O ritmo a que o Universo está se expandindo, caracterizada pela constante de Hubble, é um dos parâmetros fundamentais para compreender a evolução e o destino final do cosmos.
© Hubble / Webb (NGC 5468)
Esta imagem da NGC 5468, uma galáxia situada a cerca de 130 milhões de anos-luz da Terra, combina dados dos telescópios espaciais Hubble e James Webb. Esta é a galáxia mais distante em que o Hubble identificou estrelas variáveis Cefeidas.
Atualmente, observa-se uma diferença persistente, designada por Tensão de Hubble, entre o valor da constante medido com uma vasta gama de indicadores de distância independentes e o seu valor previsto a partir do brilho remanescente do Big Bang.
O telescópio espacial James Webb confirmou que o olhar perspicaz do telescópio espacial Hubble estava certo desde o início, eliminando qualquer dúvida remanescente sobre as medições do Hubble.
Uma das justificativas científicas para a construção do Hubble foi a utilização do seu poder de observação para fornecer um valor exato para o ritmo de expansão do Universo. Antes do lançamento do Hubble, em 1990, as observações efetuadas por telescópios terrestres apresentavam incertezas enormes. Dependendo dos valores deduzidos para o ritmo de expansão, o Universo poderia ter entre 10 e 20 bilhões de anos. Nos últimos 34 anos, o Hubble reduziu esta medição para uma precisão inferior a um por cento, uma idade de 13,8 bilhões de anos. Isto foi conseguido através do refinamento da chamada "escada de distâncias cósmicas", medindo importantes pontos de referência conhecidos como estrelas variáveis Cefeidas.
No entanto, o valor do Hubble não está de acordo com outras medições que mostram que o Universo estava se expandindo mais rapidamente após o Big Bang. Estas observações foram feitas pelo satélite Planck da ESA, que mapeou a radiação cósmica de fundo em micro-ondas, sendo um plano de como o Universo evoluiria em termos de estrutura depois do arrefecimento pós-Big Bang. Com o Webb, permitiu aos astrônomos verificar os resultados do Hubble. As imagens infravermelhas das Cefeidas, pelo Webb, concordaram com os dados ópticos do Hubble.
O resultado final é que a chamada Tensão de Hubble, entre o que acontece no Universo próximo e a expansão do Universo primitivo, continua sendo um enigma para os cosmólogos. Poderá haver algo entrelaçado no tecido do espaço que ainda não compreendemos. Será que para resolver esta discrepância é necessária uma nova física? Ou será o resultado de erros de medição entre os dois diferentes métodos utilizados para determinar o ritmo de expansão do espaço?
O Hubble e o Webb juntaram-se agora para produzir medições definitivas, reforçando a ideia de que algo mais, e não erros de medição, está influenciando o ritmo de expansão. Como verificação cruzada, uma primeira observação do Webb em 2023 confirmou que as medições do Hubble acerca da expansão do Universo eram exatas. No entanto, na esperança de aliviar a Tensão de Hubble, alguns cientistas especularam que erros invisíveis nas medições podem aumentar e tornar-se visíveis à medida que olhamos mais profundamente para o Universo.
Em particular, a aglomeração estelar poderia afetar de forma sistemática as medições do brilho de estrelas mais distantes. A equipe do levantamento SH0ES (Supernova H0 for the Equation of State of Dark Energy), liderada por Adam Riess, físico da Universidade Johns Hopkins em Baltimore, EUA, obteve observações adicionais com o Webb de objetos que são marcos cósmicos críticos, conhecidos como estrelas variáveis Cefeidas, que podem agora ser correlacionados com os dados do Hubble.
Os astrônomos utilizam vários métodos para medir as distâncias relativas no Universo, dependendo do objeto que está sendo observado. Coletivamente, estas técnicas são conhecidas como a escada de distâncias cósmicas; cada degrau ou técnica de medição depende do degrau anterior para ser calibrado. Mas alguns astrônomos sugeriram que, avançando ao longo do "segundo degrau", a escada de distâncias cósmicas poderia ficar instável se as medições das Cefeidas se tornassem menos precisas com a distância. Tais imprecisões podem ocorrer porque a luz de uma Cefeida se pode misturar com a de uma estrela adjacente, um efeito que se pode tornar mais pronunciado com a distância, à medida que as estrelas se aglomeram no céu e se tornam mais difíceis de distinguir umas das outras.
O desafio observacional é o fato das imagens anteriores do Hubble, destas variáveis Cefeidas mais distantes, parecerem mais amontoadas e sobrepostas com estrelas vizinhas a distâncias cada vez maiores entre nós e as suas galáxias hospedeiras, exigindo uma contabilização cuidadosa deste efeito. A existência de poeira interveniente complica ainda mais a certeza das medições no visível. O Webb atravessa a poeira e isola naturalmente as Cefeidas das estrelas vizinhas porque a sua visão é mais nítida do que a do Hubble nos comprimentos de onda infravermelhos.
As novas observações do Webb incluem cinco galáxias hospedeiras de oito supernovas do Tipo Ia, contendo um total de 1.000 Cefeidas, e vão até à galáxia mais distante onde as Cefeidas foram bem medidas, a NGC 5468, a uma distância de 130 milhões de anos-luz.
Em conjunto, a confirmação da Tensão de Hubble pelo Hubble e pelo Webb permite que outros observatórios resolvam o mistério, incluindo o futuro telescópio espacial Nancy Grace Roman da NASA e a missão Euclid recentemente lançada pela ESA. Atualmente, é como se a escada de distâncias observada pelo Hubble e pelo Webb tivesse fixado firmemente um ponto de ancoragem numa das margens de um rio, e o brilho remanescente do Big Bang observado pelo Planck no início do Universo estivesse fixado firmemente na outra margem. A forma como a expansão do Universo se alterou nos bilhões de anos entre estes dois pontos ainda não foi diretamente observada.
"Precisamos de descobrir se nos está escapando alguma coisa sobre como ligar o início do Universo aos dias de hoje", disse Riess.
Estas descobertas foram publicadas no periódico The Astrophysical Journal Letters.
Fonte: ESA
Nenhum comentário:
Postar um comentário