Mostrando postagens com marcador Sistema Solar. Mostrar todas as postagens
Mostrando postagens com marcador Sistema Solar. Mostrar todas as postagens

quarta-feira, 1 de fevereiro de 2023

Descoberta uma dúzia de novas luas em Júpiter

O maior planeta do Sistema Solar agora tem a maior família de luas. 

© NASA (Júpiter)

Desde 20 de dezembro, o Minor Planet Center (MPC) publicou as órbitas de 12 luas de Júpiter não divulgadas anteriormente.

Mais publicações são esperadas, diz Scott Sheppard (Carnegie Institute for Science), que recentemente apresentou observações do sistema joviano feitas entre 2021 e 2022. As descobertas elevam a lista de luas jovianas para 92, um grande aumento de 15% em relação à contagem anterior de 80. 

Os cálculos orbitais do MPC confirmam que os novos objetos estão em órbita de Júpiter. Outros dados das observações de Sheppard até permitiram a recuperação da última lua joviana “perdida”, S/2003 J 10; as observações mais recentes estenderam a trajetória de sua órbita para 18 anos. 

As novas descobertas colocam a contagem da família lunar de Júpiter bem à frente das 83 luas confirmadas de Saturno. No entanto, embora Júpiter possa ter o maior número de luas por enquanto, Saturno pode alcançá-lo. Uma busca por objetos com tamanhos de até cerca de 3 quilômetros de diâmetro que estão se movendo junto com os gigantes gasosos encontrados três vezes mais perto de Saturno do que perto de Júpiter. Os objetos mais numerosos de Saturno podem ter vindo de uma colisão que interrompeu uma lua maior algumas centenas de milhões de anos atrás. Os fragmentos ainda não foram rastreados com cuidado o suficiente para contar como luas.

Todas as luas recém-descobertas são pequenas e distantes, levando mais de 340 dias para orbitar Júpiter. Nove das 12 estão entre as 71 luas ultraperiféricas de Júpiter, cujas órbitas duram mais de 550 dias. Júpiter provavelmente capturou essas luas, como evidenciado por suas órbitas retrógradas, em direção oposta às luas internas. Apenas cinco de todas as luas retrógradas têm mais de 8 quilômetros; as luas menores provavelmente se formaram quando colisões fragmentaram objetos maiores. Três das luas recém-descobertas estão entre outras 13 que orbitam em uma direção prógrada e ficam entre as grandes luas galileanas próximas e as luas retrógradas distantes. Acredita-se que essas luas progressivas tenham se formado onde estão. Elas são mais difíceis de encontrar do que as luas retrógradas mais distantes. Cinco foram encontradas antes de 2000, e apenas mais oito foram descobertos desde então.

Além do interesse em suas origens, essas luas progressivas podem ser alvos adequados para um sobrevoo de uma missão futura. Três missões estão em andamento para o sistema de Júpiter: o Jupiter Icy Moon Explorer (JUICE) da Agência Espacial Europeia (ESA), com lançamento previsto para abril; o Europa Clipper da NASA , previsto para ser lançado no final do ano que vem; e uma missão chinesa sendo considerada para a década de 2030. 

Os objetos prógrados fora das luas galileanas se dividem em dois grupos: as nove luas do grupo Himalia orbitam de 11 a 12 milhões de quilômetros de Júpiter, e a dupla mais distante do grupo Carpo, a 17 milhões de quilômetros. As novas descobertas adicionaram dois dos nove atuais de Himalia e um da dupla de Carpo. As buscas por luas progressivas fora desses grupos não resultaram em nada. No intervalo entre Himalia e as luas da Galileia, há apenas uma lua conhecida: Themisto , um objeto de 9 quilômetros descoberto por Elizabeth Roemer e Charles Kowal em 1975, mas não recuperado até 2000. Ela orbita 7,5 milhões de quilômetros de Júpiter, aproximadamente a meio caminho entre Calisto a 1,9 milhões de km e o grupo de luas progressivas a partir de 11 milhões de km. Isso é um grande buraco.

Foram pesquisados profundamente por objetos perto de Themisto e não foram encontrados mais nada até o momento. O brilho de Júpiter é tão forte que esconderia qualquer objeto menor que 3 quilômetros de diâmetro. Uma única lua prógrada, a Valetudo de 1 km , orbita além do grupo Carpo, a 19 milhões de km de Júpiter. Depois de descobri-la em 2018, Sheppard chamou Valetudo de “estranha” porque sua órbita cruza as de algumas luas retrógradas. Essa situação altamente instável provavelmente levará a colisões frontais que estilhaçarão um ou ambos os objetos. A lua Valetudo pode ser tudo o que resta de uma lua maior que sofreu colisões anteriores. 

Nenhum outro membro foi encontrado até o momento. Descobertas de pequenas luas de Júpiter ou Saturno são normalmente relatadas em Circulares Eletrônicas do Minor Planet Center. Mas esses relatórios levam tempo. Analisar observações e calcular trajetórias é mais complexo para luas planetárias do que para asteroides ou cometas, porque o caminho de uma lua depende tanto da gravidade de seu planeta quanto do Sol. As observações também devem rastrear a lua em uma órbita completa para mostrar que ela realmente orbita o planeta, e as luas externas de Júpiter levam cerca de dois anos para orbitar o planeta. Para asteroides e cometas, por outro lado, algumas semanas de observações podem ser suficientes para prever seu curso, porque seu caminho depende apenas do Sol. 

Podemos esperar mais relatos da descoberta de novas luas nesses planetas gigantes. 

Fonte: Sky & Telescope

Observando o sistema de anéis de Chariklo

Num feito observacional de alta precisão, os cientistas utilizaram uma nova técnica com o telescópio espacial James Webb da NASA para captar as sombras da luz estelar provocadas pelos finos anéis de Chariklo.

© STScI (centauro Chariklo e os seus anéis)

Chariklo é um corpo gelado e pequeno, mas o maior da população conhecida de Centauros, localizado a mais de 3,2 bilhões de quilômetros para além da órbita de Saturno. Chariklo tem apenas 250 quilômetros em diâmetro ou cerca de 51 vezes menor que a Terra, e os seus anéis orbitam a uma distância de cerca de 400 quilômetros do centro do corpo.

Em 2013, Felipe Braga-Ribas e colaboradores, usando telescópios terrestres, descobriram que Chariklo hospeda um sistema de dois anéis finos. Tais anéis eram esperados apenas em torno de grandes planetas como Saturno, Júpiter e Netuno. 

Os astrônomos estavam observando uma estrela quando Chariklo passou à sua frente, bloqueando a luz estelar como tinham previsto, ou seja, um fenômeno de ocultação. Surpreendentemente, a estrela "piscou" duas vezes antes de desaparecer por trás de Chariklo, e "piscou" novamente duas vezes depois da ocultação pelo Centauro. Os piscares foram provocados por dois anéis finos, os primeiros anéis alguma vez detetados em torno de um pequeno objeto do Sistema Solar. 

Esta foi a primeira tentativa de ocultação estelar com o Webb. Muito trabalho árduo foi feito para identificar e refinar as previsões para este acontecimento incomum. No dia 18 de outubro, foi utilizado o instrumento NIRCam (Near-Infrared Camera) do Webb para monitorar atentamente a estrela Gaia DR3 6873519665992128512, e vigiar as quedas de brilho indicando a ocorrência de uma ocultação. 

As sombras produzidas pelos anéis de Chariklo foram claramente detectadas, demonstrando uma nova forma de utilização do Webb para explorar objetos do Sistema Solar. A sombra estelar devido a Chariklo, propriamente dito, foi rastreada fora do alcance do Webb. Este apulso, ou seja, uma passagem próxima sem ocultação, foi exatamente como tinha sido previsto após a última manobra de trajetória do Webb. 

A curva de luz da ocultação do Webb, um gráfico do brilho de um objeto ao longo do tempo, revelou que as observações foram bem-sucedidas! Os anéis foram captados exatamente como previsto. As curvas de luz da ocultação vão fornecer nova ciência para os anéis de Chariklo. 

Os anéis são provavelmente compostos por pequenas partículas de água gelada misturadas com material escuro, detritos de um corpo gelado que colidiu com Chariklo no passado. Chariklo é demasiado pequeno e está muito distante para até o Webb fotografar diretamente os anéis separados do corpo principal, pelo que as ocultações são a única ferramenta que conseguem caracterizar os anéis por si só. 

Pouco depois da ocultação, o Webb visou novamente Chariklo, desta vez para recolher observações da luz solar refletida por Chariklo e pelos seus anéis (programa GTO 1272). O espectro do sistema mostra três bandas de absorção de água gelada no sistema de Chariklo. Os espectros por telescópios terrestres tinham sugerido este gelo, mas a qualidade requintada do espectro obtido pelo Webb revelou pela primeira vez a assinatura clara de gelo cristalino. Dado que as partículas altamente energéticas transformam o gelo de um estado cristalino para um estado amorfo, a detecção de gelo cristalino indica que o sistema de Chariklo sofre microcolisões que ou expõem o material intacto ou desencadeiam processos de cristalização. 

A maior parte da luz refletida no espectro é do próprio Chariklo: os modelos sugerem que a área dos anéis, tal como observada pelo Webb durante estas observações, corresponde provavelmente a um-quinto da área do próprio corpo. 

A observação da curva de luz da ocultação e as observações espectroscópicas abrem a porta para um novo meio de caracterizar objetos pequenos no Sistema Solar distante nos próximos anos. Com a alta sensibilidade e capacidade infravermelha do Webb, os cientistas podem utilizar o retorno científico único fornecido pelas ocultações e melhorar estas medições com espectros quase contemporâneos. Tais ferramentas vão constituir um trunfo tremendo para os cientistas que estudam corpos pequenos e distantes no nosso Sistema Solar. 

Veja mais detalhes em Primeiro sistema de anéis descoberto em torno de um asteroide.

Fonte: Space Telescope Science Institute

sexta-feira, 25 de novembro de 2022

Vulcanismo extremo pode ter alterado o clima de Vênus

Um novo estudo da NASA sugere que a atividade vulcânica, que durou centenas a milhares de séculos e que liberou quantidades massivas de material, pode ter ajudado a transformar Vênus de um mundo temperado e úmido para a estufa ácida que é hoje.

© NASA / JPL (Maat Mons)

Maat Mons é apresentado nesta perspetiva tridimensional, gerada por computador, da superfície de Vênus. O ponto de vista situa-se a 634 quilômetros para norte de Maat Mons, a uma altitude de 3 quilômetros. Os fluxos de lava estendem-se por centenas de quilômetros através das planícies fraturadas vistas em primeiro plano, até à base de Maat Mons. Os dados de radar de abertura sintética da missão Magellan da NASA foram combinados com altimetria de radar para desenvolver um mapa tridimensional da superfície. A escala vertical nesta perspectiva foi exagerada 10 vezes.

O estudo também discute estas "grandes províncias ígneas" na história da Terra que causaram várias extinções em massa no nosso próprio planeta há milhões de anos atrás. As grandes províncias ígneas são os produtos de períodos de vulcanismo em grande escala que duram dezenas de milhares ou até mesmo centenas de milhares de anos. Podem depositar cerca de 500.000 quilômetros cúbicos de rocha vulcânica à superfície. No limite superior, poderá significar rocha fundida suficiente para enterrar toda a Península Ibérica a quase um quilômetro de profundidade.

Hoje, Vênus tem temperaturas superficiais  em média de cerca de 464ºC e uma atmosfera com cerca de 90 vezes a pressão da Terra ao nível do mar. De acordo com o estudo, as enormes erupções vulcânicas podem ter dado início a estas condições infernais na história antiga de Vênus. Em particular, a ocorrência de várias destas erupções num curto espaço de tempo geológico (um milhão de anos) poderia ter levado a um efeito de estufa que deu início à transição do planeta de úmido e temperado para quente e seco. Oitenta por cento da superfície total de Vênus está coberta por grandes campos de rocha vulcânica solidificada.

A vida na Terra sofreu pelo menos cinco grandes eventos de extinção em massa desde a origem da vida multicelular há cerca de 540 milhões de anos, cada um dos quais dizimando mais de 50% da vida animal em todo o planeta. Segundo este estudo e outros anteriores, a maioria destes eventos de extinção foram causados ou exacerbados pelos tipos de erupções que produzem grandes províncias ígneas. No caso da Terra, as perturbações climáticas provocadas por estes eventos não foram suficientes para causar um efeito de estufa extremo como ocorreu em Vênus, por razões ainda desconhecidas. 

As próximas missões da NASA a Vênus, programadas para o final desta década, a missão DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) e a missão VERITAS (Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy), visam estudar a origem, história e estado atual de Vênus em detalhes sem precedentes. 

A missão DAVINCI precederá a VERITAS, um orbitador concebido para analisar a superfície e o interior de Vênus, para melhor compreender a sua história vulcânica e volátil e, assim, o percurso de Vênus até ao seu estado atual. Os dados de ambas as missões podem ajudar os cientistas a melhor determinar o registo exato de como Vênus pode ter passado de úmido e temperado para seco e escaldante. Pode também ajudar a compreender melhor como o vulcanismo aqui na Terra afetou a vida no passado e como poderá continuar a fazê-lo no futuro. 

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: NASA

quarta-feira, 2 de novembro de 2022

Um impressionante impacto de meteoroide em Marte

O "lander" InSight da NASA registou um sismo marciano de magnitude 4 no dia 24 de dezembro do ano passado, mas só mais tarde foi descoberta a causa deste sismo: o impacto de um meteoroide, estimado como um dos maiores vistos em Marte desde que a NASA começou a explorar o cosmos.


© NASA (cratera na região Amazonis Planitia em Marte)

Além disso, a colisão com a superfície escavou pedaços de gelo do tamanho de pedregulhos mais perto do equador marciano do que alguma vez foi encontrado, uma descoberta com implicações para os planos futuros da NASA de enviar astronautas para o Planeta Vermelho.

Os cientistas determinaram que o sismo resultou do impacto de um meteoroide quando olharam para o antes e depois em imagens da MRO (Mars Reconnaissance Orbiter) da NASA e avistaram uma nova cratera. 

Estima-se que o meteoroide tenha tido entre 5 a 12 metros, suficientemente pequeno para ter ardido na atmosfera terrestre, mas não na fina atmosfera de Marte, que tem apenas 1% da sua densidade. O impacto, numa região chamada Amazonis Planitia, escavou uma cratera com cerca de 150 metros de diâmetro e 21 metros de profundidade. Alguns dos detritos ejetados pelo impacto voaram até 37 quilômetros de distância.

Com imagens e dados sísmicos documentando o evento, pensa-se que esta é uma das maiores crateras cuja formação foi já testemunhada no Sistema Solar. Existem muitas crateras maiores no Planeta Vermelho, mas são significativamente mais velhas e são anteriores a qualquer missão marciana.

O módulo InSight tem visto a sua energia diminuir drasticamente nos últimos meses devido à acumulação de poeira nos seus painéis solares. Espera-se agora que o módulo seja desligado nas próximas seis semanas, pondo fim à ciência da missão.

O InSight está estudando a crosta, o manto e o núcleo do planeta. As ondas sísmicas são fundamentais para a missão e revelaram o tamanho, profundidade e composição das camadas interiores de Marte. Desde que pousou em novembro de 2018, o InSight detectou 1.318 sismos marcianos, incluindo vários provocados por impactos de meteoroides menores. Mas o sismo resultante do impacto de dezembro passado foi o primeiro observado a ter ondas superficiais, uma espécie de onda sísmica que ondula ao longo do topo da crosta de um planeta.

Dois artigos científicos relacionados ao impacto foram publicados na revista Science

Fonte: Jet Propulsion Laboratory

Vestígios de um antigo oceano descobertos em Marte

Um conjunto recentemente divulgado de mapas topográficos fornece novas evidências para um antigo oceano no norte de Marte.

© NASA (Aeolis Dorsa em Marte)

Os mapas oferecem o caso mais forte de que o planeta outrora teve uma subida do nível do mar consistente com um prolongado clima quente e úmido, e não a paisagem dura e gelada que existe hoje em dia.

Isto fornece como era o clima antigo e a sua evolução. Com base nestas descobertas, sabe-se que deve ter havido um período que era suficientemente quente e a atmosfera era suficientemente espessa para suportar tanta água líquida de uma só vez. Há muito que se debate, na comunidade científica, se Marte já teve um oceano no seu hemisfério norte de baixa elevação. 

Usando dados topográficos, os pesquisadores conseguiram mostrar evidências definitivas de uma linha costeira com cerca de 3,5 bilhões de anos com uma acumulação sedimentar substancial, de pelo menos 900 metros de espessura, que cobre centenas de milhares de quilômetros quadrados.

A grande novidade deste estudo foi pensar em Marte em termos da sua estratigrafia e do seu registo sedimentar. Na Terra, traçamos a história dos cursos de água olhando para os sedimentos que se depositam ao longo do tempo, ou seja, a estratigrafia, a ideia de que a água transporta sedimentos e que se podem medir as mudanças na Terra através da compreensão da forma como os sedimentos se acumulam.

A equipe utilizou software desenvolvido pelo USGS (United States Geological Survey) para mapear dados da NASA e do instrumento MOLA (Mars Orbiter Laser Altimeter) da sonda Mars Global Surveyor. Descobriram mais de 6.500 quilômetros de cristas fluviais e agruparam-nas em 20 sistemas para mostrar que são provavelmente deltas de rios ou canais submarinos, os remanescentes de uma antiga linha costeira marciana.

Elementos de formações rochosas, tais como espessuras do sistema de cristas, elevações, localizações e possíveis direções de fluxo sedimentar ajudaram na compreensão da evolução da paleogeografia da região. A área que antes era oceânica é agora conhecida como Aeolis Dorsa e contém a mais densa coleção de cristas fluviais do planeta. 

O nível do mar subiu significativamente. As rochas estavam sendo depositadas ao longo das suas bacias a um ritmo acelerado. Havia muitas mudanças acontecendo ali. Na Terra, as antigas bacias sedimentares contêm os registos estratigráficos da evolução do clima e da vida. Se os cientistas quiserem encontrar um registo de vida em Marte, um oceano tão grande como o que outrora cobriu Aeolis Dorsa seria o local mais lógico para começar.

Se houvesse marés no antigo Marte, teriam existido neste local, trazendo suavemente água para dentro e para fora. Este é exatamente o tipo de lugar onde a antiga vida marciana poderia ter evoluído. 

Um estudo futuro na revista Journal of Sedimentary Research mostra que vários afloramentos visitados pelo rover Curiosity eram provavelmente estratos sedimentares de antigas barras de rios. Outro artigo publicado na revista Nature Geoscience aplica uma técnica de imagem acústica, usada para ver estratigrafia sob o fundo do mar do Golfo do México, com um modelo de erosão de uma bacia marciana. 

Os pesquisadores determinaram que os relevos chamados cristas fluviais, encontradas amplamente em Marte, são provavelmente antigos depósitos fluviais erodidos de grandes bacias semelhantes a Aeolis Dorsa.

Um artigo foi publicado no periódico Journal of Geophysical Research: Planets

Fonte: Pennsylvania State University

sábado, 22 de outubro de 2022

Uma nova teoria explica o motivo de Urano girar de lado

Um dos fenômenos mais bizarros do nosso sistema solar é a maneira estranha como Urano gira de lado. Isso é um quebra-cabeça porque todos os outros planetas giram na vertical.

© Gerhald (lua migratória deslocou o eixo de rotação de Urano)

O que poderia ter acontecido para tornar Urano tão diferente, particularmente de seu vizinho Netuno, que se formou aproximadamente ao mesmo tempo em circunstâncias semelhantes? O pensamento convencional sustenta que logo após a formação do Sistema Solar, Urano foi impactado por uma série de colisões com alguns dos numerosos planetesimais que varreram a região naquela época. O problema com essa teoria é que Netuno sobreviveu ileso às mesmas condições. Isso sugere que algum outro processo foi responsável pelo comportamento bizarro de Urano. 

Mas o que poderia ser? Agora temos uma resposta potencial graças ao trabalho de Melaine Saillenfest, do Observatório de Paris, na França, e colegas, que pensam que Urano poderia ter se inclinado de outra maneira. Eles dizem que a inclinação pode ser explicada se Urano já teve um grande satélite antigo cuja órbita interagiu gravitacionalmente com a própria rotação do planeta de uma maneira que o virou lentamente de lado. 

Os astrônomos há muito perceberam que a relação gravitacional entre planetas e seus satélites pode ser complexa e duradoura. De fato, pequenos satélites podem ter um impacto significativo em seus hospedeiros maiores por seus repetidos empurrões gravitacionais enquanto orbitam. Quando os empurrões ocorrem em uma frequência que ressoa com uma propriedade do planeta hospedeiro, os efeitos podem ser significativamente ampliados, particularmente quando o satélite está se afastando lentamente de seu hospedeiro. 

Nota-se que a Lua está migrando lentamente para longe da Terra a uma taxa de cerca de 3,8 centímetros por ano. Mas observações recentes revelaram que os satélites em torno de Júpiter e Saturno também estão migrando. Nessas condições, os empurrões gravitacionais de um grande satélite podem ter ressoado com a precessão do eixo de rotação de Urano, fazendo com que o planeta se inclinasse gradualmente para o lado. 

A equipe simulou o processo com Urano para determinar as condições sob as quais isso poderia ter ocorrido. Acontece que um satélite com apenas um milésimo da massa de Urano poderia ter inclinado o planeta enquanto migrava para uma distância de cerca de 10 vezes o raio de Urano. Para atingir a inclinação em menos do que a idade do sistema solar, a taxa média de deriva do satélite deve ser comparável à atual expansão orbital da Lua.

As simulações da equipe mostram que, uma vez que o planeta se inclina além de 80 graus, seu comportamento e a órbita do satélite se tornam caóticos e imprevisíveis a ponto de o satélite poder colidir com Urano. No entanto, quando isso acontece, o comportamento de Urano se estabiliza e seu giro fica travado nesse ângulo inclinado altamente incomum. Surpreendentemente, Urano hoje não tem um grande satélite, ao contrário de Netuno, que tem Tritão, Saturno, que tem Titã, e Júpiter, que tem Ganimedes e outros.

Essa é a primeira vez que um único mecanismo é capaz de inclinar Urano e fossilizar seu eixo de rotação em seu estado final sem invocar um impacto gigante ou outros fenômenos externos. As condições necessárias para a inclinação parecem amplamente realistas, mas resta determinar se Urano poderia ter hospedado um grande satélite primordial sujeito a uma migração substancial de maré. 

Uma coisa que pode ajudar a entender esse cenário é uma melhor compreensão da migração dos satélites de Urano hoje, bem como suas outras propriedades. Para Saturno e Júpiter, muitos desses detalhes tiveram que esperar a visita de várias sondas em órbita, como Galileu, Juno e Cassini. Apenas uma nave espacial fez a jornada solitária para Urano. A Voyager 2 passou em janeiro de 1986 ao sair do Sistema Solar.

E embora várias agências espaciais tenham planos de enviar um orbitador, nenhuma missão foi aprovada. Até que sejam, os astrônomos terão que se contentar com as observações cada vez mais detalhadas da Terra e do telescópio espacial James Webb.

Fonte: Astronomy

sexta-feira, 23 de setembro de 2022

A visão mais nítida dos anéis de Netuno

O telescópio espacial James Webb está mostrando as suas capacidades mais perto de casa com a sua primeira imagem de Netuno.


© STScI (anéis de Netuno)

O Webb não só captou a visão mais clara dos anéis deste peculiar planeta em mais de 30 anos, como as suas câmaras estão também revelando o gigante gelado sob uma luz totalmente nova.

O aspecto mais impressionante da nova imagem do Webb é a visão nítida dos anéis dinâmicos do planeta, alguns dos quais não têm sido vistos de todo, quanto mais com este detalhe, desde a passagem da Voyager 2 em 1989.

Além dos vários anéis estreitos e brilhantes, as imagens do Webb mostram claramente as bandas de poeira mais fracas de Netuno. A qualidade de imagem extremamente estável e precisa do Webb também permite detectar estes anéis fracos muito próximos de Netuno.

Netuno tem fascinado e deixado os pesquisadores perplexos desde a sua descoberta em 1846. Localizado 30 vezes mais longe do Sol do que a Terra, Netuno orbita numa das áreas mais sombrias do nosso Sistema Solar. A esta distância extrema, o Sol é tão pequeno e tênue que o meio-dia em Netuno é semelhante a um fraco crepúsculo na Terra. 

Este planeta é caracterizado como um gigante de gelo devido à composição química do seu interior. Em comparação com os gigantes gasosos Júpiter e Saturno, Netuno é muito mais rico em elementos mais pesados do que o hidrogênio e o hélio. Isto é aparente no bem conhecido aspecto azul de Netuno nas imagens do telescópio espacial Hubble em comprimentos de onda visíveis, provocado por pequenas quantidades de metano gasoso. 

O instrumento NIRCam (Near-Infrared Camera) do Webb capta objetos no infravermelho próximo, de 0,6 a 5 micrômetros, pelo que Netuno não aparece azul. De fato, o gás metano é tão fortemente absorvido que o planeta é bastante escuro nos comprimentos de onda do Webb, exceto quando existem nuvens de alta altitude. Tais nuvens de metano gelado são proeminentes como estrias brilhantes e manchas, que refletem a luz solar antes de ser absorvida pelo gás metano. 

Imagens de outros observatórios têm registado estas características de nuvens em rápida evolução ao longo dos anos. Mais sutilmente, uma linha fina de luminosidade em torno do equador do planeta pode ser uma assinatura visual da circulação atmosférica global que alimenta os ventos e tempestades de Netuno. A atmosfera desce e aquece no equador, e assim brilha mais em comprimentos de onda infravermelhos do que os gases mais frios e circundantes. 

A órbita de 164 anos de Netuno significa que o seu polo norte, no topo desta imagem, está justamente fora de vista para os astrônomos, mas as imagens do Webb sugerem um brilho intrigante nesta área. 

Um vórtice previamente conhecido no polo sul é evidente na imagem do Webb, mas pela primeira vez o telescópio revelou uma banda contínua de nuvens à sua volta. O Webb também fotografou sete das 14 luas conhecidas de Netuno.

© STScI (Tritão e Netuno)

Dominando este retrato de Netuno pelo Webb está um ponto de luz muito brilhante ostentando os picos de difração vistos em muitas das imagens do Webb; não é uma estrela, mas a lua mais incomum de Netuno, Tritão. Coberta por uma camada gelada de nitrogênio condensado, Tritão reflete uma média de 70% da luz solar que a atinge. É bem mais brilhante do que Netuno porque a atmosfera do planeta é escurecida pela absorção de metano nos comprimentos de onda do Webb. Tritão orbita Netuno numa órbita bizarra (retrógrada), levando a especulação que esta lua era na realidade um objeto do Cinturão de Kuiper que foi gravitacionalmente capturado por Netuno. Estão planejados estudos adicionais de Tritão e Netuno para o próximo ano. 

Fonte: ESA

A inclinação e os anéis de Saturno podem ter surgido de antiga lua

Girando em volta do equador do planeta, os anéis de Saturno são uma prova óbvia de que o planeta tem um eixo de rotação inclinado.

© NASA (anéis de Saturno)

O gigante gira num ângulo de 26,7º em relação ao plano em que orbita o Sol. Os astrônomos há muito que suspeitam que esta inclinação vem de interações gravitacionais com o seu vizinho Netuno, à medida que a inclinação de Saturno efetua precessão, como um pião, quase ao mesmo ritmo que a órbita de Netuno. 

Mas um novo estudo de modelagem realizada por astrônomos do MIT (Massachusetts Institute of Technology) e de outras instituições descobriu que, embora os dois planetas possam ter estado uma vez em sincronia, Saturno escapou desde então à atração de Netuno. 

O que é que foi responsável por este realinhamento planetário? A equipe tem uma hipótese meticulosamente testada: uma lua em falta. A equipe propõe que Saturno, que hoje acolhe 83 luas, já acolheu pelo menos mais uma, um satélite extra a que deram o nome de Crisálida.

Juntamente com as demais luas, os pesquisadores sugerem que Crisálida orbitou Saturno durante vários bilhões de anos, puxando o planeta de uma forma que manteve a sua inclinação, ou "obliquidade", em ressonância com Netuno. Mas há cerca de 160 milhões de anos, Crisálida tornou-se instável e aproximou-se demasiado do seu planeta num encontro rasante que dilacerou o satélite. A perda da lua foi suficiente para retirar Saturno do alcance de Netuno e para deixá-lo com a atual inclinação. 

Além disso, os pesquisadores supõem que, embora a maior parte do corpo estilhaçado de Crisálida possa ter colidido com Saturno, uma fração dos seus detritos pode ter permanecido em órbita, eventualmente quebrando-se em pequenos pedaços gelados para formar os famosos anéis do planeta. 

O satélite desaparecido pode explicar dois mistérios de longa data: a atual inclinação de Saturno e a idade dos seus anéis, anteriormente estimada em cerca de 100 milhões de anos, muito mais jovens do que o próprio planeta. 

No início dos anos 2.000, os cientistas propuseram a ideia de que o eixo inclinado de Saturno é o resultado do planeta estar preso numa ressonância, ou associação gravitacional, com Netuno. Mas as observações feitas pela nave espacial Cassini da NASA, que orbitou Saturno de 2004 a 2017, colocaram uma nova reviravolta no problema. Os cientistas descobriram que Titã, o maior satélite de Saturno, estava se afastando de Saturno a uma velocidade de cerca de 11 centímetros por ano. 

A rápida migração de Titã, e a sua atração gravitacional, levaram os cientistas a concluir que a lua era provavelmente responsável pela inclinação e manutenção de Saturno em ressonância com Netuno. Mas esta explicação depende de um grande desconhecido: o momento de inércia de Saturno, que é a forma como a massa é distribuída no interior do planeta. A inclinação de Saturno poderia comportar-se de forma diferente, dependendo de a matéria estar mais concentrada no seu núcleo ou mais para a superfície.

Para progredir no problema, foi determinado o momento de inércia de Saturno. O campo gravitacional pode ser utilizado para determinar a distribuição de massa no planeta. Foi modelado o interior de Saturno e identificaram uma distribuição de massa que correspondia ao campo gravitacional que a sonda Cassini observou. Surpreendentemente, descobriram que este momento de inércia recentemente identificado colocou Saturno perto, mas mesmo para lá da ressonância com Netuno. Os planetas podem ter estado uma vez em sincronia, mas já não estão. 

A equipe realizou primeiro simulações para fazer evoluir a dinâmica orbital de Saturno e das suas luas para trás no tempo, para ver se alguma instabilidade natural entre os satélites existentes poderia ter influenciado a inclinação do planeta. Esta investigação não deu em nada. Assim, os pesquisadores reexaminaram as equações matemáticas que descrevem a precessão de um planeta, que é como o eixo de rotação de um planeta muda ao longo do tempo. Um termo nesta equação tem contribuições de todos os satélites. Se um satélite fosse retirado desta soma, poderia afetar a precessão do planeta. 

A questão era, quão massivo teria de ser aquele satélite, e que dinâmica teria de ter para tirar Saturno da ressonância com Netuno? Foram efetuadas simulações para determinar as propriedades de um satélite, tais como a sua massa e raio orbital, e a dinâmica orbital que seria necessária para tirar Saturno da ressonância.

Conclui-se que a atual inclinação de Saturno é o resultado da ressonância com Netuno e que a perda do satélite, Crisálida, que tinha aproximadamente o tamanho de Jápeto, a terceira maior lua de Saturno, permitiu-lhe escapar à ressonância.

A cerca de 200 a 100 milhões de anos, Crisálida entrou numa zona orbital caótica, passou por uma série de encontros próximos com Jápeto e Titã e acabou por se aproximar demasiado de Saturno, num encontro rasante que rasgou o satélite em pedaços, deixando uma pequena fração orbitando o planeta como um anel de escombros. A perda de Crisálida, explica a precessão de Saturno e a sua atual inclinação, bem como a formação tardia dos seus anéis.

Um artigo foi publicado na revista Science.

Fonte: Massachusetts Institute of Technology

domingo, 12 de junho de 2022

Novas semelhanças entre a Terra e Titã

A lua de Saturno, Titã, é bastante parecida com a Terra, pois também tem rios e mares, só que eles são compostos de metano e etano líquidos em vez de água.

© NASA/Cassini (Titã)

Astrônomos descobriram como o ciclo de líquido no satélite é similar com o do nosso planeta, mostrando semelhanças antes desconhecidas.

A pesquisa foi liderada por Mathieu Lapôtre, geólogo da Universidade de Stanford, nos Estados Unidos. O estudo revela de que modo o ciclo de transporte de líquido impulsiona grãos sobre a superfície de Titã. 

A atmosfera da maior lua de Saturno é tomada por ventos de nitrogênio que formam dunas de areia de hidrocarbonetos. Os cientistas identificaram o processo que permite a formação de tais grãos e até mesmo de rochas em Titã, dependendo da frequência com que os ventos sopram e os riachos fluem. Com isso, eles acreditam ter descoberto como todos os ambientes sedimentares da lua se formaram. “Se entendermos como as diferentes peças do quebra-cabeça se encaixam e sua mecânica, podemos começar a usar as formas de relevo deixadas por esses processos sedimentares para dizer algo sobre o clima ou a história geológica de Titã, e como elas podem afetar a perspectiva para a vida na lua,” aponta Lapôtre. 

Primeiro, os pesquisadores buscaram compreender como os compostos orgânicos básicos de Titã — que acredita-se serem muito mais frágeis do que grãos de silicato inorgânicos na Terra — podem se transformar em estruturas maiores em vez de virarem poeira. Normalmente, conforme os ventos transportam os grãos, eles colidem uns com os outros e com a superfície. Essas colisões tendem a diminuir o tamanho do grão. Mas qual mecanismo poderia deixar grãos em tamanho estável? 

Ao analisarem ooides, sedimentos esféricos de mares tropicais rasos da Terra, os cientistas acreditam ter encontrado uma resposta: esses sedimentos podem passar por uma precipitação química, que permite que eles cresçam, apesar da erosão de ondas e tempestades. Um processo similar também pode estar ocorrendo no satélite de Saturno. “Nós levantamos a hipótese de que a sinterização, que envolve grãos vizinhos se fundindo em uma única peça, poderia contrabalançar a erosão [em Titã] quando os ventos transportam os grãos,” explica Lapôtre. 

Ao averiguarem dados da sonda Cassini, da NASA, os autores do estudo viram que os ventos são mais comuns perto do equador da lua, onde ocorre menos sinterização, formando, portanto, grãos de areia mais finos, componente crítico para formar dunas. Já em latitudes médias, o processo químico cria grãos mais grossos, eventualmente originando rochas que compõem planícies. Os grãos de areia também formam labirintos perto dos polos, onde há maior frequência de rios e tempestades, tornando os sedimentos mais propensos a serem transportados pelo líquido do que pelo vento. 

“Estamos mostrando que em Titã, assim como na Terra e como costumava ser em Marte, temos um ciclo sedimentar ativo que pode explicar a distribuição latitudinal das paisagens. É muito fascinante pensar em como existe esse mundo alternativo tão distante, onde as coisas são tão diferentes, mas tão semelhantes,” complementa Lapôtre. 

Um artigo foi publicado no periódico Geophysical Research Letters

Fonte: Revista Galileu

terça-feira, 7 de junho de 2022

A diferença de cores entre Urano e Netuno

Os astrônomos pensam agora saber porque é que Urano e Netuno têm cores diferentes. Usando observações do telescópio espacial Hubble, bem como do telescópio Gemini North e do IRTF (Infrared Telescope Facility) da NASA, os pesquisadores desenvolveram um modelo atmosférico único que corresponde às observações de ambos os planetas.

© NASA/ESA (Urano e Netuno)

O telescópio espacial Hubble mostra, na imagem à esquerda, em 25 de outubro de 2021, o brilhante "capô" polar no norte do planeta Urano. E na imagem à direita, obtida dia 7 de setembro de 2021, o telescópio espacial Hubble mostra Netuno com o hemisfério norte escurecido.

O modelo revela que o excesso de neblina em Urano acumula-se na atmosfera estagnada e faz com que pareça ter um tom mais leve do que Netuno. Os planetas Netuno e Urano têm muito em comum, possuem massas, tamanhos e composições atmosféricas semelhantes, mas as suas aparências são notavelmente diferentes.

Em comprimentos de onda visíveis, Netuno tem um tom azul rico e profundo, enquanto Urano tem um tom ciano nitidamente pálido. Os astrônomos têm agora uma explicação para o fato de os dois planetas terem cores diferentes. Novas observações sugerem que uma camada de neblina concentrada, presente em ambos os planetas, é mais espessa em Urano do que em Netuno e, portanto, "branqueia" a aparência de Urano mais do que a de Netuno. Se não houvesse névoa nas atmosferas de Netuno e Urano, ambos seriam quase igualmente azuis como resultado da luz azul espalhada nas suas atmosferas.

As cores vermelhas da luz do Sol, espalhadas pela neblina e pelas moléculas de ar, são mais absorvidas pelas moléculas de metano nas atmosferas dos planetas. Este processo, conhecido como dispersão de Rayleigh, é o que torna o céu azul aqui na Terra, embora na nossa atmosfera a luz solar seja na sua maioria dispersa por moléculas de nitrogênio em vez de moléculas de hidrogênio. A dispersão de Rayleigh ocorre predominantemente em comprimentos de onda mais curtos e azuis.

Esta conclusão provém de um modelo que uma equipe internacional liderada por Patrick Irwin, professor de física planetária na Universidade de Oxford, desenvolveu para descrever as camadas de aerossol nas atmosferas de Netuno e Urano.

Pesquisas anteriores das atmosferas superiores destes planetas focaram-se na aparência da atmosfera apenas em comprimentos de onda específicos. No entanto, este novo modelo consiste em múltiplas camadas atmosféricas e corresponde a observações de ambos os planetas através de uma vasta gama de comprimentos de onda. O novo modelo também inclui partículas de neblina dentro de camadas mais profundas que anteriormente se pensava conterem apenas nuvens geladas de metano e sulfureto de hidrogênio.

O modelo consiste em três camadas de aerossóis em diferentes alturas. A camada chave que afeta as cores é a camada intermediária, que é uma camada de partículas de névoa que é mais espessa em Urano do que em Netuno. A equipa suspeita que, em ambos os planetas, o metano gelado condensa-se nas partículas desta camada, puxando as partículas mais para dentro da atmosfera numa chuva de neve de metano. Dado que Netuno tem uma atmosfera mais ativa e turbulenta do que Urano, é possível que a atmosfera de Netuno é mais eficiente em agitar as partículas de metano para a camada de neblina e a produzir esta neve. Isto remove mais da névoa e mantém a camada de névoa de Netuno mais fina do que em Urano, com o resultado de que a cor azul de Netuno parece mais forte.

O telescópio espacial Hubble fornece excelentes vistas das distintas tempestades atmosféricas partilhadas pelos dois planetas conhecidas como "manchas escuras", que são conhecidas há muitos anos. Não se sabia exatamente que camadas atmosféricas eram perturbadas pelas manchas escuras para as tornar visíveis ao Hubble. O modelo produzido pela equipe explica o que dá uma aparência escura às manchas e porque são mais facilmente detectáveis em Urano em comparação com Netuno. Os pesquisadores pensavam que um escurecimento dos aerossóis na camada mais profunda do seu modelo produziria manchas escuras semelhantes às vistas em Netuno e talvez em Urano.

Um artigo foi publicado na revista Journal of Geophysical Research: Planets.

Fonte: ESA

sábado, 7 de maio de 2022

Eclipse solar em Marte provocado pela lua Fobos

O rover Perseverance da NASA registrou um eclipse solar em Marte.


© NASA (eclipse solar provocado pela lua Fobos)

Veja o vídeo: Eclipse solar provocado pela lua Fobos.

No vídeo a lua Fobos, um dos dois satélites naturais do Planeta Vemelho, aparece passando em frente ao Sol.

O eclipse foi registrado no dia 2 de abril pela câmera Mastcam-Z do Perseverance. O fenômeno durou apenas 40 segundos, pouco comparado ao tempo de um eclipse solar observado na Terra e causado por nossa Lua.

Estas observações ajudam os cientistas planetários a entenderem mais sobre a órbita da lua marciana e como sua gravidade muda a crosta do planeta.

A outra lua marciana é Deimos. Fobos é o mais próximo satélite natural de Marte. Com formato de uma grande batata, Fobos é 157 vezes menor do que a nossa Lua, mas é maior que Deimos. Fobos tem um raio médio de 11,1 km, sendo 7,4 vezes mais massivo que Deimos.

Fobos é, em todo o Sistema Solar, o satélite que orbita mais próximo do seu planeta, com menos de seis mil quilômetros acima da superfície marciana e orbita Marte três vezes ao dia. Encontra-se abaixo da órbita síncrona para Marte. Fobos demora cerca de 7,65 horas para completar uma rotação, que corresponde ao mesmo tempo que leva para completar uma volta ao redor de Marte. Como consequência disso, Fobos tem sempre a mesma face voltado para Marte. Enquanto a lua orbita Marte, sua gravidade exerce pequenas forças de maré no interior do planeta, mas esta dinâmica também altera a órbita de Fobos, que está se aproximando da superfície marciana e a colisão deverá acontecer em dezenas de milhões de anos.

As novas imagens fazem parte de um longo registro de eclipses marcianos iniciado pela NASA em 2004. 

Além dos detalhes de Fobos, também é possível observar as manchas na superfície do Sol. 

Fonte: NASA

terça-feira, 3 de maio de 2022

Cauda de sódio em Mercúrio

Isso não é um cometa.

© Sebastian Voltmer (cauda em Mercúrio)

Abaixo do aglomerado estelar das Plêiades está na verdade um planeta: Mercúrio.

Longas exposições do planeta mais interno do nosso Sistema Solar podem revelar algo inesperado: uma cauda. Caudas, é claro, são geralmente associadas a cometas. A fina atmosfera de Mercúrio contém pequenas quantidades de sódio que brilham quando excitadas pela luz do Sol. A luz solar também libera essas moléculas da superfície de Mercúrio e as afasta. O brilho amarelo do sódio, em particular, é relativamente brilhante. 

Na imagem, o planeta Mercúrio e sua cauda de sódio são visíveis em uma fotografia profunda tirada na semana passada de La Palma, Espanha, através de um filtro que transmite principalmente luz amarela emitida pelo sódio. 

Prevista pela primeira vez na década de 1980, a cauda de Mercúrio foi descoberta em 2001. Muitos detalhes da cauda foram revelados em múltiplas observações pela espaçonave robótica Messenger da NASA que orbitou Mercúrio entre 2011 e 2015.

Fonte: NASA

quarta-feira, 13 de abril de 2022

Estudo revela a origem do planeta anão Ceres

Um estudo, que contou com a colaboração do astrônomo do Observatório Nacional (ON/MCTI), Dr. Rodney Gomes, revelou a origem do planeta anão Ceres, o maior objeto do Cinturão de Asteroides localizado entre Marte e Júpiter.

© ESO/L. Calçada (Ceres)

De acordo com os pesquisadores, o planeta anão foi formado na zona mais fria do Sistema Solar, que se estende além da órbita de Júpiter. Posteriormente, Ceres teria sido lançado para o Cinturão de Asteroides, onde permanece até hoje. 

O que levou os cientistas a essa conclusão foi a composição diferenciada de Ceres em relação aos objetos vizinhos. O planeta anão tem um formato aproximadamente esférico, com o núcleo sendo provavelmente composto de ferro e silicato. Seu diâmetro é de quase mil quilômetros, mas a massa de Ceres não é suficientemente grande para segurar, por atração gravitacional, uma atmosfera.

Contudo, o que realmente destaca Ceres dos demais objetos é seu manto de gelo de amônia e água, que evapora com a incidência da luz solar, formando uma névoa que se dispersa no exterior. Como a maioria dos corpos do cinturão não tem amônia, é provável que Ceres tenha sido formado fora do Cinturão, em uma órbita além de Saturno, onde a amônia era abundante. Depois, devido à instabilidade gravitacional provocada pela formação de Júpiter e Saturno, Ceres teria sido “puxado” para a zona média do Cinturão.

“A presença de gelo de amônia é uma forte evidência observacional de que Ceres possa ter sido formado na região mais fria do Sistema Solar, além da chamada Linha de Gelo, onde as temperaturas eram baixas o suficiente para ocorrer condensação e fusão de água e substâncias voláteis, como monóxido de carbono, dióxido de carbono e amônia,” afirmou o autor principal do estudo Rafael Ribeiro de Sousa, professor da Universidade Estadual Paulista (Unesp). 

Quando o Sistema Solar estava em formação, há cerca de 4,5 bilhões de anos, essa Linha Gel, que hoje está próxima da órbita de Júpiter, variou de posição, de acordo com a evolução do disco de gás protoplanetário (disco composto por 99% de gás e 1% de poeira). Mais precisamente, a perturbação gravitacional provocada pelo crescimento dos planetas pode ter alterado a densidade, a pressão e a temperatura do disco, deslocando a Linha de Gelo e fazendo com que planetas em crescimento migrassem para órbitas mais próximas do Sol.

Para chegar a esta conclusão, os cientistas realizaram simulações computacionais da fase de formação dos planetas gigantes, considerando as presenças de Júpiter, Saturno, embriões planetários (precursores de Urano e Netuno) e vários objetos similares em tamanho e composição química a Ceres. Nas simulações, eles verificaram que a fase de formação dos planetas gigantes caracterizou-se por colisões gigantescas entre os precursores de Urano e Netuno e pela ejeção de planetas para fora do Sistema Solar. Além disso, a perturbação gravitacional espalhou objetos similares a Ceres por toda a parte, sendo que alguns provavelmente alcançaram a região do Cinturão de Asteroides, adquirindo órbitas estáveis.

“Nosso principal resultado indica que, no passado, havia no mínimo 3.500 objetos do tipo Ceres, além da órbita de Saturno. E que, com esse número de objetos, nosso modelo mostrou que um deles conseguiu ser transportado e capturado no Cinturão de Asteroides, em uma órbita muito similar à órbita atual de Ceres,” destacou o professor Ribeiro de Sousa. 

O estudo, então, corrobora pesquisas anteriores que já haviam estimado o número de 3.500 objetos de tipo Ceres a partir da observação de crateras e de tamanhos de outras populações de astros situadas além de Saturno.

“Com nosso cenário, fomos capazes de confirmar tal número e explicar as propriedades orbitais e químicas de Ceres. Esse trabalho conta um ponto a favor dos modelos mais recentes de formação do Sistema Solar,” resume Ribeiro de Sousa.

O Cinturão de Asteroides é uma espécie de laboratório, pois guarda informações do que teria sido a evolução do Sistema Solar primitivo. “Nos primórdios do Sistema Solar, interagiam gravitacionalmente objetos maiores chamados proto-planetas e objetos menores, denominados planetesimais, pequenos corpos que, em se agregando, formariam os proto-planetas e finalmente os planetas. Nesse tempo ainda existia um disco de gás no qual esses corpos estavam imersos. Esse disco de gás teria tido um importante papel na estabilização final da órbita de Ceres,” disse Gomes. 

Quando os planetas já estavam praticamente formados, muitos dos planetesimais restantes, encontrando um meio menos denso, não conseguiram se aglutinar em corpos maiores e permaneceram no seu tamanho original. Hoje esses planetesimais são os chamados asteroides, que se encontram em sua maior parte entre as órbitas de Marte e Júpiter, como também os objetos transnetunianos, que se encontram além da órbita de Netuno.

“No entanto, os asteroides hoje apresentam composições químicas bastante variadas, sugerindo que tenham vindo de regiões diferentes. A maior parte teria tido sua origem na própria região asteroidal, muito embora nesta região tenha havido uma ‘mistura’ de objetos inicialmente em distâncias diferentes ao Sol. Contudo, alguns objetos, devido a sua composição de elementos mais voláteis, sugerem terem vindo de regiões mais afastadas do Sol e este seria o caso de Ceres," disse Gomes. 

"O trabalho liderado por Rafael Ribeiro de Souza tem justamente o objetivo de mostrar um caminho dinâmico pelo qual Ceres se deslocou de sua posição inicial além dos planetas gigantes até a sua posição atual dentro do Cinturão de Asteroides. Além disso, o estudo visa mostrar que esse caminho tem uma probabilidade significativa de ter ocorrido, sendo, portanto, uma hipótese provável. Minha contribuição foi principalmente orientar o Rafael no emprego de ferramentas estatísticas e sua interpretação a fim de avaliar a probabilidade da hipótese. Entre várias importâncias que esse trabalho pode ter, uma delas é dar mais uma comprovação do modelo primordial de formação e evolução do Sistema Solar primitivo. Também motiva a realização de um estudo mais amplo sobre a origem de outros asteroides de composição compatível com uma formação primordial além das órbitas originais dos planetas gigantes,” complementa Gomes.

Além de Ribeiro de Sousa e Rodney Gomes, também assinam o artigo o professor Ernesto Vieira Neto (UNESP) e pesquisadores da Université Côte d’Azur, na França; da Rice University e nos Estados Unidos. 

O estudo em questão será publicado em junho deste ano no periódico Icarus. 

Fonte: Observatório Nacional