segunda-feira, 22 de novembro de 2021

De onde vem o ouro?

Como é que os elementos químicos são produzidos no nosso Universo? De onde vêm os elementos pesados como ouro e urânio?

© NRAO (disco de acreção quente e denso em torno de um buraco negro)

Usando simulações de computador, uma equipe do centro de pesquisa Helmholtz da Alemanha, em Darmstadt, juntamente com colegas da Bélgica e do Japão, mostra que a síntese de elementos pesados é típica para certos buracos negros com discos de acreção.

A abundância prevista dos elementos formados fornece uma visão sobre quais os elementos pesados que precisam de ser estudados em laboratórios futuros, como o FAIR (Facility for Antiproton and Ion Research), atualmente em construção, e assim desvendar a origem dos elementos pesados. 

Todos os elementos pesados do planeta Terra foram formados sob condições extremas em ambientes astrofísicos: no interior das estrelas, em explosões estelares e durante a colisão de estrelas de nêutrons. Os cientistas estão intrigados com a questão de quais destes eventos astrofísicos têm as condições apropriadas para a formação dos elementos mais pesados, como o ouro ou o urânio.

A primeira espetacular observação de ondas gravitacionais e radiação eletromagnética originária de uma fusão de estrelas de nêutrons, em 2017, sugeriu que muitos elementos pesados podem ser produzidos e liberados nestas colisões cósmicas. No entanto, as questões de quando e porque é que o material é ejetado, e se podem existir outros cenários em que elementos pesados são produzidos, permanecem em aberto.

Os buracos negros com discos de acreção em órbita, densos e quentes, são candidatos promissores para a produção de elementos pesados. Tal sistema é formado tanto após a fusão de duas estrelas de nêutrons massivas quanto durante o chamado colapsar, o colapso e subsequente explosão de uma estrela em rotação.

A composição interna de tais discos de acreção ainda não é bem compreendida, particularmente no que diz respeito às condições sob as quais se forma um excesso de nêutrons. Um número elevado de nêutrons é um requisito básico para a síntese de elementos pesados, pois permite o processo de captura rápida de nêutrons, também denominado "processo r". Os neutrinos, quase sem massa, desempenham um papel fundamental neste processo, pois permitem a conversão entre prótons e nêutrons. 

"No nosso estudo, investigamos sistematicamente pela primeira vez as taxas de conversão de nêutrons e prótons para um grande número de configurações de disco por meio de elaboradas simulações de computador e descobrimos que os discos são muito ricos em nêutrons, desde que estejam presentes certas condições," explica o Dr. Oliver Just do grupo de Astrofísica Relativista pertencente à divisão de pesquisa teórica do centro de pesquisa Helmholtz. 

O fator decisivo é a massa total do disco. Quanto mais massivo o disco, mais frequentemente os nêutrons são formados a partir de prótons por meio da captura de elétrons sob emissão de neutrinos, e estão disponíveis para a síntese de elementos pesados através do processo r. No entanto, se a massa do disco for muito alta, a reação inversa desempenha um papel maior, de modo que mais neutrinos são recapturados pelos nêutrons antes de saírem do disco. Estes nêutrons são então convertidos de volta para prótons, o que atrapalha o processo r. 

Como mostra o estudo, a massa ótima do disco, para a produção prolífica de elementos pesados, é de cerca de 0,01 a 0,1 massas solares. O resultado fornece fortes evidências de que as fusões de estrelas de nêutrons, que produzem discos de acreção com estas massas, podem ser o ponto de origem para uma grande fração dos elementos pesados. Entretanto, ainda não está claro se e com que frequência tais discos de acreção ocorrem em sistemas colapsares. 

Além dos possíveis processos de ejeção de massa, o grupo de pesquisa também está investigando os sinais de luz produzidos pela matéria ejetada, que serão usados para inferir a massa e a composição da matéria ejetada em futuras observações da colisão de estrelas de nêutrons. Um bloco de construção importante para a leitura correta destes sinais de luz é o conhecimento preciso das massas e de outras propriedades dos elementos recém-formados.

Estes dados são atualmente insuficientes. Mas com a próxima geração de aceleradores, como o FAIR, será possível medi-los com uma precisão sem precedentes. A interação bem coordenada de modelos teóricos, experiências e observações astronômicas permitirá com que nos próximos anos, sejam testadas fusões de estrelas de nêutrons como a origem dos elementos do processo r.

Os resultados foram publicados na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Helmholtz Research

Nenhum comentário:

Postar um comentário