Quando os astrônomos não conseguem explicar algo diretamente, muitas vezes torna-se verdadeiramente excitante.
© D. Futselaar (ilustração de um pulsar e um buraco negro)
Uma equipe internacional liderada por pesquisadores do Instituto Max Planck de Radioastronomia e com a participação do Instituto Max Planck de Física Gravitacional descobriu agora um misterioso par que nunca tinha sido observado antes: um sistema constituído por uma estrela de nêutrons e um objeto que, à primeira vista, nem sequer deveria existir. Mas existem pistas importantes.
Os pesquisadores da colaboração internacional TRAPUM (Transients and Pulsars with MeerKAT) descobriram um novo sistema constituído por dois objetos, localizado no aglomerado globular NGC 1851, na direção da constelação austral de Columba (Pomba). Os dois objetos têm muito provavelmente uma coisa em comum: ambos devem ter surgido, embora indiretamente, dos remanescentes de estrelas massivas, ou seja, de estrelas de nêutrons ou de buracos negros.
As estrelas massivas formam-se frequentemente em sistemas estelares múltiplos. E são precisamente estas estrelas que, no final das suas vidas, morrem numa espetacular explosão de supernova. Os remanescentes: buracos negros ou estrelas de nêutrons que se orbitam uns aos outros, caso o sistema tenha sobrevivido à explosão.
Até agora, só foram detectados pares de buracos negros e estrelas de nêutrons graças às ondas gravitacionais que emitem durante a sua dança íntima.
É conhecida a natureza de pelo menos um dos dois objetos. A equipe utilizou o sensível radiotelescópio MeerKAT, na África do Sul, em combinação com poderosos detectores do Instituto Max Planck de Radioastronomia, e registrou pulsos fracos.
Trata-se de uma estrela de nêutrons com um forte campo magnético que gira muito rapidamente, emitindo ondas de rádio ao longo de cones de luz opostos que varrem o Universo como um farol cósmico. O pulsar recentemente descoberto, de nome PSR J0514-4002E, gira em torno do seu próprio eixo mais de 170 vezes por segundo e a sua luz rádio atinge a Terra com a mesma frequência. A cada rotação, o radiotelescópio regista um pulso, semelhante ao tique-taque de um relógio. O pulsar tem um ritmo extremamente regular.
Foram utilizados pequenos desvios ou diferenças no ritmo deste "relógio" para obter detalhes sobre uma companheira que orbita num centro de gravidade comum, juntamente com o pulsar. O efeito Doppler faz com que a frequência de rádio do pulsar se altere como resultado do seu movimento orbital, tal como o som da sirene de um carro de bombeiros ao passar pelo observador. Isto também permitiu determinar a órbita do pulsar em torno do objeto misterioso.
A situação é menos clara quando se trata do objeto companheiro que orbita o pulsar. Quando observa-se as imagens de NGC 1851 obtidas pelo telescópio espacial Hubble, não é visto nada nessa posição. Por isso, o objeto em órbita com o pulsar não é uma estrela normal, mas um remanescente extremamente denso de uma estrela colapsada. Se este objeto fosse também uma estrela, emitiria, tal como o Sol, um vento estelar, que o cone de luz rádio do pulsar teria de atravessar antes do radiotelescópio receber um sinal. Neste caso, o vento estelar influenciaria nas frequências do sinal de rádio. No entanto, não há sinais de tal efeito nos dados de rádio. Tudo indica que o misterioso objeto é um remanescente extremamente denso de uma estrela colapsada: um buraco negro ou outra estrela de nêutrons que não emite ondas de rádio.
A procura por pistas continua: os astrônomos não só deduziram a órbita a partir das medições das diferenças de velocidade do "relógio" do pulsar, como também reduziram a massa do segundo objeto até 2,09 a 2,71 massas solares. Isto significa que a companheira pode ser mais massiva do que as estrelas de nêutrons mais pesadas conhecidas (cerca de duas massas solares) e, ao mesmo tempo, mais leve do que os buracos negros mais leves conhecidos (cerca de cinco massas solares). A razão pela qual ainda não foi encontrado nenhum outro objeto compacto entre duas e cinco massas solares não é totalmente compreendida.
As estrelas de nêutrons, os remanescentes ultradensos das explosões de supernovas, só podem ter até uma determinada massa. Quando ganham demasiada massa, talvez por consumirem outra estrela ou por colidirem com um objeto do mesmo tipo, entram em colapso. Qual exatamente o objeto resultante, após o colapso, é motivo de muita especulação, tendo sido propostos vários cenários de estrelas exóticas. A opinião predominante, no entanto, é que as estrelas de nêutrons colapsam para se tornarem buracos negros, objetos gravitacionalmente tão atrativos que nem a luz lhes consegue escapar.
A teoria, apoiada pela observação, diz-nos que os buracos negros mais leves que podem ser criados por estrelas colapsadas são cerca de 5 vezes mais massivos do que o Sol. Isto é consideravelmente mais do que as 2,2 massas solares necessárias para o colapso de uma estrela de nêutrons, dando origem ao que é conhecido como a lacuna de massa dos buracos negros. A natureza dos objetos compactos, nesta gama de massas, é desconhecida e o estudo detalhado tem-se revelado até agora um desafio, uma vez que apenas vislumbres fugazes de tais objetos foram captados em observações das ondas gravitacionais produzidas por eventos de fusão no Universo distante.
Embora a equipe não possa dizer de forma conclusiva se descobriu a estrela de nêutrons mais massiva que se conhece, o buraco negro mais leve que se conhece ou até mesmo uma nova e exótica variante estelar, o que é certo é que descobriu um laboratório único para investigar as propriedades da matéria sob as condições mais extremas do Universo.
Um artigo foi publicado na revista Science.
Fonte: Max Planck Institute for Radio Astronomy