Mostrando postagens com marcador Sol. Mostrar todas as postagens
Mostrando postagens com marcador Sol. Mostrar todas as postagens

domingo, 28 de outubro de 2018

A Terra vista da Lua em ultravioleta

Que planeta é esse?

Terra em ultravioleta

© NASA/Apollo 16 (Terra em ultravioleta)

É a Terra.

A imagem em cores falsas apresentada mostra como a Terra brilha na luz ultravioleta (UV). A imagem é histórica porque foi tirada da superfície da Lua pelo primeiro observatório lunar da humanidade. O equipamento (câmera e espectrógrafo em UV) que tirou a foto acima foi instalado e deixado na Lua pela tripulação da Apollo em 1972.

Embora muito pouca luz UV seja transmitida através da atmosfera da Terra, ela pode causar queimaduras solares. A parte da Terra voltada para o Sol reflete muita luz UV, mas talvez mais interessante seja o lado oposto ao Sol. Aqui bandas de emissão UV são o resultado de auroras causadas por partículas carregadas expelidas pelo Sol. Outros planetas que geram auroras no UV incluem Marte, Saturno, Júpiter e Urano.

Fonte: NASA

domingo, 23 de setembro de 2018

Equinócio: Analema sobre as pedras Callanish

O Sol retorna ao mesmo lugar no céu todos os dias ao mesmo tempo? Não.

analema sobre as pedras Callanish

© Giuseppe Petricca (analema sobre as pedras Callanish)

Uma resposta mais visual a esta questão é um analema, uma imagem composta tirada do mesmo local ao mesmo tempo ao longo de um ano.

O analema apresentado é composto de imagens tiradas a cada poucos dias às 16h, perto da aldeia de Callanish, nas Hébridas Exteriores, na Escócia, Reino Unido.

No primeiro plano estão as Callanish Stones, um círculo de pedra construído por volta de 2.700 aC durante a Idade do Bronze da humanidade. Não se sabe se a colocação das pedras Callanish tem ou teve um significado astronômico.

As causas derradeiras para a figura com formato de 8 de todos os analemamas são a inclinação do eixo da Terra e a elipticidade da órbita da Terra em torno do Sol. Nos solstícios, o Sol aparecerá na parte superior ou inferior de um analema. Os equinócios, no entanto, correspondem aos pontos médios do analema, não o ponto de interseção.

Hoje às 1:54 (UT) ocorreu o equinócio da primavera no hemisfério sul e equinócio de outono no hemisfério norte, quando dia e noite são iguais em todo o planeta Terra. Muitas culturas celebram uma mudança de estação num equinócio.

Fonte: NASA

Como as estrelas giram

Estrelas parecidas com o Sol têm um movimento de rotação que é duas vezes e meia mais rápido no equador do que nas suas altas latitudes, uma descoberta feita por pesquisadores da New York University Abu Dhabi (NYU Abu Dhabi) desafia a ciência sobre como as estrelas giram.

movimento de rotação de estrelas parecidas com o Sol

© MPI for Solar System Research (movimento de rotação de estrelas parecidas com o Sol)

Na imagem acima as setas azuis representam a velocidade de rotação. Acredita-se que a rotação diferencial seja um ingrediente essencial para gerar atividade magnética.

Até agora, pouco era conhecido sobre os padrões de rotação de forma precisa de estrelas parecidas com o Sol, a única coisa que se sabia era que no equador as estrelas giram mais rapidamente do que nas altas latitudes, da mesma forma que o Sol.

Os cientistas na NYU Abu Dhabi Center for Space Science usaram observações feitas pela missão Kepler, e também a asterosismologia, ou seja, o estudo das ondas sonoras que atravessam as estrelas, para determinar com precisão como é o movimento de rotação de estrelas parecidas com o Sol, de um modo que nenhum outro método científico foi capaz de determinar até agora.

O estudo descobriu que estrelas parecidas com o Sol, caracterizadas assim por terem a mesma massa e idade do Sol, de fato giram de maneira similar ao Sol, nas regiões equatoriais, de forma mais rápida do que nas altas e médias latitudes. Mas existe uma diferença fundamental.

O equador do Sol gira, cerca de 10% mais rápido que suas latitudes intermediárias, enquanto que em estrelas parecidas com o Sol a rotação no equador é cerca de 2 vezes e meia mais rápida.

“Isso é inesperado, e desafia as atuais simulações numéricas, que sugerem que as estrelas como essas não seriam capazes de sustentar uma diferença rotacional dessa magnitude,” disse Othman Benomar, pesquisador associado na NYU Abu Dhabi Center for Space Science.

“Entender essa diferença na rotação, ou seja, como partes da estrelas giram mais rápida que outras, não é só importante para se entender de forma completa como as estrelas funcionam, isso irá ajudar a ter um conhecimento profundo sobre os campo magnéticos das estrelas,” explicou Katepalli Sreenivasan, principal pesquisador da NYU Abu Dhabi Center for Space Science.

Os campos magnéticos no Sol têm sido conhecidos por causar as enormes tempestades solares que frequentemente perturbam os satélites no espaço e que podem até mesmo causar problemas nas redes energéticas na Terra.

Os cientistas concordam que a rotação do Sol tem uma função crucial na geração do campo magnético solar, mas os detalhes exatos ainda permanecem um mistério, apesar do Sol ter sido observado e estudado em grande detalhe.

“Aprender mais sobre como as estrelas giram e geram seus campos magnéticos poderia nos ajudar a entender mais sobre o dínamo solar, o processo físico que gera o campo magnético do Sol,” complementou Sreenivasan.

O estudo foi publicado na revista Science.

Fonte: New York University Abu Dhabi

sábado, 8 de setembro de 2018

Prevendo com sucesso a forma da coroa solar

O Sol é tão fácil de estudar quanto qualquer objeto astronômico poderia ser. É brilhante, então não há falta de luz para examinar; está próximo, então até pequenos detalhes em sua superfície são claros; e por cerca de doze horas por dia, quase não enfrenta concorrência pela atenção astronômica.

simulação da aparência da coroa durante o eclipse solar total

© Predictive Science Inc. (simulação da aparência da coroa durante o eclipse solar total)

Mas, apesar de toda a sua proximidade e brilho, o Sol continua misterioso. Ironicamente, sua camada mais externa, a coroa, uma intricada coroa de plasma difuso e superaquecido, é a menos compreendida. A coroa expressa a angústia magnética oculta do Sol. Como o plasma é feito de partículas carregadas, que respondem à influência magnética, o campo magnético do Sol pode torcer a coroa em laços e faixas.

Quando o campo magnético irrompe, continuamente puxado pela rotação do Sol, ele lança plasma coronal no espaço interplanetário. Esse tipo de clima espacial ameaça satélites, redes elétricas e de telecomunicações, por isso é do nosso interesse entender isso. Agora, os físicos solares mostraram que podem prever com precisão a aparência da coroa uma semana antes, um marco importante no caminho para a previsão do vento solar que se aproxima.

Zoran Mikić (Predictive Science, Inc.) e colaboradores oferecem um novo modelo das camadas externas do Sol que está atualizado com os últimos trabalhos teóricos sobre como o interior do Sol aquece e magneticamente estimula a coroa. Mikić e seus colegas testaram este modelo no ano passado, quando tomaram as observações do Sol em 16 de julho e 11 de agosto de 2017, e deixaram um supercomputador da NASA calcular, segundo seu modelo, como seria a coroa solar dez dias depois, durante o eclipse solar total de 21 de agosto. Eles então compararam essas visualizações com imagens reais tiradas por fotógrafos baseados em terra.

Vale a pena parar aqui para enfatizar o quão incomum é um estudo como esse; em geral, os astrônomos estudam objetos distantes que evoluem lentamente. É raro poder executar uma simulação e testar seus resultados imediatamente. Os resultados da simulação computacional foram encorajadores: a coroa simulada tem a mesma forma ampla que a sua contraparte da vida real, com o plasma fluindo para o espaço, bem como laços intermediários com estrutura de pequena escala semelhante aos do Sol real.

Embora o Sol simulado não seja perfeito, sua correspondência decente com o Sol real dá aos astrônomos solares confiança de que estão no caminho certo para entender a física das camadas externas do Sol. Durante a simulação, Mikić e colaboradores foram capazes de testar a física solar, notando, por exemplo, raios coronais se estendendo à esquerda do disco solar, que são visualmente semelhantes às plumas que saem dos polos norte e sul do Sol.

Nos polos, isso acontece porque as linhas do campo magnético se estendem diretamente para o espaço, como as linhas que apontam diretamente para fora das extremidades de uma barra magnética. Para verificar se os raios apontados para a esquerda tinham a mesma origem física, Mikić e colaboradores entraram em sua simulação, desligaram as partes em forma de bastão da coroa e observaram os raios desaparecerem.

Juntamente com medições novas e melhoradas do campo magnético do Sol, modelos como este poderiam em breve rastrear a evolução contínua do Sol, semelhante ao que é feito em modelos climáticos terrestres. Com esses dados em breve em missões como a Parker Solar Probe, da NASA, estamos no caminho de nunca mais sermos surpreendidos por uma tempestade solar!

Um artigo sobre o assunto foi publicado na revista Nature Astronomy.

Fonte: Sky & Telescope

sábado, 19 de maio de 2018

O que acontecerá quando nosso Sol morrer?

O nosso Sol irá morrer em aproximadamente 5 bilhões de anos, mas não havia certeza sobre o que aconteceria depois… Até agora.

Abell 39

© Adam Block (Nebulosa Planetária Abell 39)

Uma equipe de astrônomos, incluindo Albert Ziljstra, da Universidade de Manchester, previu que o Sol irá se tornar um anel maciço de gás e poeira brilhante e luminoso, conhecido como Nebulosa Planetária.

As Nebulosas Planetárias são o fim de 90% da vida ativa das estrelas e marcam a transição de uma gigante vermelha para uma anã branca. Mas, por anos, os cientistas não tinham certeza se o Sol seguiria este mesmo destino: pensava-se que sua massa era pequena demais para criar uma Nebulosa Planetária visível.

Para investigar isso, a equipe desenvolveu um novo modelo de evolução estelar que prevê o ciclo de vida das estrelas. O modelo foi usado para prever o brilho (ou luminosidade) do envelope de gás ejetado em estrelas de diferentes massas e idades.

Quando uma estrela morre, ejeta uma massa de gás e poeira conhecida por envelope no espaço. O envelope pode ter a massa de até metade da estrela. O processo revela o núcleo da estrela, que neste ponto da vida está ficando sem combustível, até finalmente desligar, antes de morrer.

É só aí que o núcleo quente faz o envelope ejetado brilhar por cerca de 10.000 anos, um período breve em termos astronômicos. Isso é o que faz a Nebulosa Planetária se tornar visível. Algumas são tão brilhantes que podem ser vistas a uma distância grande, medindo dezenas de milhões de anos-luz. Neste momento, a própria estrela pode ser muito fraca para ser vista.

O modelo também resolve outro problema que têm deixado astrônomos perplexos por um quarto de século. Há aproximadamente 25 anos, astrônomos descobriram que ao observar uma Nebulosa Planetária de outra galáxia, as mais brilhantes sempre têm o mesmo brilho. Assim, era possível ver o quão longe uma galáxia estava apenas observando o brilho da Nebulosa Planetária. Na teoria, isso funciona em qualquer tipo de galáxia.

Mas enquanto os dados sugeriam que isso estava correto, os modelos científicos mostravam o contrário. De acordo com Zijstra, estrelas velhas e de pouca massa criavam nebulosas planetárias muito mais fracas do que estrelas jovens e mais massivas. Isso se tornou uma fonte de conflito por 25 anos.

Segundo os dados, era possível obter nebulosas brilhantes a partir de estrelas de baixa massa como o Sol. Já os modelos diziam que isso não era possível, qualquer objeto com a massa duas vezes menor que a do Sol resultaria em uma Nebulosa Planetária muito fraca para ser vista.

Novos modelos mostram que, após a ejeção do envelope, as estrelas esquentam três vezes mais rapidamente do que se acreditava em modelos antigos. Isso facilita à uma estrela de pouca massa, como o Sol, formar uma Nebulosa Planetária brilhante. A equipe descobriu, através dos novos modelos, que o Sol possui exatamente o menor valor de massa capaz de produzir uma Nebulosa Planetária visível, embora fraca. Estrelas apenas um pouco menores não produzem uma Nebulosa visível.

De acordo com Ziljstra: descobrimos que estrelas com massa inferior a 1,1 vezes a massa do Sol produzem nebulosas mais fracas, e estrelas mais massivas que 3 vezes a massa solar produzem nebulosas mais fortes. Para os demais casos, o brilho previsto é muito próximo do observado. Problema resolvido, depois de 25 anos!

"Esse é um bom resultado. Agora temos como saber a aparência de estrelas de alguns bilhões de anos em galáxias distantes, o que é um alcance difícil de medir, além disso sabemos no que o Sol se tornará quando morrer!"

A pesquisa foi publicada na revista Nature Astronomy.

Fonte: University of Manchester

sexta-feira, 20 de abril de 2018

Em busca das irmãs do Sol

Um grupo australiano de astrônomos, atuando com colaboradores europeus, revelou o "DNA" de mais de 340.000 estrelas na Via Láctea, o que deverá ajudar a encontrar as irmãs do Sol, agora espalhadas pelo céu.

espectro do Sol

© Nigel Sharp (espectro do Sol)

Este é um grande anúncio de um ambicioso levantamento de arqueologia galáctica, chamado GALAH (GALactic Archaeology with HERMES), lançado no final de 2013 como parte de uma missão para descobrir a formulação e evolução das galáxias. Quando concluído, o GALAH terá investigado mais de um milhão de estrelas.

O Levantamento GALAH fez o seu primeiro grande lançamento público de dados, usando o espectrógrafo HERMES do Telescópio Anglo-Australiano de 3,9 metros do Observatório Astronômico Australiano, Nova Gales do Sul, para obter os espectros das 340.000 estrelas.

O "DNA" recolhido traça a ancestralidade das estrelas, mostrando aos astrônomos como o Universo passou de apenas hidrogênio e hélio, logo após o Big Bang, para todos os elementos que temos aqui na Terra que são necessários para a vida.

Estes dados permitirão descobertas como os aglomerados estelares originais da Galáxia, incluindo o grupo natal do Sol e as suas irmãs solares, não há nenhum outro conjunto de dados como este já obtido em qualquer outro lugar do mundo.

O Sol nasceu num glomerado de milhares de estrelas, onde cada estrela neste aglomerado terá a mesma composição química, sendo que estes aglomerados foram rapidamente separados pela Via Láctea e estão agora espalhados pelo céu.

Para cada estrela, este assinatura química é a quantidade que contêm de cada um de quase duas dúzias de elementos químicos como oxigênio, alumínio e ferro.

A luz da estrela é recolhida pelo telescópio e passa depois por um instrumento chamado espectrógrafo, que divide a luz em arco-íris detalhados. Cada elemento químico deixa um padrão único de bandas escuras em comprimentos de onda específicos nestes espectros, como impressões digitais.

A medição da abundância de cada elemento em tantas estrelas é um enorme desafio. Para o fazer, o GALAH desenvolveu técnicas sofisticadas de análise.

Os astrônomos utilizaram o programa de computador, denominado The Cannon, para reconhecer padrões nos espectros de um subconjunto de estrelas, e depois determinar a quantidade de cada elemento das estrelas. Este programa honra Annie Jump Cannon, uma astrônoma americana pioneira na classificação dos espectros de mais ou menos 340.000 estrelas, manualmente, ao longo de várias décadas há um século atrás, este código analisa esta quantidade de estrelas em muito maior detalhe em menos de um dia!

O lançamento dos dados do levantamento GALAH foi previsto para coincidir com a enorme divulgação de dados no dia 25 de abril do satélite Gaia da ESA, que tem vindo a mapear mais de 1,6 bilhões de estrelas na Via Láctea, tornando-o de longe e até à data o maior e mais preciso atlas do céu noturno.

Em combinação com as velocidades do GALAH, os dados do Gaia fornecerão não só as posições e distâncias das estrelas, mas também os seus movimentos dentro da Via Láctea.

Os onze artigos científicos que acompanham esta divulgação de dados foram simultaneamente publicados na Monthly Notices of the Royal Astronomical Society e na Astronomy and Astrophysics.

Fonte: University of Sydney

terça-feira, 27 de fevereiro de 2018

Uma jaula magnética no Sol cessa uma erupção solar

Uma nova investigação mostra que uma dramática luta pelo poder à superfície do Sol está no cerne das erupções solares.

proeminência de classe X entrando em erupção

© NASA/SDO (proeminência de classe X entrando em erupção)

O trabalho destaca o papel da topologia magnética do Sol no desenvolvimento de erupções solares que podem desencadear eventos meteorológicos espaciais em torno da Terra.

Os cientistas, liderados por Tahar Amari, astrofísico do Centro de Física Teórica da Escola Politécnica em Palaiseau Cedex, França, tiveram em conta as proeminências solares, explosões intensas de radiação e luz. Muitas proeminências solares são seguidas por uma ejeção de massa coronal, ou EMC, uma enorme erupção em forma de material solar e campos magnéticos, mas algumas não são, o que diferencia as duas situações não é claramente entendido.

Usando dados da SDO (Solar Dynamics Observatory) da NASA, os cientistas examinaram um grupo de manchas solares com o tamanho de Júpiter em outubro em 2014, uma área de campos magnéticos complexos, muitas vezes o local da atividade solar. Este foi o maior grupo dos últimos dois ciclos solares e uma região altamente ativa. Apesar das condições parecerem ideais para uma erupção, a região nunca produziu uma grande EMC na sua jornada através do Sol. No entanto, emitiu uma poderosa proeminência de classe X. O que determina se uma proeminência está associada com uma EMC?

A equipe de cientistas incluiu observações da missão SDO de campos magnéticos na superfície do Sol em modelos poderosos que calculam o campo magnético na coroa do Sol, ou atmosfera superior, e examinou como evoluiu no tempo imediatamente antes da proeminência. O modelo revela uma batalha entre duas estruturas magnéticas fundamentais: um laço magnético torcido, conhecida por estar associada com o início das EMCs, e uma jaula densa de campos magnéticos que cobrem o laço.

Os cientistas descobriram que esta jaula magnética impediu fisicamente com que a EMC entrasse em erupção naquele dia. Poucas horas antes da proeminência, a rotação natural da mancha solar revirou o laço magnético e cresceu cada vez mais torcido e instável, como um elástico bem enrolado. Mas o laço nunca entrou em erupção a partir da superfície: o seu modelo demonstra que não teve energia suficiente para romper a jaula. No entanto, foi volátil o suficiente para atacar parte da jaula, desencadeando a forte proeminência solar.

Ao mudarem as condições da jaula no seu modelo, os cientistas descobriram que se a jaula tivesse sido mais fraca naquele dia, uma grande EMC teria entrado em erupção no dia 24 de outubro de 2014. O grupo está interessado em desenvolver o seu modelo para estudar como o conflito entre a jaula magnética e o laço se desenrola em outras erupções.

"Nós conseguimos seguir a evolução de uma região ativa, prever a probabilidade de erupção e calcular a quantidade máxima de energia que a erupção pode liberar," comenta Amari. "Este é um método prático que pode tornar-se importante na previsão da meteorologia do espaço à medida que as capacidades computacionais aumentam."

Este trabalho foi publicado num artigo da revista Nature.

Fonte: Goddard Space Flight Center

terça-feira, 20 de fevereiro de 2018

Swarm investiga acoplamento energético

O Sol banha o nosso planeta com a luz e o calor necessários para sustentar a vida, mas também nos bombardeia com perigosas partículas carregadas através do vento solar.

escudo protetor da Terra

© ESA/ATG medialab (escudo protetor da Terra)

O campo magnético terrestre protege-nos quase totalmente deste ataque. Graças à missão Swarm da ESA, a natureza deste acoplamento Terra-Sol foi revelada com mais detalhes do que nunca.

O campo magnético da Terra é como uma enorme bolha que nos protege da radiação cósmica e das partículas carregadas, transportadas por ventos poderosos que escapam da atração gravitacional do Sol e varrem o Sistema Solar.

O trio de satélites Swarm foi lançado em 2013 para melhorar a nossa compreensão de como o campo magnético é gerado e como este nos protege do bombardeio de partículas carregadas.

Uma vez que o nosso campo magnético é gerado, principalmente, por um oceano de ferro líquido que compõe o núcleo externo do planeta, assemelha-se a um ímã com linhas de campo emergentes perto dos polos.

O campo é altamente condutor e transporta partículas carregadas que fluem ao longo destas linhas de campo, dando origem a correntes alinhadas no campo.

Carregando até 1 TW (terawatts, igual a 1012 watts) de energia elétrica a cada segundo, cerca de seis vezes a quantidade de energia produzida a cada ano pelas turbinas eólicas na Europa, estas correntes são a forma dominante de transferência de energia entre a magnetosfera e a ionosfera.

As telas cintilantes de luz verde e púrpura das auroras, nos céus acima das regiões polares, são uma manifestação visível de energia e partículas que viajam ao longo das linhas do campo magnético.

A teoria sobre o intercâmbio e o impulso entre o vento solar e o nosso campo magnético remonta, na realidade, a mais de 100 anos e, mais recentemente, a rede de satélites ‘Experiência de Resposta da Magnetosfera Ativa e Eletrodinâmica Planetária’ (AMPERE) permitiu que os cientistas estudassem correntes de campo em grande escala.

No entanto, a missão Swarm está levando a uma nova e emocionante onda de descobertas. Um novo estudo explora a dinâmica deste acoplamento energético em diferentes escalas espaciais, e descobre que tudo está nos detalhes.

Ryan McGranaghan, do Jet Propulsion Laboratory da NASA, disse: “Temos uma boa compreensão de como estas correntes trocam energia entre a ionosfera e a magnetosfera em grandes escalas, então assumimos que as correntes de menor escala se comportaram da mesma maneira, mas carregaram proporcionalmente menos energia. A Swarm permitiu-nos ampliar efetivamente estas correntes menores e vemos que, sob certas condições, este não é o caso. As nossas descobertas mostram que estas correntes menores carregam energia significativa e que o seu relacionamento com as correntes maiores é muito complexo. Além disso, correntes grandes e pequenas afetam a magnetosfera-ionosfera de maneira diferente.”

Colin Forsyth, da University College de Londres observou: “Uma vez que as correntes elétricas em torno da Terra podem interferir na navegação e nos sistemas de telecomunicações, esta é uma descoberta importante. Também nos dá uma maior compreensão de como o Sol e a Terra estão ligados e como este acoplamento pode, em última análise, adicionar energia à nossa atmosfera. Este novo conhecimento pode ser usado para melhorar modelos para que possamos entender melhor e, prepararmo-nos para as possíveis consequências das tempestades solares”.

O diretor da missão Swarm da ESA, Rune Floberghagen, acrescentou: “Desde o início da missão, realizamos projetos para abordar o intercâmbio de energia entre a magnetosfera, a ionosfera e a termosfera. Mas o que estamos testemunhando agora é nada menos que uma revisão completa da compreensão de como a Terra responde e interage com a energia vinda do Sol. Na verdade, esta investigação científica está se tornando um pilar fundamental para a missão Swarm alongada, precisamente porque está lançando novas bases e, ao mesmo tempo, tem uma forte relevância social. Agora desejamos explorar este potencial dos satélites Swarm ao máximo.”

Um artigo foi publicado no periódico Journal of Geophysical Research: Space Physics.

Fonte: ESA

sábado, 10 de fevereiro de 2018

Atmosfera vazante ligada a planeta leve

A baixa gravidade do Planeta Vermelho e a falta de campo magnético tornam a atmosfera ultraperiférica um alvo fácil de ser levada pelo vento solar, mas novas evidências da nave Mars Express da ESA mostram que a radiação do Sol pode desempenhar um papel surpreendente na sua fuga.

ilustração do vento solar formando magnetosferas em planetas

© ESA (ilustração do vento solar formando magnetosferas em planetas)

A imagem acima mostra como o vento solar forma as magnetosferas de Vênus (topo), Terra (meio) e Marte (baixo).

A razão pela qual as atmosferas dos planetas rochosos, no Sistema Solar interno, evoluíram de forma tão diferente durante mais de 4,6 bilhões de anos, é fundamental para entender o que faz um planeta habitável. Enquanto a Terra é um mundo de água rico em vida, o nosso vizinho menor, Marte, perdeu muito da sua atmosfera no início da sua história, transformando-se de um ambiente quente e úmido para as planícies frias e áridas que observamos hoje. Em contrapartida, o outro vizinho da Terra, Vênus, embora hoje inóspito, é de tamanho comparável ao nosso próprio planeta e tem uma atmosfera densa.

Uma das maneiras que muitas vezes se pensa que ajuda a proteger a atmosfera de um planeta, é através de um campo magnético gerado internamente, como na Terra. O campo magnético desvia as partículas carregadas do vento solar à medida que se afastam do Sol, esculpindo a magnetosfera ao redor do planeta.

Em Marte e Vênus, que não geram um campo magnético interno, o principal obstáculo para o vento solar é a atmosfera superior. Assim como na Terra, a radiação ultravioleta solar separa os elétrons dos átomos e moléculas nesta região, criando uma zona de gás ionizado carregado eletricamente: a ionosfera. Em Marte e Vênus, esta camada ionizada interage diretamente com o vento solar e o seu campo magnético para criar uma magnetosfera induzida, que atua para retardar e desviar o vento solar ao redor do planeta.

Durante 14 anos, a Mars Express da ESA tem procurado íons carregados, como oxigênio e dióxido de carbono, que fluem para o espaço, a fim de melhor compreender a taxa em que a atmosfera está escapando do planeta.

O estudo descobriu um efeito surpreendente, com a radiação ultravioleta do Sol desempenhando um papel mais importante do que se pensava anteriormente.

"Costumávamos pensar que a fuga de íons ocorria devido a uma transferência efetiva da energia solar do vento através da barreira magnética marciana induzida para a ionosfera", diz Robin Ramstad, do Instituto Sueco de Física Espacial.

"Talvez de forma contraintuitiva, o que realmente vemos é que o aumento da produção de íons, desencadeada pela radiação solar ultravioleta, protege a atmosfera do planeta da energia transportada pelo vento solar, mas é muito pouca a energia realmente necessária para que os íons escapem por si mesmos, devido à baixa gravidade que liga a atmosfera a Marte."

Descobriu-se que a natureza ionizante da radiação do Sol produz mais íons do que os que podem ser removidos pelo vento solar. Embora o aumento da produção de íons ajude a proteger a atmosfera mais baixa da energia transportada pelo vento solar, o aquecimento dos elétrons parece ser suficiente para arrastar íons em todas as condições, criando um "vento polar". A fraca gravidade de Marte, cerca de um-terço da gravidade da Terra, significa que o planeta não consegue agarrar estes íons e estes escapam facilmente para o espaço, independentemente da energia extra fornecida por um forte vento solar.

Em Vênus, onde a gravidade é semelhante à da Terra, é necessária muito mais energia para despojar a atmosfera dessa maneira e os íons que saem do lado do Sol provavelmente cairiam de volta em direção ao planeta, no sotavento, a menos que se acelerassem ainda mais.

"Portanto, concluímos que, no presente, a fuga de íons de Marte é principalmente limitada em relação à produção e não limitada à energia, enquanto em Vênus é provável que seja limitada em termos de energia, dada a maior gravidade do planeta e alta taxa de ionização, por estar mais perto do Sol," acrescenta Robin.

"Por outras palavras, o vento solar, provavelmente, só teve um efeito direto muito pequeno sobre a quantidade de atmosfera de Marte que se perdeu ao longo do tempo e, em vez disso, apenas aumenta a aceleração das partículas que já por si se escapam."

O monitoramento contínuo de Marte, desde 2004, que cobriu a mudança na atividade solar do mínimo ao máximo, dá-nos um grande conjunto de dados que é vital para entender o comportamento a longo prazo da atmosfera de um planeta e a sua interação com o Sol," diz Dmitri Titov, cientista do projeto Mars Express da ESA. "A colaboração com a missão MAVEN da NASA, que tem estado em Marte desde 2014, também nos permite estudar mais detalhadamente os processos de escape atmosféricos."

O estudo também tem implicações para a busca de atmosferas do tipo da Terra em outros lugares do Universo.

"Talvez um campo magnético não seja tão importante para proteger a atmosfera de um planeta como a própria gravidade do planeta, a qual define o quão bem pode agarrar as suas partículas atmosféricas depois de terem sido ionizadas pela radiação solar, independentemente do poder do vento solar," acrescenta Dmitri.

Um artigo foi publicado no periódico Journal of Geophysical Research: Space Physics.

Fonte: ESA

terça-feira, 23 de janeiro de 2018

Estudando o Sol através do movimento de Mercúrio

As órbitas dos planetas no nosso Sistema Solar estão alargando. Isto acontece porque a força gravitacional do Sol vai gradualmente enfraquecendo à medida que envelhece e perde massa.

Mercúrio próximo do Sol

© NASA/SDO (Mercúrio próximo do Sol)

Agora, uma equipe de cientistas da NASA e do MIT (Massachusetts Institute of Technology) mediram indiretamente esta perda de massa e outros parâmetros solares, observando mudanças na órbita de Mercúrio.

Os novos valores melhoram as previsões anteriores, reduzindo a quantidade de incerteza. Isto é especialmente importante para o ritmo da perda de massa solar, porque está relacionado com a estabilidade de G, a constante gravitacional. Embora G seja considerado um número fixo, a questão de saber se é realmente constante é ainda fundamental na física.

"Mercúrio é o objeto de teste perfeito para as nossas experiências porque é tão sensível ao efeito gravitacional e à atividade do Sol," comenta Antonio Genova, pesquisador do MIT que trabalha no Goddard Space Flight Center da NASA.

O estudo começou por melhorar as efemérides cartográficas de Mercúrio, o mapa da posição do planeta no nosso céu ao longo do tempo. Para isso, a equipe baseou-se em dados de rastreamento de rádio que monitoraram a localização da sonda MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) da NASA enquanto a missão estava ativa. A nave robótica fez três voos rasantes por Mercúrio em 2008 e 2009 e orbitou o planeta entre março de 2011 e abril de 2015. Os cientistas analisaram mudanças sutis no movimento de Mercúrio como forma de aprender mais sobre o Sol e como os seus parâmetros físicos influenciam a órbita do planeta.

Durante séculos, os cientistas estudaram o movimento de Mercúrio, prestando especial atenção ao seu periélio (ponto orbital mais próximo do Sol). As observações há muito que revelaram que o periélio muda ao longo do tempo, movimento a que chamamos precessão. Embora as forças gravitacionais de outros planetas representem a maior parte da precessão de Mercúrio, não contabilizam 100%.

A segunda maior contribuição vem da deformação do espaço-tempo em torno do Sol devido à própria gravidade da estrela, agora coberta pela teoria da relatividade geral de Einstein. O sucesso da relatividade geral em explicar a maior parte da precessão restante de Mercúrio ajudou a persuadir os cientistas de que a teoria de Einstein estava correta.

Outras contribuições, muito menores, são atribuídas à estrutura e à dinâmica do interior do Sol. Uma destas é o achatamento do Sol, uma medida do seu bojo no meio em vez de ser uma esfera perfeita. Os pesquisadores obtiveram uma estimativa melhorada do achatamento que é consistente com outros tipos de estudos.

Os cientistas foram capazes de separar alguns dos parâmetros solares dos efeitos relativistas, algo não alcançado em estudos anteriores que se basearam em dados de efemérides. A equipe desenvolveu uma técnica inovadora que simultaneamente estimou e integrou as órbitas tanto da MESSENGER como de Mercúrio, levando a uma solução abrangente que inclui quantidades relacionadas com a evolução do interior do Sol e com efeitos relativistas.

A nova estimativa da equipe, para a taxa de perda de massa solar, representa uma das primeiras vezes que este valor foi restringido com base em observações e não em cálculos teóricos. A partir do trabalho teórico, os cientistas previram anteriormente uma perda de um-décimo de 1% da massa do Sol ao longo de 10 bilhões de anos; é o suficiente para reduzir a atração gravitacional de uma estrela e permitir com que as órbitas dos planetas aumentem cerca de 1,5 centímetros, por ano, por UA (unidade astronômica, a distância entre a Terra e o Sol aproximadamente 150 milhões de quilômetros).

O novo valor é ligeiramente inferior às previsões anteriores, mas tem menos incerteza. Isso tornou possível que a equipe melhorasse a estabilidade de G por um fator de 10, em comparação com os valores derivados de estudos do movimento da Lua.

"O estudo demonstra como as medições das alterações nas órbitas planetárias muda ao longo do Sistema Solar e abre a possibilidade de descobertas futuras sobre a natureza do Sol e dos planetas e, de fato, sobre o funcionamento básico do Universo," afirma Maria Zuber, vice-presidente de pesquisa no MIT.

O estudo foi publicado na Nature Communications.

Fonte: Goddard Space Flight Center

segunda-feira, 21 de agosto de 2017

Eclipse solar total

a tarde desta segunda-feira, moradores e turistas em 14 estados americanos poderão acompanhar o primeiro eclipse solar total a cruzar os EUA de costa a costa em 99 anos, e de todo o território continental será possível observar o fenômeno ao menos parcialmente.

eclipse solar total de 2008

© Miloslav Druckmüller (eclipse solar total de 2008)

As cidades dentro da faixa de totalidade esperam milhares de turistas e foram vendidos milhões de óculos especiais. Mas mesmo quem não está nos EUA poderá acompanhar o Sol ser escondido pela Lua em transmissões ao vivo pela internet.

A agência espacial americana (NASA) preparou uma grande operação para o evento. As imagens serão transmitidas por repórteres em terra, em eventos promovidos pela agência e outros institutos de pesquisa, mas também por câmeras instaladas em 11 espaçonaves, três aviões, mais de 50 balões de alta altitude e por astronautas a bordo da Estação Espacial Internacional, cada uma oferecendo um ponto de vista único deste raro evento celeste.

A Lua começará a cobrir o Sol às 13:04h (horário de Brasília) e a totalidade será entre as 14:16h e 14:18h, com o fim do fenômeno às 15:36h. O fenômeno poderá ser visto parcialmente em 17 capitais brasileiras e no Distrito Federal. Os moradores de alguns estados das regiões Norte e Nordeste poderão acompanhar o eclipse parcialmente, sendo Macapá o melhor ponto de observação entre as capitais. De acordo com as previsões, os macapaenses poderão ver a Lua cobrindo 40,9% do Sol, com início do eclipse às 16:09h e pico às 17:09h. Moradores de Boa Vista, Belém, São Luís, Teresina, Fortaleza, Natal, João Pessoa e Recife poderão ver entre 30% e 40% do Sol coberto. Em Salvador, a cobertura será de 12,6%, e, em Brasília, apenas 2%. Estados mais ao Sul, incluindo o Rio de Janeiro e São Paulo, ficam fora da faixa.

visibilidade do eclipse solar

© Time and Date (visibilidade do eclipse solar)

Os eclipses totais do Sol não são exatamente raros. Eles acontecem aproximadamente a cada dois anos, mas a faixa de totalidade é estreita e curta. O último visto do Brasil aconteceu em março de 2006, cobrindo uma pequena região do Nordeste, entre os estados do Ceará, Rio Grande do Norte e Paraíba. A próxima vez será em agosto de 2045. Em 2 de julho de 2019, um eclipse total vai cruzar o Chile e a Argentina, sendo visto parcialmente das regiões Sul e Sudeste. O fenômeno se repetirá em 2020.

Durante um eclipse solar é preciso cuidado na observação. Nunca se deve olhar diretamente para o Sol sem proteção. Estudos indicam que menos de 30 segundos de observação direta podem ser suficientes para provocar danos permanentes na retina. E o uso de binóculos ou telescópios potencializam os riscos. As chapas de radiografias, filtros fotográficos e outros materiais que escurecem a visão da luz não necessariamente bloqueiam a radiação, por isso devem ser evitados. Os óculos escuros devem bloquear os raios solares prejudiciais à visão, mas como é difícil assegurar a qualidade das lentes, não é recomendado o seu uso. Os mais indicados são os filtros metálicos feitos especialmente para observação do Sol, mas é possível criar dispositivos de proteção com três camadas de filme preto e branco com base de prata revelado ou vidro de soldador número 14 ou superior.

O método mais seguro de observação é por projeção. Para isso, basta abrir um pequeno orifício num pedaço de papelão e direcioná-lo para o Sol. A luz penetra no buraco e projeta uma pequena imagem do eclipse num anteparo paralelo ao papelão.

Fonte: NASA

sexta-feira, 18 de agosto de 2017

Acompanhamento de uma erupção solar através do Sistema Solar

Dez sondas, desde a Venus Express da ESA à Voyager 2 da NASA, sentiram o efeito de uma erupção solar à medida que esta atravessava o Sistema Solar, enquanto três satélites em órbita terrestre assistiram, proporcionando uma perspetiva única nestas condições meteorológicas espaciais.

localização das várias sondas durante a ejeção de massa coronal do Sol

© ESA (localização das várias sondas durante a ejeção de massa coronal do Sol)

A imgem acima mostra a localização das várias sondas durante a ejeção de massa coronal (CME) do Sol do dia 14 de outubro de 2014. As separações dos planetas não são mostradas à escala; as suas distâncias do Sol, no lado esquerdo, são dadas em UA (Unidades Astronômicas) e a refletem a distância no momento em que as medições da CME foram feitas (para outros planetas é fornecida a distância média). A Rosetta e o cometa encontravam-se a 3,1 UA do Sol. As datas em que a sonda começou a sentir os efeitos da CME estão indicadas na escala à direita.

Os cientistas que trabalhavam na Mars Express da ESA estavam ansiosos por analisar os efeitos do contato próximo do cometa Siding Spring na atmosfera do Planeta Vermelho, em 19 de outubro de 2014, mas em vez disso, descobriram o que acabou por ser a marca de um evento solar.

Embora isso tenha tornado a análise de qualquer efeito relacionado com o cometa muito mais complexa do que o previsto, desencadeou um dos maiores esforços colaborativos para traçar a jornada de uma CME interplanetária do Sol ao alcance distante do Sistema Solar externo.

Embora a Terra em si não estivesse na linha de fogo, uma série de satélites de observação solar próximos da Terra - Proba-2 da ESA, o SOHO da ESA/NASA e o SDO da NASA - testemunharam uma poderosa erupção solar alguns dias antes, em 14 outubro.

O Stereo-A da NASA não só captou imagens do outro lado do Sol em relação à Terra, mas também recolheu informações locais, à medida que a CME passou apressadamente.

Graças aos locais fortuitos de outros satélites na direção da viagem da CME, foram feitas detecções inequívocas por três sondas de Marte - Mars Express da ESA, Maven, Mars Odyssey e o Rover Curiosity da NASA, que operava na superfície do Planeta Vermelho, a Rosetta da ESA no cometa 67P/Churyumov-Gerasimenko e a missão internacional Cassini em Saturno.

Foram até encontrados vestígios tão longe quanto a New Horizons da NASA que, no momento, se aproximava de Plutão, e para além da Voyager 2. No entanto, nessas grandes distâncias é possível que a evidência dessa erupção específica se possa ter fundido com o vento solar de fundo.

"As velocidades de uma CME com distância ao Sol não estão bem compreendidas, em particular no Sistema Solar externo", diz Olivier Witasse, da ESA, que liderou o estudo. "Graças às cronometragens precisas de inúmeras medições 'in situ', podemos entender melhor o processo e devolver os nossos resultados aos modelos."

As medições dão uma indicação da velocidade e da direção da viagem da CME, a qual alastrou sobre um ângulo de pelo menos 116º para alcançar a Venus Express e o Stereo-A no flanco oriental, e as sondas espaciais em Marte e no cometa 67P/Churyumov-Gerasimenko, no flanco ocidental.

A partir de um máximo inicial de cerca de 1.000 km/s estimado no Sol, foi medida uma forte queda para 647 km/s pela Mars Express três dias depois, diminuindo para 550 km/s na Rosetta, após cinco dias. Isto foi seguido por uma diminuição mais gradual para 450-500 km/s à distância de Saturno, um mês após o evento.

Os dados também revelaram a evolução da estrutura magnética da CME, com os efeitos sentidos pela sonda espacial durante vários dias, fornecendo informações úteis sobre os efeitos das condições meteorológicas espaciais em diferentes corpos planetários. As assinaturas nas várias sondas incluíam, caracteristicamente, um choque inicial, um fortalecimento do campo magnético e um aumento da velocidade do vento solar.

No caso da Venus Express da ESA, os dados não foram coletados porque a sonda estava "por trás" do Sol, vista da Terra, limitando as capacidades de comunicação. Uma pequena indicação foi inferida a partir do seu rastreador estelar, ao ser sobrecarregado com a radiação no momento esperado de passagem.

Além disso, várias sondas que transportam monitores de radiação - Curiosity, Mars Odyssey, Rosetta e Cassini - revelaram um efeito interessante e bem conhecido: uma diminuição súbita nos raios cósmicos galácticos. À medida que uma CME passa, age como uma bolha protetora, varrendo temporariamente os raios cósmicos e protegendo parcialmente o planeta ou a nave espacial.

Uma queda de cerca de 20% nos raios cósmicos foi observada em Marte, uma das mais profundas registadas no Planeta Vermelho, e persistiu por cerca de 35 horas. Na Rosetta, observou-se uma redução de 17% que durou 60 horas, enquanto que em Saturno a redução foi ligeiramente inferior e durou cerca de quatro dias. O aumento na duração da depressão dos raios cósmicos corresponde a uma desaceleração da CME e da região mais ampla sobre a qual foi dispersa em distâncias maiores.

"A comparação da diminuição do influxo de raios cósmicos galácticos em três locais amplamente separados devido à mesma CME é bastante nova", diz Olivier. "Embora as observações de CMEs por várias sondas já tenham sido feitas no passado, é incomum que as circunstâncias sejam tais para incluir tantas espalhadas pelo Sistema Solar interno e externo, como neste caso.

"Finalmente, voltando à nossa observação original pretendida, da passagem do Cometa Siding Spring em Marte, os resultados mostram a importância de ter um contexto das condições meteorológicas espaciais, para entender como esses eventos solares podem influenciar, ou até mesmo ocultar, a assinatura do cometa na atmosfera de um planeta."

Fonte: ESA

quinta-feira, 13 de julho de 2017

Encontrada mancha gigantesca no Sol

Uma mancha gigantesca foi encontrada na superfície do Sol.

Sol hoje

© NASA/Goddard Space Flight Center/SDO (Sol hoje)

As imagens foram efetuadas pela sonda Solar Dynamics Observatory (SDO) da NASA entre 5 e 11 de julho.

A mancha, denominada Região Ativa 12665, é a primeira a surgir na parte visível do Sol, que foi encontrada nos últimos dias. Durante a redução da atividade solar, tais fenômenos são mais raros do que no período quando a atividade solar se encontra a um nível estável. Há uma possibilidade do surgimento de explosão solar, mas é muito cedo para prevê-la.

A atividade solar é definida pelo número de manchas e explosões na superfície do Sol, bem como pelas mudanças do campo magnético do astro. No período do ciclo solar, que é de aproximadamente 11 anos, ocorrem tempestades geomagnéticas fortes e frequentes, que afetam componentes eletrônicos e a vida aqui na Terra.

mancha solar

© NASA/Goddard Space Flight Center/SDO (mancha solar)

Esta mancha solar na face do Sol parece ser pequena, mas o tamanho relativo do seu núcleo escuro é realmente maior do que a Terra.

Fonte: NASA

segunda-feira, 20 de fevereiro de 2017

Estrelas revelam velocidade do Sol e distância do centro da Via Láctea

Usando um novo método e dados do telescópio espacial Gaia, astrônomos da Universidade de Toronto estimaram que a velocidade do Sol, à medida que orbita o centro da Via Láctea, é de aproximadamente 240 km/s. Por sua vez, usaram este resultado para calcular a distância do Sol até o centro da Galáxia.

Via Láctea e pináculos

© Michael Goh (Via Láctea e pináculos)

A imagem mostra em primeiro plano os Pináculos,  que são raras formações rochosas presentes no Nambung National Park no oeste da Austrália. Os pináculos rochosos são constituídos de antigas conchas do mar. Ao fundo da imagem se apresenta a Lua crescente. O difuso brilho em volta da Lua é composto principalmente da luz zodiacal, criada pela reflexão dos raios solares nos grãos de poeira que orbitam o espaço interplanetário no Sistema Solar. Em um grande arco no topo da imagem vemos a faixa central da nossa Via Láctea.

Usando dados do telescópio espacial Gaia e do levantamento RAVE (RAdial Velocity Experiment), Jason Hunt e colegas determinaram as velocidades de mais de 200.000 estrelas em relação ao Sol. Hunt é membro do Instituto Dunlap para Astronomia e Astrofísica da Universidade de Toronto.

Os colaboradores encontraram uma distribuição pouco surpreendente de velocidades relativas: havia estrelas movendo-se mais lentamente, mais depressa e à mesma velocidade que o Sol.

Mas também encontraram uma escassez de estrelas com uma velocidade orbital galáctica aproximadamente 240 km/s inferior à do Sol. Os astrônomos concluíram que as estrelas em falta tinham sido estrelas com momento angular zero; isto é, que não orbitam a Galáxia como o Sol e as outras estrelas na Via Láctea.

"Estrelas com um momento angular muito próximo de zero teriam mergulhado em direção ao Centro Galáctico, onde seriam fortemente afetadas pelas forças gravitacionais extremas aí presentes," comenta Hunt. "Isto iria espalhá-las em órbitas caóticas levando-as muito acima do plano Galáctico e para longe da vizinhança Solar."

"Através da medição da velocidade com que as estrelas próximas giram em torno da Galáxia, em relação ao Sol, podemos observar uma falta de estrelas com uma velocidade relativa negativa específica. E como sabemos que este mergulho corresponde a 0 km/s, diz-nos, por sua vez, quão rapidamente nos estamos se movendo," realça Hunt.

Hunt e colegas combinaram esta descoberta com o movimento próprio do buraco negro supermassivo conhecido como Sagitário A* que fica no centro da Galáxia, para calcular a distância do Sol até este centro, obtendo o resultado de aproximadamente 7,9 kiloparsecs, ou quase 26.000 anos-luz.

O movimento próprio é o movimento de um objeto através do céu em relação a distantes objetos de fundo. Eles calcularam a distância da mesma maneira que um cartógrafo triangula a distância a um marco terrestre, observando-o de duas posições diferentes separadas por uma distância conhecida.

O método foi usado pela primeira vez por Hunt, o atual presidente do Departamento de Astronomia e Astrofísica da Universidade de Toronto, o Prof. Ray Calberg, e pelo colaborador de Carlberg, o Prof. Kimmo Innanen. Mas o resultado a que Carlberg e Innanen chegaram teve por base menos de 400 estrelas.

O Gaia está criando um mapa dinâmico e tridimensional da Via Láctea medindo as distâncias, posições e movimentos próprios das estrelas. Hunt e colegas basearam o seu trabalho no primeiro conjunto de dados do Gaia, que incluiu centenas de milhares de estrelas. No final da sua missão de 5 anos, ela terá mapeado mais de bilhões de estrelas.

Os resultados da velocidade e distância não são significativamente mais precisos do que outras medições. Mas, segundo Hunt, "a divulgação final do Gaia, no final de 2017, deverá permitir-nos aumentar a precisão das nossas medições da velocidade do Sol até aproximadamente 1 km/s, o que por sua vez aumentará drasticamente a precisão da nossa medição da distância ao entro Galáctico."

Os resultados foram publicados na revista Astrophysical Journal Letters.

Fonte: Dunlap Institute for Astronomy & Astrophysics

quarta-feira, 15 de fevereiro de 2017

O tempo de vida da nebulosa solar

Há cerca de 4,6 bilhões de anos atrás, uma enorme nuvem de hidrogênio gasoso e poeira colapsou sob o seu próprio peso, eventualmente achatando-se num disco chamado nebulosa solar.

ilustração da nebulosa solar

© Hernan Canellas (ilustração da nebulosa solar)

A maioria deste material interestelar contraiu-se no centro do disco para formar o Sol e parte do gás e da poeira restante desta nebulosa solar condensou-se para formar os planetas e o resto do nosso Sistema Solar.

Agora, cientistas do Massachusetts Institute of Technology (MIT) e colegas, incluido a brasileira Maria Zucolotto do Museu Nacional do Rio de Janeiro, estimaram a vida útil da nebulosa solar, uma fase crítica durante a qual uma grande parte da evolução do Sistema Solar teve lugar.

Esta nova estimativa sugere que os gigantes gasosos Júpiter e Saturno devem ter-se formado dentro dos primeiros 4 milhões de anos da formação do Sistema Solar. Além disso, é provável que até este momento tenham completado uma migração das suas posições orbitais.

Ao estudar as orientações magnéticas em amostras imaculadas de meteoritos antigos formados há 4,653 bilhões de anos, a equipe determinou que a nebulosa solar durou cerca de 3 a 4 milhões de anos. Este é um valor muito mais preciso do que as estimativas anteriores, que colocaram o tempo de vida da nebulosa solar entre 1 e 10 milhões de anos.

A equipe chegou a esta conclusão depois de analisar cuidadosamente angritos, algumas das rochas planetárias mais antigas e pristinas. Os angritos são rochas ígneas, muitas das quais pensa-se que tenham entrado em erupção à superfície de asteroides no início da história do Sistema Solar e, em seguida, arrefecido rapidamente, congelando as suas propriedades originais, incluindo a sua composição e sinais paleomagnéticos.

Os cientistas consideram os angritos registos excepcionais do início do Sistema Solar, particularmente porque as rochas também contêm grandes quantidades de urânio, que podem usar para determinar precisamente a sua idade. Muitos angritos parecem-se com o que entra em erupção no Havaí, mas arrefeceram num planetesimal muito precoce.

Os cientistas analisaram quatro angritos que caíram na Terra em diferentes lugares e épocas.

Um caiu na Argentina e parecia com uma tigela indígena. Os outros três meteoritos foram descobertos no Brasil, na Antártida e no deserto do Saara. Todos os quatro meteoritos estão notavelmente bem preservados, não tendo sofrido nenhum aquecimento adicional ou grandes mudanças de composição desde a sua formação original.

A equipe obteve amostras de todos os quatro meteoritos. Ao medir a proporção de urânio para chumbo em cada uma, os estudos anteriores haviam determinado que os três mais antigos se formaram há cerca de 4,653 bilhões de anos atrás. Os pesquisadores mediram então a magnetização remanescente das rochas usando um magnetômetro de precisão no Laboratório de Paleomagnetismo do MIT.

"Os elétrons são como pequenas agulhas das bússolas e se alinharmos muitos deles numa rocha, a rocha torna-se magnetizada," explica Benjamin Weiss, professor de ciências terrestres, atmosféricas e planetárias do MIT. "Uma vez alinhados, o que pode acontecer quando uma rocha arrefece na presença de um campo magnético, assim ficam. É isso que usamos como registos de antigos campos magnéticos."

Quando colocaram os angritos no magnetômetro foi observado muito pouca magnetização remanescente, o que indica a presença de um campo magnético muito fraco durante a formação dos angritos.

A equipe deu um passo em frente e tentou reconstruir o campo magnético que teria produzido os alinhamentos das rochas, ou a falta dele. Para tal, aqueceram as amostras e arrefeceram-nas novamente num campo magnético controlado por laboratório. Foi descoberto que só são permitidos campos muito fracos, dado quão pouca magnetização remanescente está nestes três angritos.

Especificamente, a equipe descobriu que a magnetização remanescente dos angritos pode ter sido produzida por um campo magnético extremamente fraco de não mais de 0,6 µT (microteslas), há 4,653 bilhões de anos atrás, ou cerca de 4 milhões de anos após o início do Sistema Solar.

Em 2014, o grupo de Weiss analisou outros meteoritos antigos que se formaram dentro dos primeiros 2 a 3 milhões de anos do Sistema Solar e encontrou evidências de um campo magnético cerca de 10 a 100 vezes mais forte, aproximadamente de 5 a 50 µT.

"Prevê-se que, assim que o campo magnético cai por um fator de 10 a 100 no Sistema Solar interior, o que agora mostramos, a nebulosa solar desaparece rapidamente, dentro de 100.000 anos," realça Weiss. "Assim, mesmo que a nebulosa solar não tivesse desaparecido completamente após 4 milhões de anos, estava basicamente acabada."

A nova estimativa dos cientistas é muito mais precisa do que as estimativas anteriores, que foram baseadas em observações de estrelas distantes.

"Além disso, o paleomagnetismo dos angritos restringe a vida da nossa própria nebulosa solar, enquanto as observações astronômicas, obviamente, medem outros sistemas solares distantes. Dado que o tempo de vida da nebulosa solar afeta criticamente as posições finais de Júpiter e Saturno, também afeta a formação posterior da Terra, bem como a formação dos outros planetas terrestres," acrescenta Huapei Wang, pós-doutorado do MIT e o autor principal deste estudo.

Agora que os cientistas têm uma melhor ideia de quanto tempo a nebulosa solar persistiu, podem também restringir-se à formação dos planetas gigantes como Júpiter e Saturno. Os planetas gigantes são feitos, na maior parte, de gás e gelo, e existem duas hipóteses principais para o modo como todo este material se aglomerou para formar um planeta. Uma sugere que os gigantes gasosos se formaram a partir do colapso gravitacional de gás, tal como o Sol. A outra sugere que se formaram num processo de duas fases chamado acreção do núcleo, no qual pedaços de material foram esmagados e fundidos para formar corpos gelados e rochosos maiores. Assim que esses corpos se tornaram suficientemente massivos, geraram uma força gravitacional que atraiu grandes quantidades de gás para, finalmente, formar um planeta gigante.

De acordo com previsões anteriores, os planetas gigantes formados através do colapso gravitacional de gás devem completar a sua formação geral em 100.000 anos. A acreção do núcleo, em contraste, pensa-se que demore muito mais tempo, entre 1 e vários milhões de anos. Weiss diz que se a nebulosa solar estivesse presente nos primeiros 4 milhões de anos da formação do Sistema Solar, isto daria suporte ao cenário de acreção do núcleo, que é geralmente mais aceito entre os cientistas.

Os resultados foram relatados num artigo publicado na revista Science.

Fonte: Massachusetts Institute of Technology

terça-feira, 17 de janeiro de 2017

O ALMA começa a observar o Sol

Os astrônomos utilizaram as capacidades do Atacama Large Millimeter/submillimeter Array (ALMA), instalado no Chile, para obter imagens da radiação milimétrica emitida pela cromosfera do Sol, a região que se situa logo acima da fotosfera e que forma a superfície visível do Sol.

mancha solar gigante a 1,25 mm

© ESO (mancha solar gigante a 1,25 mm)

A equipe da campanha solar, um grupo internacional de astrônomos com membros da Europa, América do Norte e Leste Asiático, produziu as imagens no intuito de demonstrar as capacidades do ALMA no estudo da atividade solar em comprimentos de onda maiores dos que os que se encontram normalmente disponíveis nos observatórios solares na Terra.

Os astrônomos estudam o Sol e investigam a sua superfície dinâmica e atmosfera energética de muitas maneiras há vários séculos. No entanto, para se compreender melhor o funcionamento do Sol, é necessário estudá-lo em todo o espectro electromagnético, incluindo na região do milímetro e do submilímetro, a qual pode ser observada pelo ALMA.

Uma vez que o Sol é muitos bilhões de vezes mais brilhante que os fracos objetos que o ALMA observa normalmente, as antenas do ALMA foram especialmente concebidas para poderem obter imagens do Sol com extremo detalhe usando a técnica de interferometria rádio, e evitando assim danos devido ao intenso calor da luz solar focada. Deste trabalho resultaram uma série de imagens que demonstram a visão única do ALMA e a sua capacidade em estudar o nosso Sol. Os dados da campanha de observação solar estão sendo divulgados esta semana à comunidade astronômica mundial, para análise e estudo subsequentes.

A equipe observou uma mancha solar enorme nos comprimentos de onda de 1,25 mm e 3 mm, usando duas das bandas receptoras do ALMA. As imagens revelam diferenças em temperatura entre partes da cromosfera do Sol. A compreensão do aquecimento e da dinâmica da cromosfera é uma área importante de pesquisa, que será abordada no futuro com o ALMA.

mancha solar gigante a 3 mm

© ESO (mancha solar gigante a 3 mm)

As manchas solares são estruturas transientes que aparecem em regiões onde o campo magnético do Sol é muito forte e se encontra extremamente concentrado. Têm temperaturas mais baixas que as regiões ao redor e é por isso que aparecem relativamente escuras.

A diferença entre as duas imagens deve-se aos diferentes comprimentos de onda da radiação emitida que se estão observando. As observações em comprimentos de onda mais curtos conseguem penetrar mais profundamente no Sol, o que significa que as imagens a 1,25 mm mostram uma camada da cromosfera mais profunda, e consequentemente mais próxima da fotosfera, que as imagens obtidas a um comprimento de onda de 3 mm.

O ALMA é o primeiro observatório do qual o ESO é parceiro que permite aos astrônomos estudar a nossa estrela mais próxima, o nosso Sol. Todas as outras infraestruturas do ESO, existentes ou passadas, precisam de ser protegidas da intensa radiação solar de modo a evitar danos. As novas capacidades do ALMA farão com que a comunidade do ESO se expanda para incluir os astrônomos solares.

Fonte: ESO

sábado, 15 de outubro de 2016

Proxima Centauri pode ser mais parecida com o Sol do que se pensava

Em agosto os astrônomos anunciaram que a estrela vizinha, Proxima Centauri, hospeda um planeta do tamanho da Terra (de nome Proxima b) na sua zona habitável.

ilustração do interior de uma estrela de baixa massa

© NASA/CXC/M.Weiss (ilustração do interior de uma estrela de baixa massa)

À primeira vista, Proxima Centauri não se parece nada com o nosso Sol. É uma pequena e fria anã vermelha com apenas um décimo da massa e um milésimo do brilho do Sol. No entanto, uma nova pesquisa mostra que é parecida com o Sol de uma forma surpreendente: tem um ciclo regular de manchas estelares.

As manchas estelares (como as manchas solares) são zonas escuras à superfície de uma estrela onde a temperatura é um pouco inferior à da área circundante. São alimentadas por campos magnéticos. Uma estrela é constituída por gases ionizados a que chamamos plasma. Os campos magnéticos podem restringir o fluxo de plasma e criar manchas. As alterações ao campo magnético de uma estrela podem afetar o número e a distribuição das manchas estelares.

O nosso Sol tem um ciclo de atividade de 11 anos. Durante o mínimo solar, o Sol não tem quase manchas nenhumas. Durante o máximo solar, normalmente mais de 100 manchas solares cobrem, em média, menos de 1% da superfície do Sol.

O novo estudo descobriu que Proxima Centauri é submetida a um ciclo semelhante com a duração de sete anos de pico a pico. No entanto, o seu ciclo é muito mais dramático. Pelo menos um-quinto da superfície da estrela fica coberta por manchas de uma só vez. Além disso, algumas destas manchas são muito maiores em relação ao tamanho da estrela do que as manchas do nosso Sol.

"Se houvesse vida inteligente em Proxima b, teriam uma vista muito dramática," afirma o autor principal Brad Wargelin, do Harvard-Smithsonian Center for Astrophysics.

Os astrônomos ficaram surpreendidos ao detectar o ciclo de atividade estelar em Proxima Centauri porque o seu interior deverá ser muito diferente do interior do Sol. O terço exterior do Sol sofre um movimento chamado convecção, parecido com a água fervendo numa panela, enquanto o interior do Sol permanece relativamente imóvel. Há uma diferença na velocidade de rotação entre estas duas regiões. Muitos astrônomos acham que esta diferenciação é responsável pela produção do ciclo de atividade magnética do Sol.

Em contraste, o interior de uma pequena anã vermelha como Proxima Centauri deve ser totalmente convectivo até ao núcleo. Como resultado, não deveria ter um ciclo regular de atividade.

"A existência de um ciclo em Proxima Centauri mostra que nós não entendemos a produção dos campos magnéticos estelares tão bem quanto pensávamos," afirma Jeremy Drake, também do Harvard-Smithsonian Center for Astrophysics.

O estudo não aborda se o ciclo de atividade de Proxima Centauri afetaria a potencial habitabilidade do planeta Proxima b. A teoria sugere que as proeminências ou o vento estelar, ambos alimentados por campos magnéticos, podem colidir com o planeta e expulsar qualquer atmosfera. Neste caso, Proxima b seria mais como a Lua da Terra, localizado na zona habitável, mas nada amigável à vida.

"As observações diretas de Proxima b não vão acontecer durante muito tempo. Até lá, a nossa melhor aposta é estudar a estrela e, em seguida, ligar esta informação com as teorias sobre as interações estrela-planeta," afirma Steve Saar, também do Harvard-Smithsonian Center for Astrophysics.

A equipe detectou o ciclo de atividade usando observações terrestres do ASAS (All Sky Automated Survey), combinadas com medições espaciais obtidas por várias missões, incluindo o Swift, Chandra e XMM-Newton.

Os resultados do estudo foram aceitos para publicação na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 9 de maio de 2016

A exclusiva interação de Plutão com o vento solar

No que se refere ao modo como interage com o vento solar (o fluxo contínuo de partículas carregadas do Sol), Plutão comporta-se menos do que o esperado como um cometa e mais como um planeta como Marte ou Vênus.

  Plutão

  © NASA (Plutão)

Usando dados do instrumento SWAP (Solar Wind Around Pluto) a bordo da New Horizons durante o voo rasante de julho de 2015, os cientistas observaram pela primeira vez material saindo da atmosfera de Plutão e estudaram como interage com o vento solar, levando a mais uma surpresa de Plutão.

"Este é um tipo de interação que nunca tínhamos visto antes em qualquer lugar do nosso Sistema Solar," afirma David J. McComas, autor principal do estudo. McComas é professor de ciências astrofísicas na Universidade de Princeton e vice-presidente do Laboratório de Física de Plasmas de Princeton.

Os astrofísicos dizem que têm agora um tesouro de informações sobre o modo como a atmosfera de Plutão interage com o vento solar. O vento solar é o plasma libertado pelo Sol e viaja a 160 milhões de quilômetros por hora, banhando planetas, asteroides, cometas e o espaço interplanetário numa sopa constituída principalmente por prótons e elétrons.

Anteriormente, a maioria dos pesquisadores pensava que Plutão era caracterizado mais como um cometa, que tem uma grande região onde o vento solar desacelera suavemente, em oposição ao desvio abrupto que o vento solar encontra num planeta como Marte ou Vênus. Em vez disso, Plutão é um híbrido.

"Estes resultados salientam o poder da exploração. Mais uma vez, fomos a um novo tipo de lugar e descobrimos inteiramente novos tipos de expressão na natureza," afirma o pesquisador Alan Stern do SwRI (Southwest Research Institute) em San Antonio, no estado americano do Texas.

Considerando que está tão longe do Sol, média de 5,9 bilhões de quilômetros, e é tão pequeno, os cientistas pensavam que a gravidade de Plutão não era forte o suficiente para manter os íons pesados na sua atmosfera estendida. Mas, "a gravidade de Plutão é claramente suficiente para manter material relativamente confinado," afirma McComas.

Usando o instrumento SWAP, foi possível separar os íons pesados do metano, o principal gás que escapa da atmosfera de Plutão, dos íons leves de hidrogênio que vêm do Sol.

Entre as descobertas adicionais de Plutão:

  • Tal como a Terra, Plutão tem uma longa cauda de íons, que se estende na direção do vento a pelo menos uma distância de aproximadamente 100 raios de Plutão (118.700 km, quase três vezes a circunferência da Terra), carregada com íons pesados da atmosfera e com uma "estrutura considerável";
  • A obstrução do vento solar por Plutão, na direção oposta à do vento, é mais pequena do que se pensava. O vento solar só é bloqueado a cerca de dois raios de Plutão (3.000 km);
  • Plutão tem um limite muito fino na sua cauda de íons pesados e no revestimento do vento solar que aí choca e que constitui um obstáculo ao seu fluxo.

Heather Elliott, astrofísica do SwRI, explica: "a comparação da interação entre o vento solar e Plutão e a interação do vento solar com os outros planetas e corpos é interessante porque as condições físicas são diferentes para cada um, e os processos físicos dominantes dependem dessas condições."

Estas descobertas fornecem pistas sobre os plasmas magnetizados que se poderão encontrar em torno de outras estrelas. "A gama de interação com o vento solar é bastante diversificada, e isso dá-nos alguma comparação para nos ajudar a melhor compreender as ligações no nosso Sistema Solar e além,"comenta McComas.

Este estudo foi publicado no periódico Journal of Geophysical Research.

Fonte: Princeton University

sábado, 7 de maio de 2016

O trânsito de Mercúrio

Na próxima segunda-feira, 9 de maio de 2016, o planeta Mercúrio irá cruzar a face do Sol para os observadores aqui do planeta Terra.

trânsito de Mercúrio

© Dominique Dierick (trânsito de Mercúrio)

A sequência composta de fotos na imagem em destaque, superpostas em um único quadro, mostra o evento do trânsito de Mercúrio integral ocorrido em 7 de maio de 2003. Mercúrio cruzou o Sol por um período de mais de 5 horas, assim, as 23 imagens empilhadas foram capturadas em intervalos de cerca de 15 minutos. O polo norte do Sol, a órbita da Terra e a órbita de Mercúrio, embora diferentes, todas ocorrem em direções ligeiramente acima da parte superior da imagem. Perto do centro do quadro e na borda inferior do Sol são visíveis manchas solares.

Esse notável e raro fenômeno é chamado de trânsito de Mercúrio e a última vez que ocorreu foi em 2006. Uma vez que o plano orbital de Mercúrio não é exatamente coincidente com o plano da órbita terrestre, Mercúrio usualmente parece passar sobre ou sob o Sol nos céus.

Os trânsitos de Mercúrio com relação à Terra são muito mais frequentes que os trânsitos de Vênus, ocorrendo cerca de 13 ou 14 vezes a cada século, sempre nos meses de maio ou novembro. Uma das razões para esta frequência maior é o fato que o período da órbita de Mercúrio é mais curta que o de Vênus.

O trânsito de Mercúrio no dia 9 de maio será total na América do Sul (Brasil), no leste da América do Norte e na Europa Ocidental; um trânsito parcial de Mercúrio poderá ser observado em todo resto do mundo, exceto na Austrália e Ásia Oriental.

O trânsito de Mercúrio começará às 8:12 hs, horário de Brasília. Após 7 horas cruzando o disco solar, Mercúrio sai do trânsito às 15:42 hs, horário de Brasília, com o Sol começando a baixar no horizonte oeste. Mercúrio estará a 83 milhões de km da Terra.

Depois deste trânsito de Mercúrio, o próximo trânsito está previsto para ocorrer em 11 de novembro de 2019.

Fonte: NASA

sábado, 26 de março de 2016

Auroras em raios X no planeta Júpiter

As tempestades solares estão provocando auroras de raios X em Júpiter, que são cerca de oito vezes mais brilhantes do que o normal, sobre uma grande área do planeta e centenas de vezes mais energéticas do que as auroras boreais da Terra, de acordo com um novo estudo da NASA usando dados do observatório de raios X Chandra.

ilustração da magnetosfera de Júpiter

© JAXA (ilustração da magnetosfera de Júpiter)

É a primeira vez que as auroras de Júpiter foram estudadas em luz de raios X quando uma tempestade solar gigante chegou ao planeta.

O Sol constantemente ejeta fluxos de partículas para o espaço através do vento solar. Às vezes, as tempestades gigantes, conhecidas como ejeções de massa coronal (CMEs), entram em erupção e os ventos tornam-se muito mais fortes. Estes eventos comprimem a magnetosfera de Júpiter, a região do espaço controlado pelo campo magnético de Júpiter, mudando sua fronteira com o vento solar para dentro por mais de um 1,5 milhão de quilômetros. Este novo estudo constatou que no limite a interação desencadeia os raios X em auroras de Júpiter, que cobrem uma área maior do que a superfície da Terra.

auroras em Júpiter

© Chandra/Hubble (auroras em Júpiter)

Estas imagens compostas mostram Júpiter e suas auroras durante e após a chegada de uma CME em Júpiter em outubro de 2011. Nestas imagens, dados de raios X de Chandra (roxo) foram sobrepostos em uma imagem óptica do telescópio espacial Hubble. O painel do lado esquerdo revela a atividade de raios X quando a CME atingiu Júpiter, e o do lado direito retrata a atividade de raios X dois dias depois após o CME diminuir. O impacto da CME na aurora de Júpiter foi monitorada em raios X emitidos durante duas observações de 11 horas. Os cientistas pretendem coletar dados da atividade de raios X sobre o campo magnético, magnetosfera e aurora de Júpiter usando o Chandra e XMM-Newton da ESA.

Um artigo descrevendo estes resultados foi publicado no Journal of Geophysical Research.

Fonte: Harvard-Smithsonian Center for Astrophysics & Marshall Space Flight Center