvens de gás muito distantes, observadas quando o Universo tinha apenas 10 a 15% da sua idade atual, com uma impressão digital química que corresponde ao que esperamos das explosões das primeiras estrelas. Dependendo da massa destas estrelas primitivas e da energia das suas explosões, estas primeiras supernovas liberaram diferentes elementos químicos, como o carbono, o oxigênio e o magnésio, que estão presentes nas camadas exteriores das estrelas. Mas algumas destas explosões não foram suficientemente energéticas para expelir elementos mais pesados, como o ferro, que se encontra apenas nos núcleos das estrelas. 

Uma vez que a presença de ferro nas nuvens de gás resultantes tornaria difícil ter a certeza de que o material era verdadeiramente prístino, a equipe procurou apenas nuvens de gás distantes pobres em ferro mas ricas  em outros elementos, os restos das explosões de mais baixa energia. E foi exatamente isso que encontrou: três nuvens distantes no Universo primitivo com muito pouco ferro mas imenso carbono e outros elementos, a impressão digital das explosões das primeiras estrelas.

Observa-se igualmente esta composição química peculiar em muitas estrelas velhas da nossa própria Galáxia, as quais são consideradas estrelas de segunda geração, isto é, estrelas que se formaram diretamente a partir das "cinzas" das primeiras. 

Para detectar e estudar estas nuvens de gás distantes, os astrônomos utilizaram os chamados quasares, fontes muito brilhantes alimentadas por buracos negros supermassivos existentes nos centros de galáxias distantes. À medida que viaja pelo Universo, a luz de um quasar passa por nuvens de gás, ficando assim marcada pelos diferentes elementos químicos da nuvem que atravessa.

De maneira a encontrar estas marcas químicas, a equipe analisou dados de vários quasares observados com o instrumento X-shooter, montado no VLT. O X-shooter separa a luz numa gama extremamente vasta de comprimentos de onda, ou cores, o que o torna um instrumento único para identificar muitos elementos químicos diferentes nestas nuvens distantes.

Este estudo abre novas perspetivas para a próxima geração de telescópios e instrumentos, como o futuro Extremely Large Telescope (ELT) do ESO e o seu espectrógrafo de alta resolução ANDES (ArmazoNes high Dispersion Echelle Spectrograph).

Este trabalho foi descrito num artigo científico publicado na revista da especialidade Astrophysical Journal

Fonte: ESO

Centaurus A: Uma ilha peculiar de estrelas

As galáxias são fascinantes.

© Marco Lorenzi (NGC 5128)

Nas galáxias, a gravidade sozinha mantém unidas coleções massivas de estrelas, poeira, gás interestelar, restos estelares e matéria escura. Na foto está NGC 5128, mais conhecida como Centaurus A (Cen A). 

A galáxia Cen A é a quinta galáxia mais brilhante no céu e está localizada a uma distância de cerca de 12 milhões de anos-luz da Terra. A forma distorcida de Cen A é o resultado de uma fusão entre uma galáxia elíptica e uma espiral. 

Seu núcleo galáctico ativo abriga um buraco negro supermassivo que é cerca de 55 milhões de vezes mais massivo que o nosso Sol. Este buraco negro central ejeta um jato rápido visível tanto no rádio quanto na luz de raios X. Os filamentos do jato são visíveis em vermelho no canto superior esquerdo. 

Novas observações do Event Horizon Telescope (EHt) revelaram um brilho do jato apenas em suas bordas, mas por razões que são atualmente desconhecidas, sendo um tópico ativo de pesquisa. 

Fonte: NASA

sexta-feira, 28 de abril de 2023

Um asteroide possui cauda que não é constituída de poeira

Um asteroide estranho acaba de ficar um pouco mais estranho.

© NASA / JPL-Caltech (ilustração do asteroide Faetonte)

Há já algum tempo que sabemos que o asteroide 3200 Phaethon (Faetonte) atua como um cometa. Brilha e forma uma cauda quando se aproxima do Sol e é a fonte da chuva anual de meteoros das Gemínidas, apesar de os cometas serem responsáveis pela maioria das chuvas de meteoros. 

Os cientistas atribuíram o comportamento tipo-cometa de Faetonte à poeira que escapa do asteroide quando este é "queimado" pelo Sol. No entanto, um novo estudo utilizando dois observatórios solares da NASA revela que a cauda de Faetonte não é de todo poeirenta, mas sim constituída pelo gás sódio. 

Os asteroides, que são majoritariamente rochosos, não costumam formar caudas quando se aproximam do Sol. Os cometas, no entanto, são uma mistura de gelo e rocha, e normalmente formam caudas quando o Sol vaporiza o seu gelo, liberando material das suas superfícies e deixando um rasto ao longo das suas órbitas. Quando a Terra passa por um rasto de detritos, estes pedaços de cometas ardem na nossa atmosfera e produzem um enxame de estrelas cadentes, ou seja, uma chuva de meteoros. 

Depois de os astrônomos terem descoberto Faetonte em 1983, perceberam-se que a órbita do asteroide coincidia com a dos meteoros das Gemínidas. Este fato apontou para Faetonte como a fonte da chuva de meteoros anual, apesar de Faetonte ser um asteroide e não um cometa. 

Em 2009, a sonda STEREO (Solar Terrestrial Relations Observatory) da NASA detectou uma pequena cauda que se estendia de Faetonte quando o asteroide atingiu periélio, o ponto mais próximo do Sol, ao longo da sua órbita de 524 dias. Os telescópios normais não tinham visto a cauda antes, porque esta só se forma quando Faetonte está demasiado perto do Sol para ser observada, exceto pelos observatórios solares. A STEREO também viu a cauda de Faetonte desenvolver-se em aproximações solares posteriores, em 2012 e 2016. 

O aparecimento da cauda apoiou a ideia de que a poeira estava escapando da superfície do asteroide quando aquecido pelo Sol. No entanto, em 2018, outra missão solar captou imagens de parte do rasto de detritos das Gemínidas e encontrou uma surpresa. As observações da Parker Solar Probe da NASA mostraram que o rasto continha muito mais material do que aquele que Faetonte poderia ter liberado durante as suas aproximações ao Sol. 

Os cometas brilham frequentemente devido à emissão do sódio quando estão muito perto do Sol, por isso suspeitou-se que o sódio poderia também desempenhar um papel fundamental no brilho de Faetonte. Um estudo anterior, baseado em modelos e testes laboratoriais, sugeriu que o calor intenso do Sol durante as aproximações solares de Faetonte poderia vaporizar o sódio dentro do asteroide e conduzir a uma atividade semelhante à de um cometa. 

No último periélio de Faetonte, em 2022 foi utilizada a sonda SOHO (Solar and Heliospheric Observatory) que possui filtros de cor capazes de detectar sódio e poeira. A equipe também pesquisou imagens de arquivo da STEREO e da SOHO, encontrando a cauda durante 18 das aproximações solares de Faetonte entre 1997 e 2022. Nas observações da SOHO, a cauda do asteroide apareceu brilhante no filtro que detecta o sódio, mas não apareceu no filtro que detecta a poeira. Além disso, a forma da cauda e a maneira como brilhou quando Faetonte passou pelo Sol correspondem exatamente como se fosse feita de sódio, mas não se fosse constituída por poeira.

Será que alguns dos cometas descobertos pela SOHO e por cientistas cidadãos que estudam as imagens da SOHO no âmbito do projeto Sungrazer, nem serão cometas? Ainda assim, resta uma questão importante: se Faetonte não libera muita poeira, como é que o asteroide fornece o material para a chuva de meteoros das Gemínidas que vemos todos os anos em dezembro? 

Os astrônomos suspeitam que algum tipo de acontecimento perturbador ocorrido há alguns milhares de anos - talvez um pedaço do asteroide que se partiu sob o stress da rotação de Faetonte - fez com que ele ejetasse os bilhões de toneladas de material que se estima constituírem a corrente de detritos das Gemínidas. Mas exatamente que acontecimento foi este permanece um mistério. Mais respostas poderão vir de uma futura missão da JAXA (Japan Aerospace Exploration Agency) chamada DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science). No final desta década, espera-se que a nave espacial DESTINY+ passe por Faetonte, capte imagens da sua superfície rochosa e estude qualquer poeira que possa existir à volta deste asteroide enigmático. 

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: ESA

Primeira imagem direta de buraco negro expelindo um poderoso jato

Os astrônomos observaram, pela primeira vez numa mesma imagem, a sombra do buraco negro situado no centro da galáxia Messier 87 (M87) e o poderoso jato que este objeto lança para o espaço.


© MPIfR / NRAO (imagem do jato e sombra do buraco negro de M87)

As observações foram efetuadas em 2018, com telescópios pertencentes às redes GMVA (Global Millimetre VLBI Array), ALMA (Atacama Large Millimeter/submillimeter Array, e GLT (Greenland Telescope). 

Esta nova imagem ajuda os astrônomos a compreender melhor o processo que faz com que os buracos negros liberem jatos tão energéticos. A maioria das galáxias abriga um buraco negro supermassivo no seu centro. Embora sejam conhecidos por engolir matéria da sua vizinhança imediata, os buracos negros podem também lançar poderosos jatos de matéria que se estendem para além das galáxias que os acolhem.

Compreender como é que os buracos negros criam jatos tão grandes tem sido um problema de longa data na astronomia. Para estudar diretamente este fenômeno, temos que observar a origem do jato tão perto do buraco negro quanto possível.

A nova imagem mostra pela primeira vez isto mesmo: como a base de um jato se liga com a matéria que gira em torno de um buraco negro supermassivo. O alvo é a galáxia M87, localizada a 55 milhões de anos-luz, na nossa vizinhança cósmica, e que acolhe um buraco negro 6,5 bilhões de vezes mais massivo do que o Sol. 

Observações anteriores tinham conseguido obter imagens separadas da região próxima do buraco negro e do jato, no entanto, esta é a primeira vez que ambas as estruturas foram observadas em conjunto. A imagem foi obtida com o GMVA, o ALMA e o GLT, que formam uma rede de radiotelescópios global, operando em conjunto como se fosse um telescópio virtual gigante do tamanho da Terra, técnica chamada interferometria, que sincroniza os sinais captados por cada infraestrutura individual. Com uma rede de telescópios assim tão grande podemos observar detalhes muito pequenos na região em torno do buraco negro de M87.

A nova imagem mostra o jato emergindo próximo do buraco negro, bem como a sombra do próprio buraco negro. À medida que orbita o buraco negro, a matéria aquece e emite luz. O buraco negro curva e captura alguma desta luz, criando uma estrutura semelhante a um anel em torno do buraco negro, quando visto a partir da Terra. A escuridão no centro do anel é a sombra do buraco negro, da qual foram obtidas pela primeira vez imagens com o telescópio EHT (Event Horizon Telescope), em 2017. Tanto esta nova imagem como a obtida anteriormente com o EHT, combinam dados coletados por vários radiotelescópios de todo o mundo, mas a imagem divulgada hoje mostra a radiação de rádio emitida em um comprimento de onda maior do que a do EHT, ou seja, 3,5 mm em vez de 1,3 mm. O tamanho do anel observado pela rede GMVA é cerca de 50% maior do que o da imagem obtida com o EHT.

Estão previstas observações futuras com esta rede de telescópios, para se continuar  investigando como é que os buracos negros supermassivos podem lançar jatos tão poderosos. Este tipo de observações simultâneas permitirão o estudo dos complicados processos que ocorrem perto do buraco negro supermassivo.

Um artigo foi publicado na revista Nature

Fonte: ESO

A Nebulosa da Tarântula observada pelo SuperBIT

A Nebulosa da Tarântula, também conhecida como 30 Doradus, tem mais de mil anos-luz de diâmetro, uma região gigante de formação estelar dentro da galáxia satélite próxima, a Grande Nuvem de Magalhães.

© SuperBIT (Nebulosa da Tarântula)

A cerca de 160 mil anos-luz de distância, é a maior e mais violenta região de formação estelar conhecida em todo o Grupo Local de galáxias. O aracnídeo cósmico está próximo ao centro desta imagem espetacular tirada durante o voo do SuperBIT (Super Pressure Balloon Imaging Telescope), o telescópio de 0,5 metros da NASA que flutua agora perto da borda da atmosfera.

Dentro da bem estudada Nebulosa da Tarântula (NGC 2070), intensa radiação, ventos estelares e choques de supernovas do jovem aglomerado central de estrelas massivas, catalogadas como R136, energizam o brilho e moldam os filamentos da nebulosa. 

Ao redor da Nebulosa da Tarântula estão outras regiões de formação estelar com aglomerados estelares jovens, filamentos e nuvens em forma de bolhas. O amplo campo de visão do SuperBIT abrange mais de 2 graus ou 4 luas cheias na constelação de 30 Doradus. 

Fonte: NASA

terça-feira, 25 de abril de 2023

Um novo perigo estelar para planetas

De acordo com um novo estudo utilizando o observatório de raios X Chandra da NASA e outros telescópios de raios X, a explosão de uma estrela pode representar mais riscos para os planetas próximos do que se pensava anteriormente.

© M. Weiss (ilustração de um planeta parecido com a Terra)

Esta ameaça recentemente identificada envolve uma fase de raios X intensos que podem danificar as atmosferas dos planetas até 160 anos-luz de distância. A Terra não está hoje em perigo de tal ameaça porque não existem potenciais progenitoras de supernovas dentro desta distância, mas pode ter estado exposta a este tipo de raios X no passado. 

Antes deste estudo, a maioria da pesquisa sobre os efeitos das explosões de supernova tinha-se concentrado no perigo de dois períodos: a radiação intensa produzida por uma supernova nos dias e meses após a explosão e as partículas energéticas que chegam centenas a milhares de anos depois. No entanto, mesmo estas ameaças alarmantes não catalogam completamente os perigos na sequência da explosão de uma estrela.

Os pesquisadores descobriram que, entre estes dois perigos previamente identificados, se esconde outro. As consequências das supernovas produzem sempre raios X, mas se a onda da explosão de supernova atingir gás circundante e denso, pode produzir uma dose particularmente grande de raios X que chega meses a anos após a explosão e pode durar décadas. 

Os cálculos neste último estudo baseiam-se em observações de raios X de 31 supernovas e das suas consequências obtidas principalmente com o Chandra, Swift e NuSTAR da NASA, juntamente com o XMM-Newton da ESA. A análise destas observações mostra que podem haver consequências letais da interação de supernovas com o seu meio envolvente, para planetas localizados até cerca de 160 anos-luz de distância.

Se uma torrente de raios X varrer um planeta próximo, a radiação alteraria severamente a química atmosférica do planeta. Para um planeta semelhante à Terra, este processo poderia eliminar uma porção significativa de ozônio, o que em última análise protege a vida da perigosa radiação ultravioleta da sua estrela hospedeira. Se um planeta com a biologia da Terra fosse atingido por uma contínua radiação altamente energética de uma supernova próxima, especialmente uma que interagisse fortemente com o seu ambiente, poderia levar ao desaparecimento de uma vasta gama de organismos, especialmente os marinhos na base da cadeia alimentar. Estes efeitos podem ser suficientemente significativos para iniciar um evento de extinção em massa.

Existem fortes indícios que num passado distante - incluindo a detecção, em diferentes locais do globo, de um tipo radioativo de ferro - de que ocorreram supernovas perto da Terra há cerca de 2 a 8 milhões de anos atrás. Os astrônomos estimam que estas supernovas se encontravam a cerca de 65 a 500 milhões de anos-luz da Terra. A Terra está na "Bolha Local", uma bolha ainda em expansão de gás quente e de baixa densidade rodeada por uma concha de gás frio que se estende por cerca de 1.000 anos-luz. A expansão exterior de estrelas perto da superfície da "Bolha Solar" implica que esta se formou a partir de um surto de formação estelar e de supernovas perto do centro da bolha há aproximadamente 14 milhões de anos.

As enormes estrelas jovens responsáveis pelas explosões de supernovas estavam então muito mais próximas do nosso planeta do que estas estrelas estão agora, o que colocou a Terra em muito maior risco destas supernovas no passado. Embora esta evidência não ligue as supernovas a qualquer evento específico de extinção em massa na Terra, sugere que as explosões cósmicas afetaram o nosso planeta ao longo da sua história. Apesar da Terra e do Sistema Solar se encontrem atualmente num espaço seguro em termos de potenciais explosões de supernova, muitos outros planetas na Via Láctea não estão. 

Estes eventos altamente energéticos reduziriam efetivamente as áreas dentro da nossa Galáxia, conhecida como Zona Galáctica Habitável, onde as condições seriam propícias à vida tal como a conhecemos. Uma vez que as observações de raios X das supernovas são escassas, particularmente da variedade que interage fortemente com o seu ambiente, os autores argumentam que as observações de acompanhamento das supernovas, em interação durante meses e anos após a explosão, seriam valiosas para compreender o ciclo de vida das estrelas e também em campos como a astrobiologia, paleontologia e ciências planetárias. 

O artigo científico que descreve este resultado foi publicado no periódico The Astrophysical Journal

Fonte: Harvard-Smithsonian Center for Astrophysics

Descoberta uma pequena galáxia com extraordinária formação estelar

Utilizando as primeiras observações do seu gênero, pelo telescópio espacial James Webb, astrônomos observaram mais de 13 bilhões de anos no passado para descobrir uma galáxia única e minúscula que gerou novas estrelas a um ritmo extremamente elevado para o seu tamanho.

© James Webb (galáxia RX J2129-z95)

A galáxia descoberta é uma das menores a esta distância, localizada a cerca de 500 milhões de anos após o Big Bang, e poderá ajudar os astrônomos a aprender mais sobre as galáxias que estavam presentes pouco depois do início do Universo. 

Os pesquisadores da Universidade do Minnesota efetuaram o estudo de galáxias que estavam presentes quando o Universo era muito mais novo podendo ajudar os cientistas a aproximarem-se da resposta a uma enorme questão em astronomia sobre como o Universo se tornou reionizado, mas a observação destes corpos distantes pode ser um desafio.

Neste caso, os pesquisadores foram capazes de encontrar e estudar esta pequena galáxia devido a um fenômeno de lente gravitacional, ou seja, onde a massa de uma galáxia curva e amplia a luz. Um aglomerado de galáxias que atua como lente fez com que esta pequena galáxia de fundo aparecesse 20 vezes mais brilhante do que seria se o aglomerado não estivesse ampliando a sua luz.

Os pesquisadores utilizaram a espectroscopia para medir a distância da galáxia, para além das suas propriedades físicas e químicas. O volume da galáxia é aproximadamente um milionésimo do da Via Láctea, mas é possível ver que ainda está formando o mesmo número de estrelas todos os anos. 

O telescópio espacial James Webb pode recolher cerca de 10 vezes mais luz do que o telescópio espacial Hubble e é muito mais sensível a comprimentos de onda mais longos e na região do espectro infravermelho. Isto permite aceder a uma janela de dados inteiramente nova. 

Um artigo foi publicado na revista Science

Fonte: Instituto de Astrofísica de Canarias

O cavalo-marinho escuro em Cepheus

Abrangendo anos-luz, esta forma sugestiva conhecida como Nebulosa do Cavalo-Marinho aparece em silhueta contra um fundo rico e luminoso de estrelas.

© Jeff Herman (Barnard 150)

Observadas na direção da constelação de Cepheus, as nuvens empoeiradas e obscuras fazem parte de uma nuvem molecular da Via Láctea a cerca de 1.200 anos-luz de distância. Também está listada como Barnard 150 (B150), uma das inúmeras nuvens escuras do céu catalogadas no início do século 20 pelo astrônomo Edward Barnard. Ele foi um astrofotógrafo pioneiro. Começando por volta de 1919, ele fotografou e catalogou 370 nebulosas escuras. 

Pacotes de estrelas de baixa massa estão se formando dentro, mas seus núcleos em colapso são visíveis apenas em longos comprimentos de onda infravermelhos. Ainda assim, as estrelas coloridas de Cepheus contribuem para esta bela paisagem celeste galáctica.

Fonte: NASA

quarta-feira, 19 de abril de 2023

Um planeta em torno de uma estrela "oscilante"

Os dados da missão espacial Gaia da ESA permitiram aos astrônomos detectar um exoplaneta gigante utilizando o telescópio Subaru.

© Subaru (movimento do planeta ao redor de sua estrela)

Este mundo é o primeiro exoplaneta confirmado encontrado graças à capacidade do Gaia em sentir a atração gravitacional ou "oscilação" que um planeta induz na sua estrela. E a técnica aponta o caminho para o futuro da observação planetária direta. Quando se trata de detectar planetas ao redor de outras estrelas, conhecidos como exoplanetas, os astrônomos têm uma variedade de métodos à sua disposição. Estas técnicas enquadram-se em duas grandes categorias: diretas e indiretas. Ambas têm vantagens e inconvenientes. 

Historicamente, a maioria dos exoplanetas têm sido encontrados por métodos indiretos. Isto significa que se deduz que os planetas existem devido ao efeito que têm na sua estrela hospedeira. Enquanto que na observação direta, um telescópio vê efetivamente o planeta. 

Embora os astrônomos tenham detectado mais de 5.000 exoplanetas utilizando meios indiretos, apenas cerca de 20 foram observados diretamente. Isto porque para que os planetas sejam visíveis com o nosso atual nível de tecnologia, devem estar amplamente separados da sua estrela progenitora e ser muito mais massivos do que Júpiter, o maior planeta do nosso Sistema Solar. 

Como a natureza não forma muitos destes tipos de planetas, há necessidade de saber exatamente onde procurar. A maioria das procuras diretas são "cegas", ou seja, visam simplesmente as estrelas com base na sua idade e distância e na esperança de que um planeta seja "apanhado no ato". Das centenas de estrelas investigadas desta forma, apenas um punhado produziu estrelas.

Através da missão Gaia foi procuradas estrelas que literalmente oscilam no céu. Em particular, foi utilizado o Catálogo de Acelerações Hipparcos-Gaia. Este catálogo combina dados do Gaia com os da anterior missão de mapeamento estelar da ESA, Hipparcos, para fornecer uma linha de base de 25 anos para a comparação das posições precisas das estrelas. 

A medição da posição de uma estrela no céu é conhecida como astrometria. A partir desta base de dados, a equipe identificou uma série de estrelas que pareciam mudar de posição no céu noturno de uma forma que sugeria que cada uma delas era orbitada por um planeta gigante. Em seguida, voltaram-se para o telescópio Subaru do National Astronomical Observatory of Japan (NAOJ) em Mauna Kea, Havaí, e fizeram observações em julho e setembro de 2020, e em maio e outubro de 2021. 

O planeta recentemente descoberto chama-se HIP 99770 b. Tem cerca de 16 vezes a massa de Júpiter e orbita uma estrela que tem quase duas vezes a massa do Sol. Embora a órbita do planeta seja mais de três vezes maior do que a órbita de Júpiter em torno do Sol, recebe quase a mesma quantidade de luz que Júpiter porque a sua estrela hospedeira é muito mais luminosa do que o Sol. 

Este método de visar estrelas para a descoberta exoplanetária vai acelerar. Isto porque a quarta publicação de dados Gaia (DR4), que se baseará em 5,5 anos de dados (quase o dobro da linha de base do DR3), tornará muito mais fácil detectar quais as estrelas que estão oscilando. 

Em última análise, esta abordagem combinada permitirá visar outras Terras. Um planeta como a Terra estará muito mais próximo da sua estrela e por isso passará muito tempo à frente ou atrás dessa estrela, tornando impossível a sua observação. A descoberta de um planeta como o nosso continua sendo o grande objetivo dos astrônomos.

Um artigo foi publicado na revista Science

Fonte: W. M. Keck Observatory

Confirmada a descoberta do terceiro protoplaneta

Uma equipe internacional de pesquisadores obteve resultados da análise de dados que confirma a existência de um novo protoplaneta em torno da estrela HD 169142.

© VLT / SPHERE (sistema HD 169142)

A imagem acima do sistema HD 169142 mostra o sinal do protoplaneta HD 169142 b (perto da posição correspondente às 11 horas, indicado pela seta), bem como um braço em espiral brilhante resultante da interação dinâmica entre o planeta e o disco em que se encontra. O sinal da estrela, 100.000 vezes mais brilhante do que o planeta, foi subtraído por uma combinação de componentes ópticos e processamento de imagem (máscara no centro da imagem). Observações em diferentes momentos mostram o planeta avançando na sua órbita ao longo do tempo.

Este resultado foi possível graças a ferramentas avançadas de processamento de imagem desenvolvidas pelo PSILab da Universidade de Liège. Os cientistas utilizaram várias observações, entre 2015 e 2019, da estrela HD 169142 obtidas pelo instrumento SPHERE do VLT (Very Large Telescope) do ESO.

Os planetas formam-se a partir de aglomerados de material em discos que rodeiam estrelas recém-nascidas. Quando o planeta ainda está se formando, ou seja, quando ainda está acretando material, é chamado de protoplaneta. 

Até à data, apenas dois protoplanetas tinham sido inequivocamente identificados como tal, PDS 70 b e c, ambos orbitando a estrela PDS 70. Este número aumentou agora para três com a descoberta e confirmação de um protoplaneta no disco de gás e poeira que envolve HD 169142, uma estrela a 374 anos-luz de distância. 

Os planetas estão quentes quando se formam, pelo que o telescópio obteve imagens infravermelhas de HD 169142 para procurar a sua assinatura térmica. Com estes dados, puderam confirmar a presença de um planeta, HD 169142 b, a cerca de 37 UA (unidade astronômica, a distância da Terra ao Sol) da sua estrela, ligeiramente mais longe do que a órbita de Netuno. Já em 2019, pesquisadores tinham anteriormente levantado a hipótese de que uma fonte compacta vista nas suas imagens poderia indicar a presença de um protoplaneta. O estudo recente confirma esta hipótese através de uma nova análise dos dados utilizados no seu estudo, bem como da inclusão de novas observações de melhor qualidade. 

As novas imagens confirmam que o planeta deve ter esculpido uma lacuna no disco, como previsto pelos modelos. Esta divisão é claramente visível nas observações de luz polarizada do disco. No infravermelho, podemos também ver um braço em espiral no disco, provocado pelo planeta e visível no seu rasto, sugerindo que outros discos protoplanetários contendo espirais também podem abrigar planetas ainda não descobertos. 

As imagens de luz polarizada, bem como o espectro infravermelho medido, indicam ainda que o planeta está enterrado numa quantidade significativa de poeira acretada a partir do disco protoplanetário. Esta poeira pode estar na forma de um disco circumplanetário, um pequeno disco que se forma à volta do próprio planeta, o qual, por sua vez, pode formar luas. 

Esta descoberta importante demonstra que a detecção de planetas por observação direta é possível mesmo numa fase muito precoce da sua formação. Ao longo dos últimos dez anos têm havido detecções de planetas em formação com muitos falsos positivos. 

O protoplaneta HD 169142 b parece ter propriedades diferentes dos protoplanetas no sistema PDS 70, o que é muito interessante. Parece que foi capturado numa fase mais jovem da sua formação e evolução, uma vez que ainda está completamente enterrado ou rodeado por muita poeira. Dado o número muito pequeno de planetas em formação confirmados até à data, a descoberta desta fonte e o seu acompanhamento deverá fornecer uma melhor compreensão de como os planetas, e em particular os planetas gigantes como Júpiter, são formados. 

Uma maior caracterização do protoplaneta e confirmação independente poderá ser obtida com futuras observações pelo telescópio espacial James Webb. A elevada sensibilidade do JWST à luz infravermelha deverá permitir a detecção emissões térmicas provenientes da poeira quente ao redor do planeta. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Université de Liège

segunda-feira, 17 de abril de 2023

Um aspersor estelar

Esta fotografia mostra o jovem objeto estelar 244-440 na Nebulosa de Órion observado com o Very Large Telescope (VLT) do ESO, a imagem mais nítida alguma vez obtida para este objeto.

© ESO / VLT (objeto estelar 244-440 na Nebulosa de Órion)

A estrutura sinuosa magenta trata-se de um jato de matéria lançado perto da estrela, mas porque é que terá esta forma? 

As estrelas muito jovens encontram-se frequentemente rodeadas por discos de material, que cai em direção à estrela. Parte deste material pode ser expelido em poderosos jatos perpendiculares ao disco. O jato em forma de S de 244-440 sugere que o que se esconde no centro deste objeto não é uma, mas sim duas estrelas em órbita uma da outra.

Este movimento orbital altera periodicamente a orientação do jato, de modo semelhante ao funcionamento de um aspersor de água. Outra explicação plausível prende-se com a possibilidade da forte radiação de outras estrelas na nuvem de Órion poder estar alterando a forma do jato. 

Estas observações foram obtidas com o instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no VLT, no Chile. As cores vermelha, verde e azul mostram a distribuição de ferro, nitrogênio e oxigênio, respectivamente. Mas isto é apenas uma pequena fração de todos os dados recolhidos pelo MUSE, que capta simultaneamente milhares de imagens em diferentes cores, ou comprimentos de onda permitindo assim aos astrônomos estudar não só a distribuição de muitos elementos químicos diferentes, mas também a forma como estes se deslocam. 

Além disso, o MUSE está instalado no telescópio principal nº 4 do VLT, o qual se encontra equipado com uma infraestrutura de óptica adaptativa avançada que corrige a turbulência atmosférica, fornecendo imagens mais nítidas do que as obtidas pelo telescópio espacial Hubble. Estas novas observações permitirão aos astrônomos estudar com um detalhe sem precedentes como é que as estrelas nascem em nuvens massivas como a de Órion. 

Fonte: ESO