Mostrando postagens com marcador Anãs Marrons. Mostrar todas as postagens
Mostrando postagens com marcador Anãs Marrons. Mostrar todas as postagens

quarta-feira, 29 de março de 2017

Astrônomos identificam anã marron mais pura e massiva

Uma equipe internacional de astrônomos identificou uma anã marron com a composição mais "pura" e a massa mais alta já conhecida.

ilustração da recém-descoberta anã marron

© John Pinfield (ilustração da recém-descoberta anã marron)

O objeto, conhecido como SDSS J0104+1535, é um membro do chamado halo da Via Láctea, composto por estrelas antigas.

As anãs marrons são objetos intermediários entre os planetas e as estrelas. A sua massa é demasiado pequena para a plena fusão nuclear de hidrogênio em hélio (com a consequente liberação de energia), mas geralmente são significativamente mais massivas que os planetas.

Localizada a 750 anos-luz de distância na direção da constelação de Peixes, SDSS J0104+1535 é composta por gás cerca de 250 vezes mais puro que o Sol, de modo que consiste de mais de 99,99% de hidrogênio e hélio. Estima-se ter sido formada há cerca de 10 bilhões de anos atrás e as medições também sugerem que tem uma massa equivalente a 90 vezes a de Júpiter, o que a torna na anã marron mais massiva já encontrada.

Anteriormente, não se sabia se as anãs marrons podiam ser formadas a partir de gás tão primordial, e a descoberta aponta o caminho para uma maior população, por descobrir, de anãs marrons extremamente puras do passado antigo da nossa Galáxia.

A equipe de pesquisa foi liderada pelo Dr. ZengHua Zhang do Instituto de Astrofísica das Ilhas Canárias. "Nós realmente não esperávamos ver anãs marrons assim tão puras. Tendo encontrado uma, isso sugere-nos uma população muito maior até agora desconhecida; ficaria muito surpreso se não existissem objetos semelhantes lá fora, à espera de serem encontrados,"  afirma Dr. Zhang.

A SDSS J0104+1535 foi classificada como uma ultra-subanã do tipo L usando o seu espectro óptico e infravermelho próximo, medido pelo Very Large Telescope (VLT) do ESO. Esta classificação baseou-se num esquema recentemente estabelecido pelo Dr. Zhang.

A descoberta foi relatada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

sábado, 4 de março de 2017

Encontrada evidência da formação de planeta rochoso em estrela binária

Astrônomos encontraram evidências partes de asteroides orbitando um par de estrelas; um novo sinal promissor de que mundos rochosos com sóis gêmeos são possíveis, como o mundo fictício Tatooine de Lucas Skywalker.

ilustração de anã marrom e anã branca orbitando num sistema binário

© UCL/Mark Garlick (ilustração de anã marrom e anã branca orbitando num sistema binário)

Esta descoberta também sugere que os planetas rochosos podem sobreviver às mortes de suas estrelas.

Embora a Terra orbite uma única estrela, quase metade das estrelas parecidas com o Sol estão em sistemas binários, que são formados por um par de estrelas orbitando umas às outras. Na verdade, existem muitos sistemas de três estrelas, e até mesmo alguns que são o lar de até sete estrelas.

Os mundos que orbitam estrelas binárias, como Tatooine de "Star Wars", são conhecidos como planetas circumbinários. Em 2011, pesquisadores descobriram o primeiro mundo alienígena real em torno de duas estrelas, o Kepler-16b: um gigante gasoso orbitando a estrela Kepler-16 a cerca de 200 anos-luz da Terra.

Até agora, todos os planetas circumbinários conhecidos são gigantes gasosos, similares a Júpiter. Os cientistas têm debatido se os planetas circumbinários rochosos como Tatooine são possíveis.

Construir planetas rochosos em torno de dois sóis é um desafio, porque a gravidade de ambas as estrelas pode interferir tremendamente, impedindo a aglutinação de pedaços de rocha e poeira.

Os pesquisadores descobriram restos de asteroides orbitando um sistema binário, o que sugere que planetas rochosos podem existir nesta região. Além disso, estes achados sugerem que sistemas planetários circumbinários com mundos rochosos podem até sobreviver à morte de uma das estrelas.

Os astrônomos examinaram um sistema chamado SDSS 1557 localizado a cerca de 1.000 anos-luz da Terra. Eles inicialmente pensaram que continha apenas uma anã branca, que é o resíduo de uma estrela. O Sol e mais de 90% de todas as estrelas na Via Láctea vão acabar como anãs brancas, que têm massas de 40 a 90 % do Sol, mas com diâmetro próximo da Terra.

Usando o telescópio Gemini Observatory South e o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), ambos localizados no Chile, os pesquisadores analisaram o espectro de luz do sistema SDSS 1557. O comprimento de onda da luz vista de uma estrela pode produzir informações sobre sua química e arredores.

Os pesquisadores detectaram uma luz infravermelha excessiva, sugerindo que o sistema SDSS 1557 possuía um disco de detritos planetários carregados de silício e magnésio a cerca de 1,3 milhão de quilômetros da anã branca. Além disso, eles calcularam que cerca de 110 bilhões de toneladas de poeira têm chovido sobre a anã branca desde a sua descoberta em 2010, igual aos restos de um pedaço de pedra do tamanho de um asteroide, ou planetesimal, pelo menos com 4 km de diâmetro.

"Recentemente, nota-se um planetesimal rochoso que aproximou-se muito da anã branca, sendo despedaçado por sua enorme gravidade, formando um anel de detritos.

Mas então, Steven Parsons, da Universidade de Sheffield, na Inglaterra, notou que a anã branca estava cambaleando regularmente para frente e para trás. Isso imediatamente implicou que não havia apenas uma única anã branca, mas uma anã branca com uma estrela companheira.

A anã branca moveu-se em velocidades de aproximadamente 144.000 km/h. A força da atração gravitacional causando esta oscilação era demais para o companheiro ser um planeta, mas muito pouco para ser uma estrela apropriada.

Em vez disso, os pesquisadores sugerem que o companheiro da anã branca é uma anã marrom com massa igual a cerca de 65 Júpiteres. As anãs marrons estão a meio caminho entre as estrelas e os gigantescos planetas gasosos. Elas são muito pequenas para iniciar a queima de hidrogênio, o processo que alimenta o Sol e a maioria das outras estrelas, mas elas conseguem queimar o deutério, um isótopo do hidrogênio, e assim diferem dos planetas que não produzem energia por si próprios.

No Sistema Solar, o cinturão de asteroides mantém blocos de construção resultantes da formação da Terra e dos outros planetas rochosos. Com a descoberta de detritos de asteroides no sistema SDSS 1557, observa-se assinaturas claras da montagem de planetas rochosos através de grandes asteroides que se formaram, possibilitando entender como os exoplanetas rochosos são feitos em sistemas de estrelas duplas.

Os pesquisadores sugerem que este sistema binário teve um passado turbulento. Eles calcularam que os dois membros do sistema binário estavam significativamente mais distantes uns dos outros do que estão hoje. No entanto, quando a progenitora da anã branca terminou de queimar seu combustível de hidrogênio, ela inchou para se tornar uma estrela gigante vermelha, engolfando a anã marrom e atraindo-a mais perto dela por causa do atrito em seu envelope de gás.

Agora, os dois membros do sistema binário estão a cerca de 482.000 km de distância, ou seja, um pouco maior do que a distância entre a Terra e a Lua, que é 384.400 km.

Embora, esta nova descoberta sugere que os planetas rochosos estão se formando ou se formaram em torno do sistema SDSS 1557, detectar planetas que provavelmente orbitam este binário vai ser muito difícil. Um método comum usado para encontrar planetas, a influência sobre a estrela por atração gravitacional de um planeta, não é realmente possível aqui porque a anã branca é muito fraca. O outro método de trânsito, à procura de escurecimento periódico quando um planeta cruza a estrela, pode funcionar, mas somente se a órbita de tal planeta estiver finamente alinhada com nossa linha de visão em direção ao sistema, o que é improvável.

Os pesquisadores planejam usar o telescópio espacial Hubble para analisar a luz ultravioleta da anã branca, a partir do qual poderão medir com muita precisão a composição química do planetesimal que sofreu ruptura. Isso propiciará a análise da semelhança aos asteroides do Sistema Solar, talvez se tivesse alguma água deixada, ou uma composição química mais exótica. E com o advento do telescópio espacial James Webb, será possível estudar a composição e tamanho dos grãos de poeira.

Fonte: Nature Astronomy

terça-feira, 12 de julho de 2016

A imagem mais profunda até hoje de Órion

O instrumento infravermelho HAWK-I do ESO montado no Very Large Telescope (VLT), no Chile, foi utilizado para sondar as profundezas do coração da Nebulosa de Órion.

imagem infravermelha profunda da Nebulosa de Órion

© ESO/VLT/H. Drass (imagem infravermelha profunda da Nebulosa de Órion)

A imagem obtida revela cerca de dez vezes mais anãs marrons e objetos de massa planetária isolados do que conhecido anteriormente. Esta descoberta desafia o cenário normalmente aceito da história de formação estelar em Órion.

Uma equipe internacional utilizou o HAWK-I para produzir a imagem mais profunda e completa da Nebulosa de Órion obtida até hoje. As nebulosas, tais como a famosa Nebulosa de Órion, são também conhecidas por regiões H II, o que indica que contêm hidrogênio ionizado. Estas enormes nuvens de gás interestelar são locais de formação estelar em todo o Universo. A equipe obteve não só uma imagem de beleza espetacular, mas também revelou uma enorme abundância de anãs marrons tênues e objetos de massa planetária isolados. A presença destes objetos de baixa massa ajuda-nos a compreender melhor a história de formação estelar nessa nebulosa.

A famosa Nebulosa de Órion, com uma dimensão de cerca de 24 anos-luz, situa-se na constelação de Órion e pode ser vista a olho nu a partir da Terra, apresentando-se como uma mancha difusa na espada de Órion. Algumas nebulosas, como a de Órion, encontram-se fortemente iluminadas por radiação ultravioleta emitida por muitas estrelas quentes nascidas em seu interior que ionizam o gás, o que o faz brilhar intensamente.

A relativa proximidade da Nebulosa de Órion, estima-se que ela se situe a cerca de 1.350 anos-luz de distância da Terra, faz dela um laboratório ideal para o estudo dos processos e história de formação estelar e para determinar a quantidade de estrelas de diferentes massas que se formam no seu interior.

“Compreendermos porque é que tantos objetos de baixa massa se encontram na Nebulosa de Órion é importante pois ajuda-nos a colocar limites nas atuais teorias de formação estelar. Sabemos agora que o modo como estes objetos de baixa massa se formam depende do meio que os envolve,” explica Amelia Bayo, da Universidad de Valparaíso, Valparaíso, Chile, e do Max-Planck Institut für Astronomie, Königstuhl, Alemanha.

Esta nova imagem causou um enorme entusiasmo pois revela uma quantidade inesperada de objetos de massa muito baixa, o que, por sua vez, sugere que a Nebulosa de Órion pode estar proporcionalmente formando muito mais objetos de baixa massa do que outras regiões de formação estelar mais próximas e menos ativas.

Os astrônomos contam quantos objetos de diferentes massas se formam em regiões como a Nebulosa de Órion para tentar compreender o processo de formação estelar. Esta informação é usada para criar algo chamado Função de Massa Inicial (FMI), um modo de descrever quantas estrelas de diferentes massas compõem uma população estelar quando da sua formação. Este estudo ajuda-nos a compreender a origem da população estelar em questão. Por outras palavras, determinar uma FMI com precisão e ao mesmo tempo dispor de uma teoria sólida para explicar a origem dessa FMI é de importância fundamental para o estudo da formação estelar. Antes deste trabalho, o maior número de objetos encontrado tinha massas de cerca de um quarto da massa do nosso Sol. A descoberta desta enorme quantidade de novos objetos com massas muito inferiores a esta na Nebulosa de Órion, criou um segundo máximo a uma massa muito menor na distribuição de contagem de estrelas.

Estas observações sugerem também que o número de objetos do tamanho de planetas pode ser muito maior do que se pensava anteriormente. Apesar da tecnologia necessária para observar imediatamente estes planetas ainda não existir, o futuro European Extremely Large Telescope (E-ELT) do ESO, previsto para 2024, foi concebido com vários objetivos, sendo um deles precisamente este tipo de observações.

“O nosso resultado é para mim como um espreitar para uma nova era da formação planetária e estelar. O enorme número de planetas isolados encontrados com os nossos atuais limites observacionais, faz-me pensar que iremos certamente ainda descobrir uma imensa quantidade de planetas menores que a Terra com o E-ELT,” conclui o cientista líder deste trabalho, Holger Drass, do Astronomisches Institut, Ruhr-Universität Bochum, Bochum, Alemanha, e da Pontificia Universidad Católica de Chile, Santiago, Chile.

Este trabalho foi descrito no artigo científico intitulado “The bimodal initial mass function in the Orion Nebula Cloud”, de H. Drass et al., que foi publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

sábado, 9 de julho de 2016

Encontrada evidências de nuvens de água em anã marrom

Desde a sua detecção em 2014, a anã marrom conhecida como WISE 0855 tem fascinado os astrônomos.

ilustração de WISE 0855, no infravermelho

© O. Gemini/AURA/Joy Pollard (ilustração de WISE 0855, no infravermelho)

A apenas 7,2 anos-luz da Terra, é o objeto mais frio da sua categoria e é pouco visível em comprimentos de onda infravermelhos até com os maiores telescópios terrestres.

Agora, uma equipe liderada por astrônomos da Universidade da Califórnia em Santa Cruz, conseguiu obter um espectro infravermelho de WISE 0855 usando o telescópio Gemini North no Havaí, fornecendo os primeiros detalhes da composição e química do objeto. Entre as descobertas está a forte evidência que sugere a existência de nuvens de água ou água gelada, as primeiras nuvens deste gênero detectadas fora do nosso Sistema Solar.

"Seria de esperar que um objeto assim tão frio tivesse nuvens de água e esta é a melhor evidência que realmente as tem," afirma Andrew Skemer, professor assistente de astronomia e astrofísica da Universidade da Califórnia.

As anãs marrons são essencialmente estrelas falhadas, tendo-se formado do mesmo modo que as estrelas através de colapso gravitacional a partir de uma nuvem de gás e poeira, mas que não têm massa suficiente para desencadear as reações nucleares que fazem as estrelas brilhar. Com cerca de cinco vezes a massa de Júpiter, WISE 0855 assemelha-se, em muitos aspectos, com esse planeta gigante. A sua temperatura é de aproximadamente 250 K (-23,15 ºC), o que a torna quase tão fria quanto Júpiter, cuja temperatura é de 130 K (-143,13 ºC).

"WISE 0855 é a nossa primeira oportunidade de estudar um objeto extrassolar de massa planetária que é quase tão frio quanto os nossos próprios gigantes gasosos," comenta Skemer.

As observações anteriores da anã marrom, publicadas em 2014, forneceram indicações preliminares de nuvens de água com base em dados fotométricos muito limitados. Skemer disse que a obtenção de um espectro (que separa a luz de um objeto nos seus comprimentos de onda componentes) é a única maneira de detectar a composição molecular de um objeto.

WISE 0855 é demasiado fraca para a espectroscopia convencional em comprimentos de onda ópticos ou no infravermelho próximo, mas a emissão térmica da atmosfera profunda em comprimentos de onda numa janela estreita que ronda os 5 micrômetros forneceu uma oportunidade onde a espectroscopia seria "difícil, mas não impossível", acrescenta.

A equipe usou o telescópio Gemini North no Havaí e o instrumento GNIRS (Gemini Near Infrared Spectrograph) para observar WISE 0855 ao longo de 13 noites para um total de aproximadamente 14 horas.

"É cinco vezes mais fraca do que qualquer outro objeto detectado com espectroscopia terrestre neste comprimento de onda," explica Skemer. "Agora que temos um espectro, podemos realmente começar a pensar sobre o que está acontecendo neste objeto. O nosso espectro mostra que WISE 0855 é dominada por vapor de água e nuvens, com uma aparência geral muito semelhante à de Júpiter."

Os pesquisadores desenvolveram modelos atmosféricos da química de equilíbrio para uma anã marrom com 250 K e calcularam o espectro resultante sob diferentes suposições, incluindo modelos com e sem nuvens. Os modelos previram um espectro dominado por características resultantes do vapor de água, e o modelo nublado rendeu o melhor ajuste para as características no espectro de WISE 0855.

Comparando a anã marrom com Júpiter, a equipe descobriu que os seus espectros são muito semelhantes no que toca às características de absorção de água. Uma diferença significativa é a abundância de fosfina na atmosfera de Júpiter. A fosfina forma-se no interior quente do planeta e reage para formar outros compostos na atmosfera exterior mais fria, pelo que o seu aparecimento no espectro é evidência de misturas turbulentas na atmosfera de Júpiter. A ausência de um sinal forte de fosfina, no espectro de WISE 0855, implica que tem uma atmosfera menos turbulenta.

"O espectro permite-nos investigar as propriedades dinâmicas e químicas que há muito que são estudadas na atmosfera de Júpiter, mas desta vez num mundo extrassolar," conclui Skemer.

Um artigo sobre as descobertas será publicado na revista Astrophysical Journal Letters.

Fonte: University of California

sexta-feira, 1 de julho de 2016

Detectada a mais rápida rotação de uma estrela anã marrom

Astrônomos detectaram o que pode ser a mais rápida rotação de uma estrela anã marrom.

ilustração de uma anã marrom

© NASA/R. Hurt (ilustração de uma anã marrom)

O rápido período de rotação foi medido usando radiotelescópio de Arecibo com 305 metros, que foi utilizado para descobrir os primeiros planetas fora do Sistema Solar.
"A nossa nova detecção de uma anã marrom enfatiza a sensibilidade surpreendente radiotelescópio de Arecibo, que permite medições de campos magnéticos de estrelas de massa muito baixa, anãs marrons e potencialmente planetas. Como os campos magnéticos planetários protegem a vida dos efeitos nocivos da atividade estelar, é evidente que os futuros programas desse tipo usando o telescópio de Arecibo serão cruciais para a nossa compreensão da habitabilidade de planetas em torno de outras estrelas," disse Alex Wolszczan, da Pennsylvania State University.

As ondas de rádio emitidas pela anã marrom permitiu medir a rotação extremamente rápida deste objeto exótico. Sua detecção recorde demonstra que as anãs marrons e os planetas gigantes podem ser descobertos e estudados por meio de observações de rádio.

"Nossa descoberta da rotação super rápida da anã marrom J1122+25 coloca novos desafios para os modelos teóricos da evolução de rotação destes objetos e os dínamos internos que alimentam seus campos magnéticos", disse Matthew Route, também da Purdue University e também da Pennsylvania State University. AJ1122+25 é a versão curta do nome científico desta nova anã marrom, WISEPC J112254.73+255021.5. "A emissão de rádio e a rotação rápida da J1122+25 podem revelar muito sobre a origem e evolução dos campos magnéticos de anãs marrons, e como este conhecimento pode ser aplicado a jovens planetas gigantes", disse Route.

Os dados recolhidos até ao momento a partir desta anã marrom indica a ocorrência da sua rotação a cada 17, 34 ou 51 minutos; uma ambiguidade que requer a coleta de mais dados para identificar qual das três medidas é o período de rotação desta estrela. Mas, os cientistas relatam, mesmo o mais longo destes períodos de rotação significaria que  esta anã marrom gira muito mais rápido do que qualquer medida até agora.

A anã marrom foi descoberta pela primeira vez pelo Wide-field Infrared Survey Explorer (WISE) em 2011. Route e Wolszczan posteriormente observaram a J1122+25 em cinco épocas, distribuídas por um período de oito meses como parte de uma busca permanente de anãs marrons com explosões súbitas da energia em comprimentos de onda de rádio.  A J1122+25 está localizada a cerca de 55 anos-luz de distância e é apenas uma das seis anãs marrons que foram detectadas emissões de rádio.

As anãs marrons como a J1122+25 são por vezes chamados de "estrelas fracassadas", porque elas não acumulam material suficiente quando se formaram a fim de fundir hidrogênio em hélio, o processo que permite que estrelas brilhem. A falta de produção de energia contínua a partir da fusão torna as anãs marrons muito mais frias e menos brilhantes do que a maioria das estrelas. Para algumas delas, a estrutura interna em conexão com rotação rápida pode gerar campos magnéticos fortes e as emissões de rádio dramáticas que foram detectadas pelo telescópio de Arecibo.

Muitos astrônomos tratam as anãs marrons como o "elo perdido" entre estrelas e planetas. Anãs marrons compartilham de muitos traços físicos com planetas gigantes gasosos como Júpiter. Estudos de anãs marrons como a J1122+25 podem ser usados para inferir as propriedades de planetas gigantes, que são muito mais difíceis de serem estudados em detalhe do que as estrelas. A J1122+25 possui cerca de 1/6 da temperatura do Sol, e emite luz principalmente em comprimentos de onda infravermelhos.

A descoberta é detalhada em uma edição recente do The Astrophysical Journal Letters.

Fonte: Pennsylvania State University

sábado, 23 de abril de 2016

Descoberto objeto solitário de massa planetária em família de estrelas

Em 2011, astrônomos anunciaram que a nossa Galáxia está provavelmente repleta de planetas que flutuam livremente.

  ilustração de uma anã marrom de baixa massa

© NASA/JPL-Caltech (ilustração de uma anã marrom de baixa massa)

De fato, estes mundos solitários, que ficam em silêncio na escuridão do espaço sem quaisquer companheiros planetários ou até mesmo uma estrela hospedeira, podem superar o número de estrelas na Via Láctea. A descoberta surpreendente leva às questões: De onde é que estes objetos vêm? São planetas expulsos de sistemas solares, ou são na realidade estrelas leves chamadas anãs marrons que se formam sozinhas no espaço como as estrelas?

Um novo estudo, utilizando dados do WISE (Wide-field Infrared Survey Explorer) da NASA e do 2MASS (Two Micron All Sky Survey), fornece novas pistas sobre este mistério de proporções galácticas. Os cientistas identificaram um objeto de massa planetária flutuando livremente dentro de uma jovem família estelar chamada associação TW Hydrae. O objeto recém-descoberto, denominado WISEA J114724.10-204021.3, ou apenas WISEA 1147, tem uma massa estimada entre cinco e dez vezes a massa de Júpiter.

WISEA 1147 é um dos poucos mundos flutuantes em que os astrônomos podem começar a apontar para as suas origens prováveis como anã marron e não um planeta. Dado que se descobriu que o objeto é um membro da família TW Hydrae de estrelas muito jovens, e também muito jovem, apenas 10 milhões de anos. E dado que os planetas exigem pelo menos 10 milhões de anos para se formar, e provavelmente mais para serem expulsos de um sistema, a WISEA 1147 é provavelmente uma anã marron. As anãs marrons formam-se como estrelas, mas não têm massa suficiente para fundir átomos nos seus núcleos e brilhar com luz estelar.

"Com acompanhamento contínuo, poderá ser possível traçar a história de WISEA 1147 para confirmar se foi ou não formada em isolamento," afirma Adam Schneider da Universidade de Toledo no estado americano do Ohio.

Dos possíveis bilhões de planetas flutuantes que se pensa existirem na nossa Galáxia, alguns podem ser anãs marrons de baixa massa, enquanto outros podem ser realmente planetas, expulsos de sistemas solares emergentes. Atualmente, a fração de cada população permanece desconhecida. A descoberta das origens dos mundos flutuantes, e a determinação do tipo de objeto, é uma tarefa difícil, precisamente porque estão tão isolados.

"Estamos no início do que será um campo excitante, tentando determinar a natureza da população que flutua livremente e quantos são planetas ou quantos são anãs marrons," afirma Davy Kirkpatrick do IPAC (Infrared Processing and Analysis Center) da NASA no Instituto de Tecnologia da Califórnia (Caltech) em Pasadena.

Os astrônomos descobriram WISEA 1147 vasculhando imagens de todo o céu obtidas pelo WISE, em 2010, e pelo 2MASS, cerca de uma década antes. Eles estavam procurando jovens anãs marrons nas proximidades. Uma maneira de saber se algo está perto é verificar se o seu movimento foi acentuado em relação a outras estrelas com o tempo. Quando mais próximo está um objeto, mais parece mover-se contra o fundo de estrelas mais distantes. Ao analisar os dados de ambos os levantamentos obtidos com cerca de 10 anos de diferença, os objetos próximos saltam à vista.

A descoberta de objetos de baixa massa e anãs marrons é também muito adequada para o WISE e para o 2MASS, ambos os quais detectam radiação infravermelha. As anãs marrons não são brilhantes o suficiente para serem vistas com telescópios ópticos, mas as suas assinaturas de calor podem ser observadas em imagens infravermelhas.

A anã marron WISEA 1147 era bastante "vermelha" nas imagens 2MASS (onde a cor vermelha tinha sido atribuída a comprimentos de onda infravermelhos mais longos), o que significa que é poeirenta e jovem.

Depois de mais análises, os astrônomos perceberam que este objeto pertence à associação TW Hydrae, que está a cerca de 150 anos-luz da Terra. A WISEA 1147 é uma das anãs marrons mais jovens e de menor massa já descobertas.

Curiosamente, um segundo membro da associação TW Hydrae, de massa igualmente muito baixa, foi anunciado poucos dias depois (2MASS 1119-11) por um outro grupo liderado por Kendra Kellogg da Western University em Ontário, Canadá.

Outra razão pela qual os astrônomos querem estudar estes mundos isolados é que se assemelham com planetas, mas são mais fáceis de estudar. Os planetas em torno de outras estrelas, chamados exoplanetas, são quase impercetíveis ao lado das suas estrelas brilhantes. Ao estudar objetos como WISEA 1147, que não têm nenhuma estrela hospedeira é possível aprender mais sobre as suas composições e padrões climáticos.

"Podemos entender melhor os exoplanetas através do estudo de anãs marrons jovens e de baixa massa," observa Schneider. "Neste momento, estamos no regime de exoplaneta."

O novo estudo foi aceito para publicação na revista The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

sexta-feira, 25 de março de 2016

Detectado um flash de luz de uma companheira de supernova

Uma equipe de astrônomos, incluindo Robert P. Kirshner e Peter Challis do Harvard-Smithsonian Center for Astrophysics (CfA), detectou um flash de luz de uma companheira de supernova.

supernova SN 2012cg

© CfA/P. Challis (supernova SN 2012cg)

O ponto azul-branco no centro desta imagem é a supernova SN 2012 cg. Esta supernova está tão distante que a sua galáxia hospedeira, a espiral NGC 4424, aparece aqui apenas como um esfregaço prolongado de luz roxa.

Esta é a primeira vez que os astrônomos têm testemunhado o impacto da explosão de uma estrela em sua vizinha. Ela fornece a melhor evidência do tipo de sistema estelar binário que leva à supernovas de Tipo Ia. Este estudo revela as circunstâncias para a morte violenta de algumas estrelas anãs brancas e fornece compreensão mais profunda para a sua utilização como ferramentas para traçar a história da expansão do Universo. Estes tipos de explosões estelares permitiram a descoberta da energia escura, expansão acelerada do Universo que é um dos maiores problemas na ciência hoje.

O assunto de como surgem supernovas de Tipo Ia tem sido um tópico de debate entre os astrônomos.

“Nós pensamos que as supernovas Tipo Ia surgem de explosão de anãs brancas com uma companheira binária,” disse Howie Marion da Universidade do Texas em Austin (UT Austin), o principal autor do estudo. “A teoria remonta de 50 anos ou mais, mas não houve qualquer evidência concreta de uma estrela companheira antes deste momento."

Os astrônomos têm analisado ideias concorrentes, debatendo se o companheiro era uma estrela normal ou outra anã branca.

“Esta é a primeira vez que um tipo Ia tem sido associada com uma estrela companheira binária,” disse o membro da equipe e professor de astronomia J. Craig Wheeler (UT Austin).

A teoria indaga que a estrela progenitora do binário com supernovas de Tipo Ia resultam de uma violenta explosão de uma estrela anã branca. Deve ser adicionada massa a essa anã branca, retirada da estrela companheira, para provocar a sua explosão. Quando o fluxo de massa atinge seu limite, a anã branca está suficientemente quente e densa para inflamar o carbono e oxigênio em seu interior, iniciando uma reação termonuclear que faz com que a anã branca exploda como uma supernova Tipo Ia.

Durante muito tempo, a principal teoria diz que a companheira era uma estrela gigante vermelha antiga que inchou e perdeu material para a anã branca, mas as observações recentes praticamente descartou essa noção. No gigante vermelha é visto. O novo trabalho apresenta evidências de que a estrela fornecendo massa ainda está queimando hidrogênio em seu centro, ou seja, que esta estrela companheira ainda está no auge da vida.

“Se um branco explode anão ao lado de uma estrela comum, você deve ver um pulso de luz azul que resulta de aquecimento que o companheiro. Isso é o que os teóricos previram e isso é o que nós vimos,” de acordo com Kirshner.

A supernova SN 2012cg está localizada a 50 milhões de anos-luz de distância na constelação de Virgem, e foi descoberta em 17 de Maio de 2012 pelo Lick Observatory Supernova Search. A equipe de Marion começou a estudá-la no dia seguinte com os telescópios do Harvard-Smithsonian Center for Astrophysics.

A equipe continuou observando o brilho da supernova durante várias semanas usando muitos telescópios diferentes, incluindo o telescópio de 1,2 metros Fred Lawrence Whipple Observatory e seu instrumento KeplerCam, o telescópio espacial de raios gama Swift, o telescópio Hobby-Eberly no McDonald Observatory, entre outros.

A equipe encontrou evidências nas características da luz a partir da Supernova, indicando que poderia ser causada por uma companheira do binário. Especificamente, foi descoberto um excesso de luz azul proveniente da explosão. Este excesso é compatível aos modelos amplamente aceitos criados por U.C. Berkeley astrônomo Dan Kasen da U.C. Berkeley.

"A supernova está fundindo-se com a estrela companheira. O lado da estrela companheira que é atingido fica quente e brilhante. O excesso de luz azul está vindo do lado da estrela companheira que fica aquecido," explicou Wheeler.

Combinado com os modelos, as observações indicam que a estrela companheira binária tem uma massa mínima de seis sóis.

"Esta é uma interpretação que é consistente com os dados", disse Jeffrey Silverman, membro da equipe e pesquisador pós-doutorado na UT Austin. Salientando que não é uma prova concreta do tamanho exato da companheira, como viria de uma fotografia do sistema de estrelas binárias.

O trabalho foi publicadono periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 21 de fevereiro de 2016

As primeiras imagens diretas da atmosfera de um exoplaneta

Usando o telescópio espacial Hubble da NASA, os astrônomos da Universidade do Arizona tomaram as primeiras imagens diretas de um jovem exoplaneta gasoso conhecido como 2M1207b, localizado cerca de 160 anos-luz da Terra.

ilustração do exoplaneta 2M1207b e sua estrela

© ESO (ilustração do exoplaneta 2M1207b e sua estrela)

O exoplaneta tem quatro vezes a massa de Júpiter e orbita uma estrela anã marrom. E enquanto o nosso Sistema Solar possui 4,5 bilhões de anos de existência, o 2M1207b tem apenas dez milhões de anos de idade. Seus dias são curtos, com menos de 11 horas, e sua temperatura está quente formando bolhas de 1.427 graus Celsius. Suas pancadas de chuva vêm na forma de ferro líquido e vidro.

Os pesquisadores, liderados pelo estudante Yifan Zhou do Departamento de Astronomia Universidade do Arizona, foram capazes de deduzir o período de rotação do exoplaneta e entender melhor suas propriedades atmosféricas, incluindo suas nuvens desiguais, captando 160 imagens do alvo ao longo de dez horas. Este trabalho foi possível graças às capacidades de alta resolução e de alto contraste Wide Field Camera 3 do telescópio espacial Hubble.
"Compreender a atmosfera do exoplaneta foi um dos principais objetivos para nós. Isso pode nos ajudar a entender como as nuvens são formadas e se elas são homogêneas ou heterogêneas em todo o planeta", disse Zhou.

Até agora, nunca ninguém tinha utilizado o telescópio espacial Hubble para criar imagens diretas de um exoplaneta. Mesmo o maior telescópio na Terra não poderia tirar uma foto nítida de um exoplaneta tão longe quanto o 2M1207b, por isso os astrônomos criaram uma nova forma inovadora para mapear suas nuvens sem realmente vê-los em relevo acentuado, através da medida da mudança no seu brilho mudança ao longo do tempo.

"O resultado é muito emocionante. Isso nos dá uma nova técnica para explorar as atmosferas dos exoplanetas," disse Daniel Apai, professor assistente de astronomia e ciências planetárias da Universidade do Arizona e o pesquisador principal deste programa do Hubble.

De acordo com Apai, esta nova técnica de imagem fornece um método para mapear exoplanetas e é um passo importante para o discernimento, e colocando nossos planetas no contexto. Nosso Sistema Solar tem uma amostragem relativamente limitada de planetas, e não há nenhum planeta tão quente ou tão volumoso quanto o 2M1207b.
"O 2M1207b é provavelmente apenas o primeiro de muitos exoplanetas que seremos capazes de caracterizar e mapear", disse o astrônomo Glenn Schneider do Steward Observatory, co-autor do estudo com Adam Showman do Lunar and Planetary Laboratory.

"Será que esses mundos exóticos uniram padrões de nuvens como Júpiter? Como está o clima nesses mundos extremamente quentes, é semelhante ou diferente dos planetas mais frios em nosso próprio sistema solar? Observações como estas são fundamentais para responder a estas perguntas," disse Showman.

Zhou e seus colaboradores começaram a coletar dados para este projeto em 2014. Ele começou como um estudo piloto para demonstrar que o telescópio espacial Hubble e o telescópio espacial James Webb, que a NASA vai lançar no final de 2018, podem ser usados para mapear nuvens em outros planetas.

O sucesso deste estudo levam a um novo programa, maior: o programa Cloud Atlas do Hubble. Sendo um dos maiores programas focados em exoplanetas do Hubble, o Cloud Atlas representa uma colaboração entre 14 especialistas de todo o mundo, que agora estão criando mais imagens diretas de outros exoplanetas.

exoplaneta 2M1207b em órbita da estrela anã marrom

© ESO/VLT (exoplaneta 2M1207b em órbita da estrela anã marrom)

A imagem composta acima mostra o exoplaneta 2M1207b (a mancha vermelha no canto inferior esquerdo), em órbita da anã marrom 2M1207 (centro), o primeiro exoplaneta diretamente fotografado e o primeiro descoberto orbitando uma anã marrom. Ela foi fotografada pela primeira vez pelo VLT em 2004. A sua identidade planetária e características foram confirmadas após um ano de observações em 2005. O 2M1207b é um planeta semelhante a Júpiter, 5 vezes mais massivo do que Júpiter. Ele orbita a anã marron a uma distância 55 vezes maior do que a Terra ao Sol, quase duas vezes tanto quanto Netuno é do Sol. O sistema 2M1207 fica a uma distância de 230 anos-luz, na constelação de Hydra. A foto é baseado em três exposições do infravermelho próximo (nas bandas H, K e L), com a instalação do sistema de óptica adaptativa NACO no telescópio VLT Yepun de 8,2 m do Observatório Paranal do ESO.

Fonte: University of Arizona & ESO

sábado, 5 de dezembro de 2015

Metade dos candidatos a exoplanetas do Kepler são falsos positivos

Uma equipe internacional, liderada por Alexandre Santerne do Instituto de Astrofísica e Ciências do Espaço (IA), concluiu uma campanha de 5 anos para medir velocidades radiais, com o espectrógrafo SOPHIE (Observatory of Haute-Provence, França), e descobriram que 52,3% dos candidatos a exoplanetas gigantes detectados pelo telescópio espacial Kepler (NASA) são na realidade binários de eclipse, enquanto 2,3% são anãs marrons.

ilustração do exoplaneta 51 Pegasi b orbitando sua estrela

© ESO/M. Kornmesser/Nick Risinger (ilustração do exoplaneta 51 Pegasi b orbitando sua estrela)

Esta ilustração mostra o exoplaneta do tipo Júpiter quente 51 Pegasi b, que orbita uma estrela a cerca de 50 anos-luz de distância, na constelação de Pégaso. Este objeto foi o primeiro exoplaneta a ser descoberto em torno de uma estrela normal em 1995. Vinte anos mais tarde é também o primeiro exoplaneta a ser detectado diretamente no visível.

Santerne (IA e Universidade do Porto), comentou: "Pensava-se que a confiabilidade das detecções de exoplanetas do Kepler era muito boa, entre 10% e 20% não seriam planetas. A nossa extensa pesquisa espectroscópica dos exoplanetas gigantes descobertos pelo Kepler mostra que esta porcentagem é muito mais alta, até acima dos 50%. Isto tem implicações significativas na nossa compreensão da população de exoplanetas no campo do Kepler".

Os trânsitos de exoplanetas gigantes podem ser facilmente imitados por falsos positivos, o que torna essencial uma segunda análise espectroscópica, de modo a confirmar a natureza planetária desses trânsitos, e desta forma revelar, por exemplo, sistemas múltiplos.

Susana Barros (IA e Universidade do Porto), outro membro da equipe EXOEarths, comentou: "O Kepler encontrou um grande número de planetas que transitam, até ao tamanho da Terra. Contudo, observações adicionais das velocidades radiais dos candidatos, uma das áreas de especialização do grupo Origem e Evolução de Estrelas e Planetas do IA, é crucial para perceber esses sistemas planetários".

A pesquisa, que decorreu entre julho de 2010 e julho de 2015, começou com todos os 8.826 objetos de interesse do Kepler (Kepler Objects of Interest, ou KOI). A amostra foi progressivamente reduzida para 129 KOI’s, em torno de 125 estrelas, ao remover falsos positivos identificados previamente, estrelas demasiado tênues para serem observadas pelo SOPHIE e candidatos com períodos orbitais de mais de 400 dias, para garantir que se conseguiam observar no mínimo 3 trânsitos.

Santerne também pensa que: "Depois de 20 anos explorando planetas do tamanho de Júpiter, à volta de outros sóis, ainda temos imensas questões em aberto. Por exemplo, ainda não sabemos quais são os mecanismos físicos que levam à formação de gigantes com períodos orbitais de apenas alguns dias. Também não percebemos como é que alguns desses planetas estão inchados".

O diâmetro dos planetas gigantes depende da sua atmosfera e do seu interior, com a irradiação da sua estrela aquecendo a atmosfera, expandindo-a como um balão de ar quente. Mas a expansão de alguns destes planetas altamente irradiados não consegue ser modelada com processos físicos razoáveis.

Esta pesquisa espectroscópica estabeleceu limites para as massas, que combinadas com os diâmetros determinados graças aos trânsitos do Kepler, permitiram o cálculo da densidade destes exoplanetas gigantes. A equipe também descobriu um indício de uma relação entre a densidade destes planetas e a metalicidade das estrelas progenitoras, mas este resultado precisa ainda de mais confirmação.

Esta pesquisa também revelou que os planetas com irradiação moderada não se expandem. Uma caracterização detalhada da estrutura interna destes planetas deve trazer mudanças às teorias de formação e evolução.

Estes resultados foram anunciados esta semana na conferência Extreme Solar Systems III, no Havaí, que celebra 20 anos da descoberta do primeiro exoplaneta à volta de uma estrela do tipo solar.

Fonte: Instituto de Astrofísica e Ciências do Espaço

quinta-feira, 30 de julho de 2015

Anãs marrons abrigam poderosas auroras

Uma equipe de astrônomos dos EUA, e da Europa descobriram que as estrelas anãs marrons, também chamadas de estrelas que falharam, abrigam poderosas auroras como na Terra.

ilustração de uma aurora numa anã marron

© Chuck Carter/Gregg Hallinan/Caltech (ilustração de uma aurora numa anã marron)

As anãs marrons são objetos apagados e relativamente frios, que são difíceis de serem detectados e mais difíceis ainda de serem classificados.

Esses objetos são muito massivos para serem planetas, mesmo que possuam características de planetas, mas são ao mesmo tempo muito pequenos para sustentarem reações de fusão de hidrogênio nos seus núcleos, uma característica que define as estrelas, mas elas possuem atributos parecidos com estrelas.

“As anãs marrons cobrem um intervalo entre as estrelas e os planetas. Nós já sabemos que elas possuem atmosferas nubladas, como planetas, embora as nuvens nas anãs marrons são feitas de minerais que formam as rochas na Terra. Agora nós sabemos que as anãs marrons abrigam poderosas auroras”, disse o Dr. Stuart Littlefair da Universidade de Sheffield, no Reino Unido.

O Dr. Littlefair e seus colegas conduziram uma extensa campanha de observação da LSRJ 1835+3259, uma anã marrom, localizada a 18,6 anos-luz de distância da Terra.

Usando o Very Large Array (VLA) do National Radio Astronomy Observatory (NRAO), eles detectaram um brilhante pulso de ondas de rádio que apareceram à medida que a anã marrom rotacionava. O objeto tem um movimento de rotação a cada 2,84 horas, assim, a equipe foi capaz de observar 3 rotações completas no decorrer de uma única noite de observação.

Depois disso, os cientistas usaram o telescópio Hale do Palomar, para observar que a anã marrom variava opticamente no mesmo período dos pulsos de rádio. Focando em uma das linhas espectrais associadas com o hidrogênio excitado, a linha de emissão H-alpha, eles encontraram que o brilho do objeto variava periodicamente.

Finalmente, eles usaram os telescópios do Observatório W. M. Keck, para medir com precisão o brilho da anã marrom no decorrer do tempo; o que não é uma tarefa simples, já que esses objetos são milhares de vezes mais apagados que o Sol.

A equipe foi capaz de estabelecer que a emissão de hidrogênio é uma assinatura das auroras, perto da superfície da LSRJ 1835+3259.

“Em ciência, novos conhecimentos as vezes desafiam o nosso entendimento. Nós sabemos o quão controverso a situação foi com Plutão, onde os astrônomos têm que observar de forma intensa para decidir se ele era um planeta, ou o primeiro objeto do Cinturão de Kuiper”, disse Garret Cotter da Universidade de Oxford no Reino Unido.

“Agora, nós estamos sendo desafiados a observar objetos que tradicionalmente eram classificados como estrelas, mas parecem mostrar mais e mais propriedades que fazem com que eles pareçam super-planetas”.

Um artigo científico foi publicado na revista Nature.

Fonte: National Radio Astronomy Observatory

quarta-feira, 18 de fevereiro de 2015

O estranho caso da anã marrom desaparecida

Onde está uma anã marrom que se pensava estar em órbita de uma estrela dupla incomum, a V471 Tauri?

estrela dupla incomum V471 Tauri no centro da imagem

© ESO/Digitized Sky Survey 2 (estrela dupla incomum V471 Tauri no centro da imagem)

Alguns pares de estrelas são constituídos por duas estrelas normais com massas ligeiramente diferentes. Quando a estrela de massa ligeiramente superior envelhece e expande dando origem a uma gigante vermelha, parte do seu material é transferido para a outra estrela, e acaba rodeando ambas as estrelas sob a forma de um enorme envelope gasoso. Quando esta nuvem se dispersa as estrelas aproximam-se formando um par muito próximo constituído por uma anã branca e uma estrela mais normal.
A V471 Tauri é um par estelar deste tipo. Trata-se de um membro do aglomerado estelar das Híades na constelação do Touro e estima-se que tenha cerca de 600 milhões de anos e se encontre a aproximadamente 163 anos-luz da Terra. As duas estrelas encontram-se muito próximas entre si, orbitando em torno uma da outra a cada 12 horas. Duas vezes em cada órbita uma estrela passa em frente da outra, o que leva a variações regulares do brilho do par quando observado a partir da Terra, já que as estrelas se eclipsam uma à outra.
Uma equipe de astrônomos liderada por Adam Hardy (Universidad Valparaíso, Chile) usou o sistema ULTRACAM no New Technology Telescope do ESO para medir estas variações de brilho de forma muito precisa. Os tempos dos eclipses foram medidos com uma precisão superior a dois segundos, um resultado muito melhor que as medições anteriores.
Os tempos dos eclipses não eram regulares, mas podiam ser explicados assumindo a existência de uma anã marrom em órbita das duas estrelas, cuja força gravitacional estivesse perturbando as órbitas destes objetos. Foram também descobertas pistas que apontavam para a existência de um segundo objeto companheiro menor.
No entanto, e até agora, não tinha sido possível obter imagens da tênue anã marrom situada tão próximo de estrelas muito mais brilhantes. O poder do novo instrumento SPHERE recentemente instalado no Very Large Telescope do ESO permitiu que a equipe olhasse pela primeira vez para o local exato onde se pensava que estivesse a anã marrom. No entanto, nada foi encontrado, embora as imagens de altíssima qualidade do SPHERE devessem tê-la revelado. As imagens SPHERE são tão precisas que teriam revelado uma anã marrom companheira com brilho 70 mil vezes mais fraco que a estrela central e a apenas 0,26 segundos de arco de distância dela. A anã marrom que se esperava encontrar neste caso seria muito mais brilhante.
“Existem muitos artigos que sugerem a existência de objetos circumbinários, mas os resultados que obtivemos vão no sentido contrário desta hipótese”, diz Adam Hardy.
Se não existe nenhum objeto orbitando estas estrelas, então o que é que provoca as estranhas variações na órbita do sistema binário? Várias teorias foram propostas e, embora algumas tenham sido já excluídas, é possível que os efeitos na órbita sejam causados por variações no campo magnético da maior das duas estrelas, algo semelhante às variações menores que observamos no Sol. Este efeito chama-se mecanismo de Applegate e resulta de variações regulares na forma da estrela, as quais podem dar origem a variações no brilho aparente da estrela dupla vista a partir da Terra.

“Um estudo como este já fazia falta há muito tempo, mas só agora foi possível graças ao advento de novos instrumentos muito poderosos como o SPHERE. É assim que funciona a ciência: observações feitas com tecnologias novas podem tanto confirmar como, e foi o caso, refutar ideias anteriores. Esta foi uma maneira excelente de começar a vida observacional deste instrumento fantástico”, conclui Adam Hardy.

Este trabalho foi descrito no artigo científico intitulado “The First Science Results from SPHERE: Disproving the Predicted Brown Dwarf around V471 Tau” de A. Hardy et al., que foi publicado hoje na revista especializada Astrophysical Journal Letters.

Fonte: ESO

sexta-feira, 15 de agosto de 2014

A incrível história de uma estrela que virou planeta!

Os avanços da astronomia criaram um problema inusitado de taxonomia estelar, ou seja, de classificação de objetos.

ilustração de estrelas e exoplaneta

© John Pinfield (ilustração de estrelas e exoplaneta)

Com a melhoria da capacidade dos instrumentos científicos, mas também dos modelos teóricos de formação de estrelas, os astrônomos continuamente foram empurrando o limite inferior de massa das estrelas. Simplificando, astrônomos foram descobrindo cada vez mais estrelas cada vez menores. Aí surgiu a discussão, qual deveria ser o valor da massa mínima para que um corpo celeste pudesse ser classificado como estrela.
Por definição, um corpo celeste é considerado estrela se ele tem massa suficiente para produzir energia através de fusão nuclear, juntando átomos de hidrogênio e formando átomos de hélio, nos casos mais simples. É possível haver fusão de átomos mais pesados se fundindo em outros mais pesados ainda, no interior de estrelas de muita massa. Com esse processo é possível produzir até átomos de ferro. Por conta dos detalhes da física nuclear, produzir átomos mais pesados que o ferro não gera energia, mas sim a consome. Se a estrela chega a esse ponto ela se torna uma supernova, numa explosão tão poderosa que pode criar uma estrela de nêutrons ou mesmo um buraco negro, mas também produz todos os elementos da tabela periódica.
Mas, qual o valor da massa que um corpo celeste deve ter para que as condições necessárias para haver fusão de nuclear ocorra?

Modelos teóricos dizem que 75 vezes a massa de Júpiter, mas esse valor pode variar, e muito, de acordo com a composição química da estrela. Para piorar, em 1988 foi descoberto um objeto de massa sub estelar que foi classificado como uma anã marrom. Essa classe de objetos têm massas variando entre 12 e 80 vezes a massa de Júpiter. Isso é muito pouco para produzir a fusão do hidrogênio comum, mas com 13 massas de Júpiter, um corpo é capaz de fundir o deutério, um isótopo do átomo de hidrogênio. As anãs marrons com mais de 65 massas de Júpiter conseguem fundir átomos de lítio.
E aí? Como fica agora? Se a definição inicial dizia que uma estrela é o corpo celeste que consegue produzir energia por fusão nuclear, as anãs marrons não deveriam ser consideradas estrelas? Ou esses corpos deveriam ser considerados Júpiteres gigantes? Alguns astrônomos acham que não, aqueles que pensam justamente nos processos de fusão nuclear dizem que são estrelas. Já outros, que pensam nos processos de formação de estrelas acham que sim, que não passam de Júpiteres bombados.
Polêmicas à parte, o que ocorre é que não existe uma linha bem definida que separe estrelas de exoplanetas, mas sim uma extensa faixa cinza. Para se ter uma ideia, a anã marrom mais massiva tem 29 vezes a massa de Júpiter, portanto é capaz de produzir energia através da fusão nuclear de deutério, mas é considerado o exoplaneta mais massivo já descoberto.
Bom, se já é difícil dizer quem é Júpiter gigante e quem é estrela, o que dizer de um corpo celeste que tenha nascido com cara de estrela, mas hoje poderia ser classificado como planeta?
Esse é o caso do objeto WISE J0304-2705, descoberto por um grupo internacional de astrônomos liderado por David Pinfeld da Universidade de Hertfordshire, Inglaterra. Classificado inicialmente como uma anã marrom da classe mais fria possível, o espectro de J0304 mostrou que ele tinha características de uma estrela muito antiga e que passou por um processo de esfriamento ao longo de bilhões de anos e hoje é quente o suficiente para ferver água, apenas.
De acordo com a linha do tempo traçada por Pinfeld e colaboradores, durante os primeiros 20 milhões de anos de vida dessa (ainda) estrela, sua temperatura era de 2.800 graus Celsius, o mesmo que uma anã vermelha. Depois de 100 milhões de anos a temperatura baixou para 1.500 graus e nuvens de silicatos começaram a se condensar em sua atmosfera. Com uma idade de um bilhão de anos a temperatura já era de 1.000 graus, fazendo com que nuvens de metano e vapor d'água trouxessem as características típicas de uma anã marrom. Desde então, J0304 esfriou até chegar a uma temperatura entre 100 e 150 graus Celsius.
Esse objeto tem entre 20 a 30 vezes a massa de Júpiter, o que a faria uma anã marrom, mas com uma temperatura baixa assim, lembre-se que Vênus tem por volta de 450 graus, J0304 está mais para um planeta e não pode realizar qualquer fusão nuclear. Situado a uma distância entre 33 e 55 anos luz de distância, esse é o primeiro objeto conhecido a cruzar a linha cinza entre estrelas e planetas e é o primeiro caso de uma estrela que virou planeta.

Fonte: Globo G1

sexta-feira, 25 de abril de 2014

Uma anã marrom muito gelada

O telescópio espacial Spitzer e o Wide-field Infrared Survey Explorer (WISE) da NASA descobriram o que parece ser a mais fria anã marrom conhecida, um corpo parecido com uma estrela fraca que, surpreendentemente, é tão gelado como polo norte da Terra.

ilustração da anã marrom gelada

© Penn State University/NASA/JPL-Caltech (ilustração da anã marrom gelada)

As imagens dos telescópios espaciais também identificaram a distância do objeto, localizado a 7,2 anos-luz de distância, sendo quarto sistema mais próximo do nosso Sol. O sistema mais próximo, um trio de estrelas, está Alpha Centauri, a cerca de 4 anos-luz de distância.
"É muito emocionante descobrir um novo vizinho do nosso Sistema Solar que está tão perto", disse Kevin Luhman, astrônomo do Centro de Exoplanetas e Mundos Habitáveisde da Universidade Estadual Pensilvânia. "E dado sua temperatura extrema, deve dizer-nos muito sobre as atmosferas de planetas, que muitas vezes têm temperaturas igualmente frias."
Anãs marrons começam suas vidas como estrelas, como o colapso bolas de gás, mas falta-lhes a massa para queimar combustível nuclear e irradiar a luz das estrelas. A recém-descoberta anã marrom mais fria é denominada WISE J085510.83-071.442.5, tem uma temperatura de menos 48 para menos 13 graus Celsius. Recordistas anteriores para anãs marrons mais frias, também encontrado pelo WISE e Spitzer, eram da ordem da temperatura ambiente.
O WISE foi capaz de detectar o objeto raro porque ele examinou o céu inteiro duas vezes em luz infravermelha, observando algumas áreas até três vezes. Objetos frios como as anãs marrons podem ser invisíveis quando vistos por telescópios na luz visível, mas sua incandescência térmica, mesmo sendo débil, destaca-se na luz infravermelha. Além disso, quanto mais próximo de um corpo, mais ela parece mover-se em imagens efetuadas durante meses. Aviões são um bom exemplo deste efeito: um avião próximo voando baixo vai parecer deslocando mais rapidamente do que um voando alto.
Depois de perceber o movimento rápido do WISE J085510.83-071.442.5 em março de 2013, Luhman  analisou as imagens adicionais tiradas com Spitzer e o telescópio Gemini Sul em Cerro Pachón, no Chile. Observações em infravermelho do Spitzer ajudaram a determinar a temperatura gelada da anã marrom. Detecções combinadas do WISE e Spitzer, obtidas de diferentes posições ao redor do Sol, possibilitou a medição da distância através do efeito de paralaxe. Este é o mesmo princípio que explica por que seu dedo, quando estendido frontalmente de você, parece saltar de um lado para outro quando ele é visto alternativamente pelos olhos esquerdo e direito.
"É notável que, mesmo depois de muitas décadas de estudo do céu, ainda não há um inventário completo dos vizinhos mais próximos do Sol", disse Michael Werner, cientista do projeto para o Spitzer no Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia. "Este novo resultado emocionante demonstra o poder de explorar o Universo utilizando novas ferramentas, como os olhos infravermelhos do WISE e Spitzer."
Estima-se que o WISE J085510.83-071.442.5 deva ter de 3 a 10 vezes a massa de Júpiter. Com uma massa tão baixa, poderia ser um gigante gasoso semelhante à Júpiter que foi expulso do seu sistema estelar. Mas os cientistas indagam que é provavelmente uma anã marrom em vez de um planeta, pois as anãs marrons são conhecidas por serem bastante comuns. Se assim for, é uma das anãs marrons enormes menos conhecidas.
Em março de 2013, a análise de Luhman das imagens do WISE descobriu um par de anãs marrons muito mais quentes a uma distância de 6,5 anos-luz, fazendo com que esse sistema seja o terceiro mais próximo do Sol. Sua busca por corpos movendo-se rapidamente também demonstrou que o Sistema Solar exterior, provavelmente, não contém um grande planeta ainda não descoberto, que foi chamado de "Planeta X" ou "Nemesis".

Fonte: NASA

terça-feira, 18 de fevereiro de 2014

Céus vermelhos em uma anã marrom extrema

Um exemplo peculiar de corpo celeste, conhecido como anã marrom, com céus excepcionalmente vermelhos foi descoberto por uma equipe de astrônomos do Centro para Pesquisa de Astrofísica da Universidade de Hertfordshire.

ilustração de uma anã marrom com céu vermelho

© Neil J. Cook (ilustração de uma anã marrom com céu vermelho)

As anãs marrons situam-se na linha entre as estrelas e os planetas. São demasiado grandes para serem consideradas planetas; e não têm material suficiente para fundir hidrogênio nos seus núcleos e desenvolverem-se como estrelas. São objetos de massa intermédia entre estrelas, como o nosso Sol, e os planetas gigantes, como Júpiter e Saturno.

Por vezes descritas como estrelas falhadas, não têm uma fonte de energia interna, por isso são frias e muito tênues, e continuam a arrefecer com o passar do tempo. A anã marrom, de nome ULAS J222711-004547, chamou a atenção dos cientistas devido à sua aparência extremamente avermelhada em comparação com anãs marrons "normais". Observações subsequentes com o Very Large Telescope (VLT) do ESO no Chile e o uso de uma técnica inovadora de análise de dados mostraram que a razão para a sua peculiaridade é a presença de uma camada muito espessa de nuvens na sua atmosfera superior.

Federico Marocco, que liderou a equipe de pesquisa da Universidade de Hertfordshire, afirma: "Estes não são os tipos de nuvens que vemos na Terra. As nuvens espessas nesta anã marrom em particular são principalmente constituídas por poeira mineral, como enstatite e corindo.

"Não só fomos capazes de inferir a sua presença, como também conseguimos estimar o tamanho dos grãos de poeira nas nuvens", disse Marocco.

O tamanho dos grãos de poeira influencia a cor do céu. Um céu avermelhado numa anã marrom sugere uma atmosfera repleta de partículas de poeira e umidade. Se os nossos céus da manhã são avermelhados, é porque o céu limpo a Leste permite com que o Sol ilumine a parte inferior de nuvens que vêm do Oeste. Por outro lado, a fim de ver nuvens vermelhas ao anoitecer, a luz do Sol deve ter um caminho livre a Oeste de modo a iluminar as nuvens a Leste.

No entanto, a anã marrom recentemente descoberta (ULAS J222711-004547) tem uma atmosfera muito diferente, onde o céu é sempre vermelho. Os planetas gigantes do Sistema Solar, como Júpiter e Saturno, mostram várias camadas de nuvens, incluindo amônia e sulfeto de hidrogênio bem como vapor de água. A atmosfera observada nesta anã marrom em específico é mais quente, com vapor de água, metano e provavelmente alguma amônia; mas, invulgarmente, é dominada por partículas minerais argilosas. Uma boa compreensão de como uma atmosfera tão extrema funciona nos ajudará a melhor entender a gama de atmosferas que podem existir.

Avril Day-Jones, do mesmo instituto universitário, que contribuiu para a descoberta e análise, realça: "ULAS J222711-004547 é uma das anãs marrons mais vermelhas já observadas, o que a torna num alvo ideal para múltiplas observações para compreender o clima numa atmosfera tão extrema. Ao estudar a composição e variabilidade na luminosidade e cores de objetos como este, podemos compreender como o clima funciona nas anãs marrons e como se relaciona com outros planetas gigantes."

Fonte: Monthly Notices of the Royal Astronomical Society

quarta-feira, 29 de janeiro de 2014

Primeiro mapa meteorológico de uma anã marrom

O Very Large Telescope (VLT) do ESO foi utilizado para criar o primeiro mapa meteorológico da superfície da anã marrom mais próxima da Terra.

ilustração de Luhman 16B

© ESO/I. Crossfield/N. Risinger (ilustração de Luhman 16B)

Uma equipe internacional fez um mapa das regiões claras e escuras da WISE J104915.57-531906.1B, também conhecida pelo nome informal Luhman 16B e uma das duas anãs marrons recentemente descobertas que formam um par a apenas seis anos-luz de distância.

As anãs marrons preenchem a lacuna entre os planetas gigantes gasosos e as estrelas frias de pouco brilho. Não possuem massa suficiente para dar início à fusão nuclear nos seus centros e apenas conseguem brilhar fracamente nos comprimentos de onda do infravermelho. A primeira anã marrom confirmada foi descoberta há apenas cerca de vinte anos e só se conhecem algumas centenas destes objetos tão elusivos.
As anãs marrons que se encontram mais próximas do Sistema Solar formam um par chamado Luhman 16AB e situam-se a apenas seis anos-luz de distância, na constelação  da Vela. Este par foi descoberto pelo astrônomo americano Kevin Luhman em imagens do satélite de rastreio infravermelho WISE. Como Luhman tinha já descoberto quinze estrelas duplas, foi adotado o nome Luhman 16. Seguindo a convenção usual de nomear as estrelas duplas, Luhman 16A é a mais brilhante das duas componentes, Luhman 16B é a componente secundária e referimo-nos ao par como Luhman 16AB. Este par é o terceiro sistema mais próximo da Terra, depois de Alfa Centauri e da Estrela de Barnard, mas só foi descoberto no início de 2013. Sendo que a componente menos brilhante, Luhman 16B, variava ligeiramente em brilho a cada poucas horas, à medida que girava, um indício de que poderia ter regiões bem demarcadas em sua superície.
Os astrônomos usaram agora o poder do VLT para, não apenas fotografar estas anãs marrons, mas também mapear regiões claras e escuras na superfície de Luhman 16B.

Mapa de superfície de Luham 16B

© ESO/I. Crossfield (Mapa de superfície de Luham 16B)

O astrofísico Ian Crossfield (Instituto Max Planck de Astronomia, Heidelberg, Alemanha), autor principal do novo artigo científico que descreve este trabalho, sumariza os resultados: “Observações anteriores sugeriam que as anãs marrons poderiam ter superfícies manchadas, mas agora podemos de fato mapeá-las. Dentro de pouco tempo, poderemos ver padrões de nuvens formando-se, evoluindo e dissipando-se nesta anã marrom, eventualmente os exometeorologistas poderão prever se um visitante de Luhman 16B poderá contar com céus limpos ou nublados”.
Para mapear a superfície da anã marrom os astrônomos usaram uma técnica inteligente. Observaram as anãs marrons com o instrumento CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) montado no VLT, o que lhes permitiu não somente ver o brilho variável à medida que Luhman 16B gira, mas também observar se as regiões claras e escuras estavam se movendo em direção ao observador ou afastando-se dele. Combinando toda esta informação conseguiram recriar um mapa das regiões claras e escuras situadas na superfície.
As atmosferas das anãs marrons são muito semelhantes às dos exoplanetas gigantes gasosos quentes, por isso ao estudar comparativamente anãs marrons fáceis de observar, os astrônomos podem também aprender mais sobre as atmosferas dos planetas gasosos jovens, muitos dos quais serão descobertos num futuro próximo pelo novo instrumento Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), que será instalado no VLT ainda este ano.
Esta anã marrom possibilita compreender os padrões de clima em outros sistemas solares. Além disto, é muito importante o mapeamento de objetos localizados além do nosso Sistema Solar!

Os novos resultados serão publicados amanhã na revista Nature, num artigo científico intitulado: “A Global Cloud Map of the Nearest Known Brown Dwarf”.

Fonte: ESO

quarta-feira, 22 de janeiro de 2014

Anã marrom fornece dados para o estudo de exoplanetas

Uma equipe de pesquisadores liderada por Justin R. Crepp da Universidade de Notre Dame em South Bend, Indiana, imageou diretamente um raro tipo de anã marrom que pode servir como base para estudar objetos com massa entre as estrelas e os planetas.

detecção de uma rara anã marrom

© J. R. Crepp (detecção de uma rara anã marrom)

Os dados iniciais foram obtidos do TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS), instalado no Observatório W.M. Keck, em Mauna Kea, no Havaí. Uma pesquisa de alto contraste que usa óptica adaptativa e tecnologias relacionadas para observar objetos apagados e mais velhos orbitando estrelas próximas, e fazer medidas precisas. As anãs marrons emitem pouca luz, pois não queimam hidrogênio e esfriam rapidamente. Elas poderiam fornecer a integração entre o nosso entendimento das estrelas de pouca massa e os objetos menores como os planetas.

A HD 19467 B, uma anã-T, é a companheira apagada de uma estrela próxima, parecida com o Sol, que é mais de 100.000 vezes mais apagada do que sua companheira. Sua distância é conhecida com precisão, e a descoberta também permite estabelecer as fortes restrições para fatores importantes como a sua massa, órbita, idade e composição química sem a referência ao espectro de luz recebido da sua superfície.

As medidas precisas de velocidade radial foram obtidas usando o instrumento HIRES instalado no telescópio Keck I de 10 metros do Observatório Keck. As observações, duraram 17 anos, começando em 1996, e mostram a aceleração de longo prazo, indicando que a companheira de pouca massa estava sendo puxada pela estrela progenitora. Observações de acompanhamento com imageamento de alto contraste foram feitas então em 2012 usando o instrumento NIRC2 no telescópio Keck II com o sistema de óptica adaptativa revelando a estrela companheira como mostrado acima. As observações foram concedidas por cada um dos membros do consórcio do Observatório Keck, incluindo a NASA, o Instituto de Tecnologia da Califórnia e a Universidade da Califórnia.

Enquanto os cientistas entendem a luz recebida de estrelas relativamente bem, o espectro de planetas é complicado com pouca compreensão. Entender as anãs marrons, como a HD 19467 B, poderia ser um passo em direção ao completo entendimento dos exoplanetas.

A equipe de pesquisadores foi liderada por Justin R. Crepp, professor assistente de física na Universidade de Notre Dame (EUA), cuja descoberta foi publicada recentemente no Astrophysical Journal.

Fonte: Astronomy

sexta-feira, 10 de janeiro de 2014

Nova espécie de planeta ou estrela anã marrom?

Um objeto descoberto por astrofísicos da Universidade de Toronto, no Canadá, está orbitando uma estrela muito jovem a cerca de 440 anos-luz de distância do Sol pode desafiar entendimentos tradicionais sobre como os planetas e as estrelas se formam.

localização da estrela ROXs 42B

© Celestia (localização da estrela ROXs 42B)

O exoplaneta foi nomeado ROXs 42Bb por sua proximidade à estrela ROXs 42B, o objeto é de aproximadamente nove vezes a massa de Júpiter, abaixo do limite estabelecido para diferenciar planetas de anãs marrons, que são mais maciças. No entanto, ele está localizado 30 vezes mais longe da estrela do que Júpiter é do Sol.

"Temos medidas muito detalhadas deste objeto abrangendo de sete anos, até mesmo um espectro revelando sua gravidade, temperatura e composição molecular, mas ainda não podemos determinar se é um planeta ou uma estrela anã marrom", disse Thayne Currie, do Departamento de Astronomia e Astrofísica da Universidade de Toronto e principal autor desta pesquisa.

O ROXs 42Bb é um objeto tão grande e tão longe da sua estrela hospedeira, e para ser considerado um planeta, como teria se formado?

A maioria dos astrônomos acreditam que os planetas gigantes gasosos, como Júpiter e Saturno foram formados por acreção de núcleo, em que os planetas se formam a partir de um núcleo sólido que, em seguida, acresce um envelope maciço gasoso. Acreção do núcleo funciona eficientemente na maioria dos planetas quando estiverem mais perto da estrela progenitora, devido ao espaço de tempo necessário para formar o primeiro núcleo.

Uma teoria alternativa proposta para a formação de planetas gigantes gasosos é a instabilidade do disco, um processo pelo qual fragmentos de gás do disco em torno de uma jovem estrela desmorona diretamente sob sua própria gravidade colapsando em um planeta. Este mecanismo funciona melhor quando estiver mais longe de sua estrela.

Uma dúzia de outros objetos jovens com massas planetárias foram observados por Currie e outros astrônomos, alguns têm índices de massa planeta-estrela menor do que cerca de 10 vezes maior que a massa de Júpiter e estão localizados dentro de cerca de 15 vezes a separação de Júpiter e o Sol. Outros têm índices de massa muito mais elevados e/ou estão localizados mais de 50 vezes a separação orbital de Júpiter, cujas as propriedades são semelhantes aos muito mais maciços objetos amplamente aceitos para não ser planetas. O primeiro grupo seria planetas formados por núcleo de acreção, e o segundo grupo provavelmente formado como estrelas e anãs marrons. Entre estas duas populações há um grande fosso que separa planetas verdadeiros de outros objetos.

O novo objeto pode estar situado entre a distinção de planetas e anãs marrons preenchendo esta lacuna. Porém, é difícil entender como este objeto foi formado como Júpiter a longa distância, e com muito baixa massa para ser uma típica anã marrom. Ele pode representar uma nova classe de planetas ou ele pode ser apenas uma anã muito rara com massa planetária.

"Independentemente disso, ele deve estimular novas pesquisas sobre planetas e as teorias de formação de estrelas, e servir como um ponto de referência fundamental para compreender as propriedades de planetas jovens com temperaturas semelhantes, massas e idades ", disse Currie, que apresentou estes resultados na reunião anual da Sociedade Astronômica Americana, em Washington.

Os dados observacionais utilizados para a descoberta foi obtida utilizando os telescópios do Observatório Keck e Observatório Subaru em Mauna Kea, Havaí, e os telescópios do Observatório Europeu do Sul (ESO), no Chile.

A descoberta é relatada em um estudo intitulado "Direct imaging and spectroscopy of a candidate companion below/near the deuterium-burning limit in the young binary star system, ROXs 42B", que também pode ser visto no arXiv.org.

Um artigo sobre a descoberta foi publicado esta semana no Astrophysical Journal Letters.

Fonte: Universidade de Toronto

segunda-feira, 6 de janeiro de 2014

Estrelas falhadas próximas poderão ter um planeta

Astronômos, incluindo Yuri Beletsky da Instituição Carnegie, obtiveram medidas precisas do par mais próximo do Sol de estrelas que falharam, o que sugere que o sistema abriga um terceiro objeto com massa planetária.

sistema binário Luhman 16AB

© Gemini Observatory/NSF (sistema binário Luhman 16AB)

Estrelas falhadas são conhecidas como anãs marrons e tem uma massa inferior a 8 % da massa do Sol, e não são grande o suficiente para queimar hidrogênio em seus centros. Este sistema em particular, denominado Luhman 16AB, foi descoberto no início do ano passado e está a apenas 6,6 anos-luz de distância.

Após o anúncio da descoberta, várias equipes de astrônomos, utilizaram uma variedade de telescópios para caracterizar o casal vizinho.

Depois de dois meses de observações e extensa análise de dados, a equipe de Beletsky, liderada por Henri Boffin do Observatório Europeu do Sul (ESO), constatou que ambos os objetos têm uma massa entre 30 e 50 massas de Júpiter. Em comparação, o Sol tem uma massa de cerca de 1.000 massas de Júpiter.

As duas anãs marrons são separadas por cerca de três vezes a distância entre a Terra e o Sol. Em sistemas binários as anãs marrons são gravitacionalmente ligadas, onde uma orbita em torno da outra. Estas duas anãs marrons têm tão pouca massa que elas levam cerca de 20 anos para completar uma órbita.

A equipe utilizou o instrumento FORS2 no Very Large Telescope (VLT) do ESO em Paranal para obter  imagens do par de anãs marrons, detectando pequenos deslocamentos dos dois objetos em sua órbita durante apenas o período de dois meses. Os astrônomos foram capazes de medir as posições das duas anãs marrons com dez vezes mais precisão (milisegundos de arco) do que antes e, assim, detectar até mesmo pequenas perturbações de sua órbita.

Os desvios parecem estar correlacionados  à presença de um acompanhante que perturba o movimento de uma das duas anãs marrons. Esse companheiro é mais provável ser um objeto com massa planetária, que tem um período orbital entre dois meses e um ano.

Outras observações são necessárias para confirmar a existência de um planeta, mas é provável que o sistema binário de anãs marrons mais próximo ao Sol deva ser um sistema triplo!

Um artigo foi submetido ao peíódico Astronomy & Astrophysics.

Fonte: Carnegie Institution of Science

terça-feira, 24 de dezembro de 2013

Onde as estrelas acabam e as anãs marrons começam?

Estrelas estão inseridas numa faixa de tamanho enorme, de muitas dezenas de vezes maior do que o Sol a uma pequena fração do seu tamanho.Mas a resposta para o quão pequeno um corpo astronômico pode ser, e ainda ser uma estrela, nunca foi conhecido.

diagrama tamanho x temperatura

© P. Marenfeld (diagrama tamanho x temperatura)

O diagrama acima mostra a relação entre o tamanho e a temperatura no ponto onde as estrelas terminam e as anãs marrons começam a surgir.

Mas a resposta para o quão pequeno um corpo astronômico pode ser, e ainda ser uma estrela, nunca foi conhecido. O que se sabe é que os objetos abaixo deste limite não são capazes de inflamar e sustentar a fusão de hidrogênio em seus núcleos: esses objetos são referidos como anãs marrons.

Na pesquisa aceita para publicação no Astronomical Journal, o grupo RECONS (Research Consortium On Nearby Stars) da Universidade Estadual da Georgia State University descobriu a evidência observacional para o intervalo previsto teoricamente entre estrelas muito baixas em massa e as anãs marrons. Os dados vieram com auxílio dos telescópios SOAR (SOuthern Astrophysical Research) 4,1m e SMARTS (Small and Moderate Aperture Research Telescope System) de 0,9m no Observatório Interamericano de Cerro Tololo (CTIO), no Chile, que é uma divisão do National Optical Astronomy Observatory (NOAO).

Durante a maior parte de suas vidas, as estrelas obedecem a uma relação conhecida como sequência principal, que mostra uma relação entre luminosidade e temperatura, e também uma relação entre a luminosidade e o raio. Estrelas se comportam como os balões no sentido de que a adição de materiais à estrela provoca o aumento do seu raio; em uma estrela o material é o elemento hidrogênio, em vez de ar, que é adicionado a um balão.

Por outro lado, anãs marrons são descritas por leis físicas diferentes (chamadas de pressão de degeneração de elétrons) das estrelas e tem o comportamento oposto. As camadas internas de uma anã marrom trabalham como um colchão de mola, ou seja, ao adicionar peso sobre eles faz com que  encolhem. Portanto, anãs marrons realmente diminuem em tamanho, com acréscimo de massa.

Como o Dr. Sergio Dieterich, o autor do estudo, explicou: "A fim de distinguir estrelas das anãs marrons medimos a luz de cada objeto perto do limite anã estelar/marrom. Também medimos cuidadosamente as distâncias de cada objeto. Então, calculamos suas temperaturas e raios usando as leis físicas básicas, e descobrimos a localização dos menores objetos que observamos. Vemos que o raio diminui com a diminuição da temperatura, como esperado para as estrelas, até chegarmos a uma temperatura de cerca de 2.100K. Nesta região vemos uma lacuna sem objetos, em seguida, o raio começa a aumentar com a diminuição da temperatura, como esperamos para anãs marrons."

Dr. Todd Henry, outro autor , disse: "Nós podemos agora apontar para uma temperatura (2.100K), raio (8,7% à do Sol) e luminosidade (1/8000 do Sol) e dizer que a sequência principal termina aí e foi possível identificar uma estrela em particular (com a designação 2MASS J0513-1403) como representante das menores estrelas.

Além de responder a uma questão fundamental na astrofísica estelar sobre o fim legal da sequência principal, a descoberta tem implicações significativas na busca por vida no Universo. Porque anãs marrons esfriam em uma escala de tempo de apenas milhões de anos, os planetas em torno de anãs marrons são pobres candidatos à habitabilidade, enquanto que estrelas de massa muito baixas fornecem calor constante e um ambiente de baixa radiação ultravioleta há bilhões de anos. Sabendo que a temperatura onde as estrelas acabam e as anãs marrons começam deve ajudar os astrônomos a decidir quais objetos são candidatos para hospedar planetas habitáveis​​.

Além disso, como as anãs marrons esfriam para sempre, elas eventualmente tornam-se um tipo de matéria escura macroscópica, por isso é importante saber o quanto a matéria escura está presa na forma de anãs marrons muito antigas e frias.

Fonte: NOAO

sábado, 23 de novembro de 2013

Descobertas as anãs marrons mais antigas

Uma equipe de astrônomos liderada pelo Dr. David Pinfield, da Universidade de Hertfordshire, no Reino Unido, descobriu duas das mais antigas anãs marrons da Via Láctea.

ilustração de uma anã marron

© Joint Astronomy Centre (ilustração de uma anã marron)

Esses objetos estão se movendo a uma velocidade de até 200 quilômetros por segundo, muito mais rápido do que as estrelas normais ou outras anãs marrons, e possivelmente teriam se formado quando a Via Láctea era muito jovem, mais de 10 bilhões de anos atrás. Curiosamente, os cientistas acreditam que elas poderiam ser parte de uma população vasta e inédita de objetos.

Anãs marrons são objetos como estrelas, mas são muito menos massivas (com menos de 7% da massa do Sol), e não geram calor interno através da fusão nuclear como estrelas comuns. Devido a isso, anãs marrons são frias. Os novos objetos descobertos têm temperaturas de 250 a 600 graus Celsius, muito mais frias do que as estrelas comuns. O Sol tem uma temperatura superficial de 5.600 graus Celsius.

A equipe de Pinfield identificou os novos objetos através do WISE da NASA, que examinou o céu no infravermelho médio. Os nomes de objetos são WISE 0013+0634 e WISE 0833+0052, e eles encontram-se na constelação de Peixes e Hydra, respectivamente.

A equipe de cientistas estudou a luz infravermelha emitida por estes objetos, que é incomum em relação às emissões de anãs marrons mais jovens e lentas. As assinaturas espectrais de sua luz reflete suas atmosferas antigas, que são quase inteiramente compostas de hidrogênio em vez de ter elementos mais pesados vistos comumente em estrelas mais jovens.

Os pesquisadores estimam que há 70 bilhões de anãs marrons na Via Láctea, e que objetos velozes e antigos como os descobertos são muito comuns.

Fonte: Royal Astronomical Society