quarta-feira, 21 de junho de 2023

Descoberta de pulsar de anã branca pode esclarecer a evolução estelar

A descoberta de um tipo raro de sistema estelar, com uma anã branca, permitiu uma nova compreensão da evolução estelar.

© ESO / M. Garlick (ilustração de um pulsar de anã branca)

As anãs brancas são estrelas pequenas e densas, tipicamente do tamanho de um planeta. Formam-se quando uma estrela de baixa massa queima todo o seu combustível, perdendo as suas camadas exteriores. Por vezes referidas como "fósseis estelares", fornecem uma visão sobre diferentes aspetos da formação e evolução das estrelas. 

Um tipo raro de pulsar de anã branca foi descoberto apenas pela segunda vez, numa pesquisa liderada pela Universidade de Warwick. Os pulsares de anãs brancas incluem um remanescente estelar em rápida rotação, de nome anã branca, que atinge a sua vizinha - uma anã vermelha - com poderosos feixes de partículas elétricas e radiação, fazendo com que todo o sistema dramaticamente aumente e diminua de brilho em intervalos regulares. Isto deve-se aos fortes campos magnéticos, mas os cientistas não sabem ao certo o que os provoca. 

Uma teoria chave que explica os fortes campos magnéticos é o "modelo do dínamo", que as anãs brancas têm dínamos (geradores elétricos) no seu núcleo, tal como a Terra, mas muito mais potentes. Mas para que esta teoria pudesse ser testada, os cientistas precisavam de procurar outros pulsares de anãs brancas para ver se as suas previsões se confirmavam.

O pulsar de anã branca recém-detectado, J191213.72-441045.1 (J1912-4410 para abreviar) é apenas o segundo sistema estelar deste gênero que é encontrado, após a descoberta de AR Scorpii (Ar Sco) em 2016. A 773 anos-luz da Terra e girando 300 vezes mais depressa do que o nosso planeta, o pulsar de anã branca tem um tamanho semelhante ao da Terra, mas uma massa pelo menos tão grande quanto o Sol. Isto significa que uma colher de chá de material de uma anã branca pesaria cerca de 15 toneladas. 

As anãs brancas começam as suas vidas com temperaturas extremamente quentes antes de arrefecerem ao longo de bilhões de anos, e a baixa temperatura de J1912-4410 aponta para uma idade avançada. 

A origem dos campos magnéticos é uma grande questão em aberto em muitos domínios da Astronomia, e isto é particularmente verdade para as anãs brancas. Os campos magnéticos das anãs brancas podem ser mais de um milhão de vezes mais fortes do que o campo magnético do Sol e o modelo do dínamo ajuda a explicar porquê. A descoberta de J1912-4410 constituiu um avanço fundamental nesta área. 

Devido à sua idade avançada, as anãs brancas no sistema de pulsares devem ser frias. As suas companheiras devem estar suficientemente próximas para que a atração gravitacional da anã branca tenha sido, no passado, suficientemente forte para capturar massa da companheira, o que faz com que girem rapidamente. Todas estas previsões se aplicam ao novo pulsar encontrado: a temperatura da anã branca é inferior a 13.000 K, gira sobre o seu eixo uma vez a cada cinco minutos e a atração gravitacional da anã branca tem um forte efeito na companheira. 

O objeto foi encontrado no levantamento de raios X de todo o céu realizado com o SRG/eROSITA. A investigação de acompanhamento com o satélite XMM-Newton da ESA revelou as pulsações no regime de raios X altamente energéticos, confirmando assim a natureza incomum do novo objeto e estabelecendo firmemente os pulsares de anãs brancas como uma nova classe.

Um artigo foi publicado na revista Nature Astronomy. Um outro artigo complementar foi publicado no periódico Astronomy & Astrophysics

Fonte: Leibniz Institute for Astrophysics Potsdam

Rara lente gravitacional deforma a luz de uma supernova

Os astrônomos captaram uma imagem bizarra de uma supernova, a poderosa explosão de uma estrela, cuja luz foi tão distorcida pela gravidade de uma galáxia, que aparece como múltiplas imagens no céu.

© J. Johansson (lente gravitacional de SN Zwicky)

Este efeito, conhecido como lente gravitacional, ocorre quando a gravidade de um objeto denso distorce e aumenta a luz de um objeto por trás dele. Uma equipe liderada por Ariel Goobar, do Centro Oskar Klein da Universidade de Estocolmo, descobriu que a incomum supernova de Tipo Ia, designada "SN Zwicky", sofreu um efeito quádruplo de lente, o que significa que quatro imagens da mesma supernova podiam ser vistas da Terra.

Poucas semanas depois de detectar a supernova no ZTF (Zwicky Transient Facility), no Observatório Palomar, Goobar e a sua equipe usaram o instrumento NIRC2 (Near-Infrared Camera 2) do Observatório W. M. Keck, emparelhado com o seu sistema de óptica adaptativa, e resolveram com sucesso SN Zwicky, revelando que a lente da supernova era suficientemente forte para ter criado múltiplas imagens do mesmo objeto. Também foram utilizados neste estudo o VLT (Very Large Telescope), o telescópio espacial Hubble, o telescópio Hobby-Eberly, o telescópio Liverpool e o NOT (Nordic Optical Telescope). 

Tal como previsto por Albert Einstein há mais de um século, a luz de um objeto cósmico que encontra um objeto denso no seu caminho até nós pode sofrer o efeito de lente gravitacional. O objeto denso atua como uma lente que pode dobrar e focar a luz. Dependendo da densidade da lente e da distância até nós, este efeito de deformação pode variar em intensidade. Com lentes fortes, a luz do objeto cósmico é tão distorcida que é ampliada e dividida em várias cópias da mesma imagem. 

Os astrônomos têm observado a curvatura gravitacional da luz desde 1919, poucos anos depois de Einstein ter desenvolvido a teoria, mas a natureza transiente das supernovas torna eventos como SN Zwicky, também conhecida como SN 2022qmx, muito difíceis de detectar. Embora os cientistas já tenham detectado muitas vezes imagens duplicadas de objetos distantes chamados quasares, apenas foram encontradas algumas supernovas duplicadas devido às lentes gravitacionais. Um exemplo clássico, chamado iPTF16geu, foi descoberto pela iPTF (intermediate Palomar Transient Factory), antecessora do ZTF.

Quais são os componentes em falta necessários para modelar a história da expansão do Universo? O que é a matéria escura que constitui a grande maioria da massa das galáxias? À medida que novas descobertas forem obtidas com o ZTF e com o futuro Observatório Vera Rubin, teremos mais uma ferramenta para desvendar os mistérios do Universo e encontrar respostas. 

Um artigo foi publicado na revista Nature Astronomy

Fonte: W. M. Keck Observatory

domingo, 18 de junho de 2023

A formação estelar continua em 30 Doradus

Uma nova pesquisa do SOFIA (Stratospheric Observatory for Infrared Astronomy) mostrou que os campos magnéticos em 30 Doradus, uma região de hidrogênio ionizado no núcleo da Grande Nuvem de Magalhães, podem ser a chave para o seu comportamento surpreendente.

© ESO / NASA / SOFIA (30 Doradus)

As linhas de fluxo mostram a morfologia do campo magnético a partir dos mapas de polarização obtidos pelo HAWC+ (High-resolution Airborne Wideband Camera Plus) do SOFIA. Estes são sobrepostos numa imagem composta captada pelo VLT (Very Large Telescope) do ESO e pelo VISTA (Visible and Infrared Survey Telescope for Astronomy).

A maior parte da energia em 30 Doradus, também chamada Nebulosa da Tarântula, provém do gigantesco aglomerado estelar perto do seu centro, R136, que é responsável por múltiplas e gigantescas conchas de matéria em expansão. Mas nesta região perto do núcleo da nebulosa, a cerca de 25 parsecs de R136, as coisas são um pouco estranhas. A pressão do gás, aqui, é mais baixa do que deveria ser, perto da intensa radiação estelar de R136, e a massa da área é inferior ao esperado para que o sistema se mantenha estável. 

Utilizando o instrumento HAWC+, os astrônomos estudaram a interação entre os campos magnéticos e a gravidade em 30 Doradus. Os campos magnéticos são, afinal, o ingrediente secreto da região. O estudo recente descobriu que os campos magnéticos nesta região são simultaneamente complexos e organizados, com grandes variações de geometria relacionadas com as estruturas de grande escala, em expansão, que estão em jogo. 

Mas como é que estes campos complexos, mas organizados, ajudam 30 Doradus a sobreviver? Na maior parte da área, os campos magnéticos são incrivelmente fortes. São fortes o suficiente para resistir à turbulência, para poderem continuar regulando o movimento do gás e mantendo intacta a estrutura da nuvem. São também suficientemente fortes para evitar que a gravidade assuma o controle e faça a nuvem colapsar para formar mais estrelas. No entanto, o campo é mais fraco em alguns pontos, permitindo que o gás escape e infle as conchas gigantes. À medida que a massa nestas conchas cresce, as estrelas podem continuar se formando apesar dos fortes campos magnéticos. 

Observar a região com outros instrumentos pode ajudar os astrônomos a compreender melhor o papel dos campos magnéticos na evolução de 30 Doradus e de outras nebulosas semelhantes. 

O SOFIA foi um projeto conjunto da NASA e da DLR (Deutsches Zentrum für Luft- und Raumfahrt, a Agência Espacial Alemã). A DLR forneceu o telescópio, a manutenção programada da aeronave e outros apoios para a missão. O Centro de Pesquisa Ames da NASA em Silicon Valley, na Califórnia, geriu o programa SOFIA, a ciência e as operações da missão em cooperação com a USRA (Universities Space Research Association), com sede em Columbia, no estado norte-americano de Maryland, e com o Instituto SOFIA na Universidade de Stuttgart, Alemanha. O SOFIA atingiu a capacidade operacional total em 2014 e concluiu o seu último voo científico a 29 de setembro de 2022. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: Stratospheric Observatory for Infrared Astronomy

Novo estudo prova a existência de fósforo no Sistema Solar exterior

A procura por vida extraterrestre no nosso Sistema Solar acaba de dar um grande salto em frente.

© Cassini (Encélado)

Uma equipe de pesquisadores liderada pelo Professor Frank Postberg, cientista planetário da Universidade Livre de Berlim, descobriu novas evidências de que o oceano subsuperficial da lua gelada de Saturno, Encélado, contém um elemento fundamental para a vida. Foram utilizados dados da missão espacial Cassini para detectar fósforo sob a forma de fosfatos em partículas de gelo, provenientes do oceano global coberto de gelo da lua, que tinham sido ejetadas para o espaço pela pluma criovulcânica.

O fósforo, sob a forma de fosfatos, é vital para toda a vida na Terra. É essencial para a criação do ADN e do ARN, das membranas celulares e do ATP (o transportador universal de energia nas células), por exemplo. A vida, tal como a conhecemos, simplesmente não existiria sem os fosfatos. 

Há alguns anos, a sonda Cassini-Huygens da NASA/ESA, que esteve em órbita de Saturno entre 2004 e 2017, descobriu o oceano de água líquida subsuperficial de Encélado e analisou amostras de uma pluma de grãos de gelo e gases que irrompem para o espaço a partir de fissuras na crosta gelada da lua. Em estudos anteriores, a equipe de Postberg já tinha determinado que Encélado abriga um oceano rico em carbonatos dissolvidos e contém uma grande variedade de compostos orgânicos reativos e por vezes complexos. Encontraram também indícios de ambientes hidrotermais no fundo do mar. 

No entanto, só recentemente foram descobertas assinaturas inconfundíveis de fosfatos nos dados. O que é crucial para a biodisponibilidade é o fato de os fosfatos não estarem presos em minerais rochosos, mas dissolvidos no oceano sob a forma de sal. Determinou-se que as concentrações de fosfato são pelo menos 100 a 1.000 vezes superiores às dos oceanos da Terra. 

Uma das descobertas mais profundas da ciência planetária nos últimos vinte e cinco anos é que os mundos com oceanos sob uma camada superficial de gelo são comuns no nosso Sistema Solar. Contêm consideravelmente mais água do que todos os oceanos da Terra juntos e incluem as luas geladas de Júpiter e Saturno como Ganimedes, Titã e Encélado, bem como corpos celestes ainda mais distantes como Plutão. Os planetas com oceanos à superfície, como a Terra, têm de residir num intervalo estreito de distâncias às suas estrelas hospedeiras (no que é conhecido como "zona habitável") para manterem temperaturas a que a água não se evapore nem congele. No entanto, mundos com um oceano interior como Encélado podem ocorrer numa gama muito maior de distâncias, expandindo largamente o número de mundos habitáveis susceptíveis de existir na Galáxia. 

O estudo foi publicado na revista Nature

Fonte: Jet Propulsion Laboratory

Detectados elementos formadores de rocha na atmosfera de exoplaneta

Astrônomos, recorrendo ao telescópio Gemini North, do Observatório Internacional Gemini operado pelo NOIRLab (National Optical-Infrared Astronomy Research Laboratory), detectaram múltiplos elementos formadores de rocha na atmosfera de um exoplaneta do tamanho de Júpiter, WASP-76b.

© NOIRLab (ilustração do exoplaneta WASP-76b)

O exoplaneta está tão perigosamente perto da sua estrela hospedeira que os elementos formadores de rocha - como o magnésio, o cálcio e o níquel - são vaporizados e dispersos pela sua atmosfera abrasadora. Este perfil químico intrigante fornece novos conhecimentos sobre a formação de sistemas planetários, incluindo o WASP-76b que é um mundo estranho. Localizado a 634 anos-luz da Terra, na direção da constelação de Peixes, o exoplaneta semelhante a Júpiter orbita a sua estrela hospedeira a uma distância excepcionalmente íntima - cerca de 12 vezes mais perto do que Mercúrio está do Sol - o que aquece a sua atmosfera a uns abrasadores 2.000° C. Estas temperaturas extremas "incharam" o planeta, aumentando o seu volume para quase seis vezes o de Júpiter. A temperaturas tão extremas, os elementos formadores de minerais e rochas, que de outra forma permaneceriam escondidos na atmosfera de um planeta gigante gasoso mais frio, podem revelar-se.

Utilizando o telescópio Gemini North, astrônomos detectaram 11 destes elementos formadores de rocha na atmosfera de WASP-76b. A presença e as quantidades relativas destes elementos podem fornecer informações fundamentais sobre a forma exata como os planetas gigantes gasosos se formam, algo que permanece incerto mesmo no nosso próprio Sistema Solar. 

Desde a sua descoberta em 2013, durante o levantamento WASP (Wide Angle Search for Planets), que muitos astrônomos têm vindo a estudar o enigmático WASP-76b. Estes estudos levaram à identificação de vários elementos presentes na atmosfera do exoplaneta quente. Num estudo publicado em março de 2020, uma equipe concluiu que poderia haver chuva de ferro no planeta. Em 2020 e 2021, usando o instrumento MAROON-X do Gemini North, observou-se o planeta à medida que este passava em frente da estrela hospedeira em três ocasiões distintas. Estas novas observações revelaram uma série de elementos formadores de rocha na atmosfera de WASP-76b, incluindo sódio, potássio, lítio, níquel, manganês, crômio, magnésio, vanádio, bário, cálcio e ferro. 

Devido às temperaturas extremas da atmosfera de WASP-76b, os elementos detectados, que normalmente formariam rochas aqui na Terra, são, ao invés, vaporizados e, portanto, presentes na atmosfera nas suas formas gasosas. Embora estes elementos contribuam para a composição dos gigantes gasosos do nosso Sistema Solar, estes planetas são demasiado frios para que os elementos se vaporizem na atmosfera, tornando-os praticamente indetectáveis.

A abundância de muitos destes elementos coincide de perto com as abundâncias encontradas tanto no nosso Sol como na estrela hospedeira do exoplaneta. Isto pode não ser coincidência e fornece mais evidências de que os planetas gigantes gasosos, como Júpiter e Saturno, são formados de modo mais parecido com as estrelas, coalescendo a partir do gás e da poeira de um disco protoplanetário, em vez da gradual acreção e colisão de poeira, rochas e planetesimais, que vão formar planetas rochosos, como Mercúrio, Vênus e a Terra. 

Outro resultado notável do estudo é a primeira detecção inequívoca de óxido de vanádio num exoplaneta. Esta molécula é de grande interesse porque pode ter um grande impacto na estrutura atmosférica dos planetas gigantes quentes. Esta molécula desempenha uma função semelhante ao do ozônio, sendo extremamente eficiente no aquecimento da atmosfera superior da Terra. 

Disponível para os astrônomos de todo o mundo, o Observatório Internacional Gemini continua fornecendo novos conhecimentos que contribuem para a nossa compreensão da estrutura física e química de outros mundos.

Um artigo foi publicado na revista Nature

Fonte: Gemini Observatory

segunda-feira, 12 de junho de 2023

A complexidade das novas clássicas

Ao estudar as novas clássicas utilizando o VLBA (Very Long Baseline Array) do NRAO (National Radio Astronomy Observatory), a pesquisadora Montana Williams descobriu evidências de que os objetos podem ter sido erradamente classificados como simples.

© B. Saxton (ilustração de uma nova clássica)

As novas observações, que detectaram emissões não térmicas de uma nova clássica com uma companheira anã, foram apresentadas numa conferência de imprensa durante a 242.ª reunião da Sociedade Astronômica Americana em Albuquerque, no estado norte-americano do Novo México. 

A V1674 Herculis é uma nova clássica hospedada por uma anã branca e uma anã companheira e é atualmente a nova clássica mais rápida de que há registo. O que a equipe encontrou é tudo menos as simples explosões induzidas pelo calor que os cientistas esperavam das novas clássicas. Historicamente, as novas clássicas têm sido consideradas explosões simples, emitindo majoritariamente energia térmica. No entanto, com base em observações recentes pelo instrumento LAT (Large Area Telescope) do telescópio espacial Fermi, este modelo simples não está inteiramente correto. 

As detecções por VLBI (Very Long Baseline Interferometry) de novas clássicas com companheiras anãs como V1674Her são raras. São tão raras que este mesmo tipo de detecção, com componentes de síncrotron de rádio resolvidos, só foi reportado uma outra vez até à data. Isto deve-se em parte à natureza assumida das novas clássicas. 

As detecções de novas por VLBI só recentemente se tornaram possíveis devido aos melhoramentos introduzidos nas técnicas deste tipo de observações, como a sensibilidade dos instrumentos e o aumento da largura de banda ou a quantidade de frequências que podemos registar num dado momento. 

© NRAO (diferença de brilho em apenas quatro dias da nova clássica V1674Her)

Esta raridade faz com que as novas observações da equipe sejam um passo importante para compreender as vidas ocultas das novas clássicas e o que, em última análise, leva ao seu comportamento explosivo. Estudando as imagens do VLBA e comparando-as com outras observações do VLA (Very Large Array), do instrumento LAT do Fermi, do NuSTAR e do Swift da NASA, foi possível determinar o que poderá ser a causa da emissão e também fazer ajustes ao modelo simples anterior. 

Como as observações do LAT do Fermi e do NuSTAR já tinham indicado que poderia haver emissões não térmicas provenientes de V1674Her, isso fez da nova clássica uma candidata ideal para estudo. Era também mais interessante devido à sua evolução hiper-rápida e porque, ao contrário das supernovas, o sistema hospedeiro não é destruído durante esta evolução, mas permanece quase completamente intacto e inalterado após a explosão.

Muitas fontes astronômicas não mudam muito no decurso de um ano ou mesmo de 100 anos. Mas esta nova ficou 10.000 vezes mais brilhante num único dia e depois voltou ao seu estado normal em apenas cerca de 100 dias. 

Uma vez que os sistemas hospedeiros das novas clássicas permanecem intactos, podem ser recorrentes, o que significa que podemos ver esta entrar em erupção novamente.

Fonte: National Radio Astronomy Observatory

domingo, 11 de junho de 2023

Uma galáxia de anel duplo

A maioria das galáxias não tem anéis de estrelas e gás, por que a M94 tem dois?

© Brian Brennan (M94)

Primeiro, a galáxia espiral M94 tem um anel interno de estrelas recém-formadas em torno de seu núcleo, dando-lhe não apenas uma aparência incomum, mas também um forte brilho interior. Uma das principais hipóteses de origem sustenta que um nó alongado de estrelas gira em M94 e gerou uma explosão de formação estelar neste anel interno. 

As observações também revelaram outro anel, um anel externo, mais fraco, de cor diferente, não fechado e relativamente complexo. O que causou este anel externo é atualmente desconhecido. 

A galáxia M94, retratada aqui, abrange cerca de 45.000 anos-luz no total, fica a cerca de 15 milhões de anos-luz de distância e pode ser visto com um pequeno telescópio em direção à constelação dos Cães de Caça (Canes Venatici). 

Fonte: NASA

Um-terço dos planetas mais comuns poderão estar na zona habitável

Numa nova análise baseada nos dados telescópicos mais recentes, astrônomas da Universidade da Flórida descobriram que um-terço dos planetas em torno das estrelas mais comuns da Galáxia podem estar numa órbita suficientemente próxima para reter água líquida.

© NASA / JPL-Caltech (exoplaneta orbitando pequena estrela)

Os restantes dois-terços que orbitam estas pequenas estrelas omnipresentes são provavelmente incinerados por marés gravitacionais, esterilizando-os. 

A professora de astronomia Sarah Ballard e a estudante de doutoramento Sheila Sagear estudam os exoplanetas há muito tempo. 

O nosso Sol, quente, amarelo e familiar é uma relativa raridade na Via Láctea. De longe, as estrelas mais comuns são consideravelmente menores e mais frias, com apenas metade da massa do nosso Sol no máximo. Bilhões de planetas orbitam estas estrelas anãs comuns na Via Láctea. Os cientistas pensam que a água líquida é necessária para que a vida evolua em outros planetas, tal como aconteceu na Terra. Uma vez que estas estrelas anãs são mais frias, os planetas teriam de estar muito mais perto da sua estrela para obterem calor suficiente para abrigar água líquida. 

No entanto, estas órbitas próximas deixam os planetas susceptíveis a forças de maré extremas causadas pelo efeito gravitacional da estrela sobre eles. Sagear e Ballard mediram a excentricidade, ou seja, quão oval a órbita é, de uma amostra de mais de 150 planetas em torno destas estrelas anãs, que têm aproximadamente o tamanho de Júpiter. 

Se um planeta orbitar suficientemente perto da sua estrela, mais ou menos à distância que Mercúrio orbita o Sol, uma órbita excêntrica pode sujeitá-lo a um processo conhecido como aquecimento de maré. À medida que o planeta é esticado e deformado pelas forças gravitacionais variáveis na sua órbita irregular, o atrito aquece-o. No extremo, isto pode incinerar o planeta, eliminando qualquer hipótese de água líquida. 

Os dados provêm do telescópio Kepler da NASA, que captou informações sobre exoplanetas à medida que estes se deslocavam em frente das suas estrelas hospedeiras. Para medir as órbitas dos planetas, Ballard e Sagear concentraram-se sobretudo no tempo que os planetas demoravam a fazê-lo. O seu estudo também se baseou em novos dados do telescópio Gaia, que mediu a distância de bilhões de estrelas na Galáxia.

Elas descobriram que as estrelas com múltiplos planetas eram mais propensos de ter o tipo de órbitas circulares que lhes permite reter água líquida. As estrelas com apenas um planeta são as que têm maior probabilidade de registar marés extremas que esterilizariam a superfície. Uma vez que um-terço dos planetas desta pequena amostra tinham órbitas para potencialmente acumular água líquida, isso significa provavelmente que a Via Láctea tem centenas de milhões de alvos promissores para sondar sinais de vida para lá do nosso Sistema Solar. 

Um artigo foi publicado no periódico Proceedings of the National Academy of Sciences.

Fonte: University of Florida

Descobertos filamentos horizontais e radiais no centro da Via Láctea

Uma equipe internacional de astrofísicos descobriu algo totalmente novo, escondido no centro da nossa Galáxia, a Via Láctea.

© MeerKAT (filamentos no centro da Via Láctea)

Imagem do Centro Galáctico com a identificação e posição de todos os filamentos. A cor dos filamentos indica o ângulo

No início da década de 1980, Farhad Yusef-Zadeh, da Universidade Northwestern, descobriu filamentos gigantescos e unidimensionais que pendiam verticalmente perto de Sagitário A*, o buraco negro supermassivo central da nossa Galáxia. Agora, Yusef-Zadeh e os seus colaboradores descobriram uma nova população de filamentos, mas estes são muito mais curtos e encontram-se na horizontal ou na radial, espalhando-se a partir do buraco negro. Sendo que o centro da Via Láctea está localizado a 25.000 anos-luz da Terra. 

Embora as duas populações de filamentos partilhem várias semelhanças, Yusef-Zadeh assume que têm origens diferentes. Embora os filamentos verticais varram a Galáxia, elevando-se até 150 anos-luz de altura, os filamentos horizontais parecem-se mais com os pontos e traços do código Morse, pontuando apenas um dos lados de Sagitário A*. Ao estudar tais filamentos, é possível aprender mais sobre a rotação do buraco negro e a orientação do disco de acreção. 

O último estudo baseia-se em quatro décadas de pesquisa. Depois de ter descoberto os filamentos verticais em 1984 com Mark Morris e Don Chance, Yusef-Zadeh, juntamente com Ian Heywood e os seus colaboradores, descobriram mais tarde duas bolhas gigantescas emissoras de rádio perto de Sagitário A*. Depois, foram revelados cerca de 1.000 filamentos verticais, que apareciam aos pares e em grupos, muitas vezes empilhados a separações idênticas ou lado a lado, como cordas numa harpa. 

As novas descobertas foram oriundas do auxílio do telescópio MeerKAT do SARAO (South African Radio Astronomy Observatory). Embora ambas as populações compreendam filamentos unidimensionais que podem ser vistos no rádio e pareçam estar ligados a atividades no Centro Galáctico, as semelhanças acabam aí. Os filamentos verticais são perpendiculares ao Plano Galáctico; os filamentos horizontais são paralelos ao plano, mas apontam radialmente para o centro da Galáxia, onde o buraco negro se encontra. Os filamentos verticais são magnéticos e relativistas; os filamentos horizontais parecem emitir radiação térmica. Os filamentos verticais englobam partículas que se movem a velocidades próximas da velocidade da luz; os filamentos horizontais parecem acelerar material térmico numa nuvem molecular. Existem várias centenas de filamentos verticais e apenas algumas centenas de filamentos horizontais. E os filamentos verticais, que medem até 150 anos-luz de altura, ultrapassam de longe o tamanho dos filamentos horizontais, que medem apenas 5 a 10 anos-luz. Os filamentos verticais também adornam o espaço em torno do núcleo da Galáxia; os filamentos horizontais parecem espalhar-se apenas para um lado, apontando para o buraco negro.

A nova descoberta está cheia de incógnitas e o trabalho de Yusef-Zadeh para desvendar os seus mistérios está apenas começando. Para já, só pode ser considerada uma explicação plausível sobre os mecanismos e as origens da nova população. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Northwestern University

sábado, 3 de junho de 2023

Betelgeuse está quase 50% mais brilhante que o normal

Desde o evento Grande Escurecimento que ocorreu na segunda metade de 2019 e no início de 2020, a estrela gigante vermelha Betelgeuse simplesmente não vai parar com a anormalidade.

© ESO / ALMA (Betelgeuse)

Os ciclos regulares de flutuação de brilho da estrela moribunda mudaram, e agora Betelgeuse tornou-se incomumente brilhante. Há dez dias, ela estava com 142% de seu brilho normal. Tem flutuado para cima e para baixo em pequena escala, mas em uma tendência ascendente constante por meses e atingiu um pico recente de 156% em abril. 

Atualmente, Betelgeuse é a 7ª estrela mais brilhante no céu, acima de sua posição normal como a 10ª mais brilhante, provocando especulações de que Betelgeuse está prestes a explodir em uma espetacular supernova. Infelizmente, provavelmente não é. 

Embora Betelgeuse esteja à beira da morte em escalas de tempo cósmicas, em escalas de tempo humanas, sua supernova pode estar a 100.000 anos de distância. De acordo com os cientistas, é mais provável que seu comportamento atual seja um pouco instável após o escurecimento de 2019, e a estrela retornará ao normal dentro de uma década.

Betelgeuse, localizada a cerca de 700 anos-luz da Terra, é uma das estrelas mais interessantes do céu. Ela paira acima de nós, brilhando como um olho injetado, uma estrela no estágio de gigante vermelha que marca o fim de sua vida. Mas Betelgeuse é um tipo incomum de estrela, mesmo para uma gigante vermelha. 

Era uma vez um monstro absoluto: uma estrela tipo O azul-branca, a classe de peso estelar mais massiva. Estrelas com esta faixa de massa queimam seus estoques de hidrogênio mais rapidamente do que estrelas mais leves; Betelgeuse tem apenas cerca de 8 a 8,5 milhões de anos. Compare isso com uma estrela como o Sol, que com 4,6 bilhões de anos, está apenas na metade de sua vida de queima de hidrogênio. Betelgeuse mudou seu tipo espectral, pois quase esgotou suas reservas de hidrogênio. Agora está fundindo hélio em carbono e oxigênio e expandiu para um tamanho gigantesco: cerca de 764 vezes o tamanho do Sol e cerca de 16,5 a 19 vezes sua massa. 

Eventualmente, ficará sem combustível para queimar, virar supernova, jogar fora seu material externo e seu núcleo entrará em colapso em uma estrela de nêutrons. O evento Grande Escurecimento viu a estrela diminuir o brilho em uma quantidade considerável, quase 25%. Os astrônomos correram para descobrir a causa; descobriu-se que o resfriamento na superfície de Betelgeuse causou a condensação de uma enorme nuvem de poeira na estrela. Esta nuvem foi posteriormente ejetada, obscurecendo parcialmente Betelgeuse, fazendo com que parecesse escurecer. Comportamento bastante normal para uma estrela gigante vermelha. 

Betelgeuse também apresentava flutuações de brilho em ciclos regulares. O mais longo destes ciclos é de cerca de 5,9 anos; outro é de 400 dias. Mas parece que o Grande Escurecimento causou algumas mudanças nestas flutuações. 

Um novo artigo, liderado pelo astrofísico Morgan MacLeod, do Harvard-Smithsonian Center for Astrophysics, descobriu que o ciclo de 400 dias parece ter caído pela metade. Este ciclo de pulsação é impulsionado pela expansão e contração dentro da estrela. De acordo com as simulações conduzidas por MacLeod e seus colegas, uma pluma convectiva dentro de Betelgeuse pode ter surgido, tornando-se o material que se desprende da estrela. Durante o processo, esta ressurgência interrompeu a fase do ciclo de 400 dias, produzindo um ciclo de aproximadamente 200 dias que a estrela está exibindo atualmente. 

Portanto, Betelgeuse ainda está se recuperando do Grande Escurecimento, o que significa que não é improvável que seu brilho atual também esteja relacionado a fatores em andamento. No entanto, a equipe prevê que, eventualmente, a normalidade voltará para Betelgeuse, e continuará vivendo seu crepúsculo de milênios de forma relativamente pacífica por algum tempo.

Fonte: Universe Today

Compreendendo o mecanismo de formação de "super-Terras"

Um estudo realizado por pesquisadores da Universidade de Liège apresenta a detecção de um sistema com dois planetas ligeiramente maiores do que a Terra orbitando uma estrela fria numa dança sincronizada.

© L. Garcia (ilustração do sistema TOI-2096)

Denominado TOI-2096, o sistema está situado a 150 anos-luz da Terra. A descoberta é o resultado de uma estreita colaboração entre universidades europeias e americanas e foi possível graças à missão espacial TESS (Transiting Exoplanet Survey Satellite) da NASA, que tem por objetivo encontrar planetas que orbitem estrelas brilhantes próximas.

O TESS está realizando um estudo de todo o céu utilizando o método de trânsito, ou seja, monitorando o brilho estelar de milhares de estrelas na procura de uma ligeira diminuição de brilho, que poderia ser provocado por um planeta que passa entre a estrela e o observador. No entanto, apesar do seu poder de detecção de novos exoplanetas, a missão TESS precisa do apoio de telescópios terrestres para confirmar a natureza planetária dos sinais detectados.

Os exoplanetas TOI-2096 b e TOI-2096 c foram observados com uma rede internacional de telescópios terrestres, permitindo a sua confirmação e caracterização. A maior parte dos trânsitos foram obtidos com telescópios dos projetos TRAPPIST e SPECULOOS, liderados pela Universidade de Liège. 

Ao fazer uma análise exaustiva dos dados, foi descoberto que os dois planetas estavam em órbitas ressonantes: por cada órbita do planeta exterior, o planeta interior orbita a estrela duas vezes. Os seus períodos estão, portanto, muito próximos de serem um múltiplo um do outro, com cerca de 3,12 dias para o planeta b e cerca de 6,38 dias para o planeta c. Trata-se de uma configuração muito particular, que provoca uma forte interação gravitacional entre os planetas. Esta interação atrasa ou acelera a passagem dos planetas em frente da sua estrela e pode levar à medição das massas planetárias utilizando telescópios maiores num futuro próximo. 

Os pesquisadores responsáveis pela descoberta estimam que o raio do planeta b, o mais próximo da sua estrela, é 1,2 vezes superior ao da Terra, daí o nome "super-Terra". As suas propriedades poderão ser semelhantes às da Terra: um planeta com uma composição majoritariamente rochosa, possivelmente rodeado por uma fina atmosfera. Da mesma forma, o raio do planeta c corresponde a 1,9 vezes o raio da Terra e a 55% do de Netuno, o que poderá colocar o planeta na categoria dos "mini-Netunos", planetas compostos por um núcleo rochoso e gelado rodeado por atmosferas extensas ricas em hidrogênio ou água, como Urano e Netuno no nosso Sistema Solar.

Estes tamanhos são muito interessantes porque o número de planetas com um raio entre 1,5 e 2,5 vezes o da Terra é inferior ao que os modelos teóricos preveem, tornando estes planetas uma raridade. Estes planetas são de importância crucial devido aos seus tamanhos; TOI-2096 é o único sistema encontrado até agora com uma super-Terra e um mini-Netuno precisamente nos tamanhos em que os modelos se contradizem. Além disso, estes planetas estão entre os melhores da sua categoria para estudar as suas possíveis atmosferas. 

Graças aos tamanhos relativos dos planetas em comparação com o da estrela hospedeira, bem como ao brilho estelar, os astrônomos acham que este sistema é um dos melhores candidatos para um estudo detalhado da sua atmosfera com o telescópio espacial James Webb. Estes estudos ajudarão a confirmar a presença de uma atmosfera, extensa ou não, em volta dos planetas b e c, fornecendo assim pistas sobre o seu mecanismo de formação.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Liège Université

sábado, 27 de maio de 2023

Observando o quasar mais luminoso dos últimos 9 bilhões de anos

Os pesquisadores observaram a emissão de raios X do quasar mais luminoso observado nos últimos 9 bilhões de anos de história cósmica, conhecido como SMSS J114447.77-430859.3, ou J1144 para abreviar.

© STScI (ilustração de um quasar)

A nova perspectiva fornece informações sobre o funcionamento interno dos quasares e sobre a forma como interagem com o seu ambiente.

Situado numa galáxia a 9,6 bilhões de anos-luz de distância da Terra, entre as constelações de Centauro e Hidra, J1144 é extremamente poderoso, brilhando 100 trilhões de vezes mais do que o Sol. O quasar J1144 está muito mais próximo da Terra do que outras fontes com a mesma luminosidade, o que permite aos astrônomos conhecer melhor o buraco negro que alimenta o quasar e o ambiente em seu redor. 

Os quasares estão entre os objetos mais brilhantes e distantes do Universo conhecido, alimentados por gás que cai num buraco negro supermassivo. Podem ser descritos como núcleos galácticos ativos (NGAs) de luminosidade muito elevada que emitem grandes quantidades de radiação eletromagnética observável nos comprimentos de onda do rádio, infravermelho, visível, ultravioleta e raios X. 

O quasar J1144 foi inicialmente observado no visível em 2022 pelo SMSS (SkyMapper Southern Survey). Para este estudo, os pesquisadores combinaram observações de vários observatórios espaciais: o instrumento eROSITA a bordo do observatório SRG (Spectrum-Roentgen-Gamma), o observatório XMM-Newton da ESA, o NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA e o observatório Neil Gehrels Swift da NASA. 

A equipe utilizou os dados dos quatro observatórios para medir a temperatura dos raios X emitidos pelo quasar. Descobriram que esta temperatura era de cerca de 350 milhões K, mais de 60.000 vezes a temperatura à superfície do Sol. Notou-se também que a massa do buraco negro no centro do quasar é cerca de 10 bilhões de vezes superior à massa do Sol, e que o ritmo de crescimento é da ordem de 100 massas solares por ano. 

Os raios X desta fonte variaram numa escala de tempo de alguns dias, o que não é observado normalmente em quasares com buracos negros tão grandes como o que reside em J1144. A escala de tempo típica de variabilidade para um buraco negro desta dimensão seria da ordem de meses ou mesmo anos. As observações também mostraram que, enquanto uma parte do gás é engolida pelo buraco negro, algum gás é ejetado sob a forma de ventos extremamente poderosos, injetando grandes quantidades de energia na galáxia hospedeira.

O quasar J1144 é uma fonte muito rara por ser tão luminosa e por estar muito mais perto da Terra (embora ainda a uma distância enorme!), dando-nos um vislumbre único do aspecto de quasares tão poderosos. Uma nova campanha de monitoramento desta fonte terá início em junho deste ano, o que poderá revelar mais surpresas sobre esta fonte única.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Max Planck Institute for Extraterrestrial Physics