sábado, 17 de fevereiro de 2024

Estrelas de nêutrons são pistas de explosão de rádio misteriosa

Uma grande pista para a compreensão dos lampejos misteriosos e fugazes de ondas de rádio conhecidas como rajadas rápidas de rádio (FRBs) surgiu quando uma delas explodiu em nossa própria galáxia.

© NASA / JPL-Caltech (ilustração de um magnetar)

Numa ejeção que teria causado a desaceleração da sua rotação, um magnetar é retratado perdendo material para o espaço nesta ilustração. As linhas fortes e torcidas do campo magnético do magnetar (mostradas em verde) podem influenciar o fluxo de material eletricamente carregado do objeto, que é um tipo de estrela de nêutrons.

Uma estrela de nêutrons altamente magnetizada, ou magnetar, apelidada de SGR 1935+2154, emitiu uma explosão semelhante à FRB em 28 de abril de 2020, e de repente os astrônomos tinham uma FRB para estudar em nosso próprio quintal. Desde então, os astrônomos esperam por uma repetição. Em outubro de 2022, ocorreu a explosão esperada. 

Até 2020, quase todos os FRBs conhecidos tinham origem em galáxias distantes. No entanto, cada um deles transmitiu mais energia numa fração de segundo do que todo o Sol emite num ano. Alguns até fizeram isso mais de uma vez! 

Por um tempo, houve tantas ideias sobre o que poderia gerar essas explosões quanto os próprios FRBs. Agora, com o exemplo da Via Láctea, os astrônomos sabem que pelo menos alguns FRBs se originam de magnetares. Mas como os magnetares fazem isso? 

Ao receber um alerta do Burst Alert System a bordo do telescópio espacial Integral da NASA, Chin-Ping Hu (Universidade Nacional de Educação de Changhua, Taiwan) e colegas perguntaram a dois outros telescópios espaciais da NASA - o Neutron Star Interior Composition Explorer (NICER) e o Nuclear Spectroscopic Telescope Array (NuSTAR) - para voltar-se para o magnetar e começar a fazer observações. A equipe observou a estrela de nêutrons rodar em virtude de um ponto quente na sua superfície, que provavelmente marca um dos polos do campo magnético da estrela. À medida que a estrela gira dentro e fora de vista – 3,2 vezes por segundo! – o brilho da estrela de nêutrons parece pulsar. 

O NICER foi projetado especificamente para captar mudanças em escalas de tempo tão rápidas. O NuSTAR, por outro lado, forneceu espectros para acompanhar as observações de brilho, o que ajudou a determinar de onde vinha a emissão. A estrela emite raios X porque é muito quente, enquanto outros raios X provêm de partículas carregadas que se contorcem no poderoso campo magnético da estrela de nêutrons. Em questão de horas, os astrônomos observaram mudanças drásticas ocorrerem na estrela com tamanho de apenas 20 km.

Primeiro, a estrela de nêutrons apresentou uma falha, girando repentinamente mais rápido. Depois, mais lentamente, a taxa de rotação diminuiu ao longo de quatro horas, originando uma forte explosão de ondas de rádio, detectadas no solo pelo radiotelescópio CHIME, no Canadá. Outras quatro horas depois, ocorreu uma segunda falha. 

Durante as falhas, os espectros mostraram que os raios X vinham em grande parte do núcleo. Mas antes e durante a explosão de rádio, entre as falhas, a emissão das partículas aprisionadas magneticamente se fortaleceu. Sabe-se que estrelas de nêutrons apresentam falhas quando a superfície está fora de sincronia com o interior.

Podem ocorrer falhas quando movimentos sob a superfície da estrela de nêutrons tensionam a crosta, que então se rompe em um terremoto estelar. É mais provável que a ruptura aconteça perto do núcleo. Mesmo que a estrela de nêutrons gire apenas uma pequena fração de segundo, a energia envolvida em um terremoto estelar é incrível. Afinal, para um corpo de 20 quilômetros girando em 3,2 segundos, a superfície gira a 11.000 km/h; mudar isso, mesmo que um pouco, requer muita energia. 

O estranho sobre a falha do SGR 1935 é o fato de o aumento de velocidade ter se dissipado tão rapidamente. A maioria das estrelas de nêutrons leva semanas ou meses para se recuperar de uma falha, mas o magnetar voltou à sua taxa de rotação normal em poucas horas. Isso faz sentido, porém, se a falha marcou um terremoto e também liberou partículas carregadas em uma breve rajada de vento. Esse vento teria roubado a rotação da estrela quase tão rapidamente quanto a ganhou. Então, com todas essas partículas pairando num campo magnético superpoderoso, que é muito mais forte do que qualquer outro que possamos produzir na Terra, as condições eram adequadas para um cenário extremo.

Partículas (especificamente, elétrons e seus parceiros de antimatéria, pósitrons) nascem em pares a partir da energia do campo magnético, resultando numa “avalanche”. Os pares elétron-pósitron poderiam, em última análise, ser responsáveis pela explosão repentina de emissão de rádio em um processo semelhante ao do laser. Esta observação conecta uma rara explosão semelhante a uma FRB a uma rara falha dupla e fornece um caminho claro para futuras análises sobre a geração de FRB. 

As rajadas de 2020 e 2022 são as únicas rajadas de ondas de rádio verdadeiramente “altas” que foram detectadas até agora no SGR 1935+2154, embora atividades mais moderadas ocorram com mais frequência. A equipe planeja continuar monitorando o magnetar para observar mais explosões no futuro, fornecendo dados adicionais para ajudar a testar o cenário de criação de pares/vento.

Um artigo foi publicado na revista Nature.

Fonte: Sky & Telescope

Nenhum comentário:

Postar um comentário