sexta-feira, 7 de outubro de 2011
O desafio do pulsar de Caranguejo
quinta-feira, 6 de outubro de 2011
Descoberta camada de ozônio em Vênus
A sonda Venus Express da ESA descobriu a existência de uma camada de ozônio no planeta Vênus, o que permitirá avanços nas investigações sobre a ocorrência de vida fora da Terra.
© ESA (hemisfério sul do planeta Vênus no ultravioleta)
A descoberta da Venus Express aconteceu quando a sonda permitiu a observação de estrelas situadas junto ao perfil do planeta e através de sua atmosfera. O ozônio pôde ser detectado porque absorveu parte dos raios ultravioletas procedentes de algumas dessas estrelas observadas.
“O achado permite entender a química de Vênus e além disso pode servir na busca de vida em outros planetas”, diz Franck Montmessin, que liderou a pesquisa.
Seu instrumento SPICAV analisou a luz das estrelas na procura da absorção da luz em comprimentos de onda específicos por gases na atmosfera de Vênus. O ozônio foi detectado porque absorveu alguns dos comprimentos de onda no ultravioleta da luz proveniente das estrelas.
A camada de ozônio em Vênus fica a uma altitude de 100 km, cerca de quatro vezes maior do que na atmosfera da Terra e é de cem a mil vezes menos densa. Os astrobiólogos sugerem que a concentração de ozônio do planeta Vênus deve ser 20% do valor da Terra.
O ozônio contém três átomos de oxigênio e o do planeta estudado se forma quando a luz do Sol rompe as moléculas de dióxido de carbono da atmosfera e permite a liberação de átomos de oxigênio. O elemento já tinha sido encontrado antes na Terra e em Marte.
Os cientistas consideram que isso permitiu que a vida surgisse na Terra, onde o oxigênio começou a se formar há aproximadamente 2,4 bilhões de anos.
Em nosso planeta, sua importância é fundamental para a vida porque absorve grande parte dos raios ultravioletas do Sol.
Fonte: ESA
terça-feira, 4 de outubro de 2011
O segredo no interior do aglomerado M53
Milhares e milhares de estrelas brilhantes fazem parte desse aglomerado globular de estrelas conhecido como Messier 53 (M53 ou NGC 5024), e que foi registrado nessa imagem com clareza cristalina feita pelo Telescópio Espacial Hubble.
© Hubble (aglomerado globular M53)
Unido pela gravidade, o aglomerado é aproximadamente esférico e torna-se mais denso à medida que se caminha para o seu núcleo.
Essas enormes esferas brilhantes não são raras, e mais de 150 existem somente na Via Láctea, incluindo o M53. Ele está à 60.000 anos-luz, nas bordas externas da galáxia onde muitos outros aglomerados globulares são encontrados, está localizado a uma distância do centro da galáxia quase que igual à distância do Sol até o centro da galáxia. Embora eles sejam relativamente comuns, o famoso astrônomo William Herschel descreveu os aglomerados globulares como sendo um dos objetos mais bonitos que ele se lembra ter observado nos céus.
Os aglomerados globulares são muito mais velhos e maiores que os aglomerados abertos, significando que geralmente contêm mais estrelas vermelhas velhas e poucas estrelas massivas azuis. Mas o M53 têm surpreendido os astrônomos com seu incomun número de estrelas azuis errantes.
Essas estrelas são contraditórias em relação à teoria de evolução estelar. Espera-se que todas as estrelas em um aglomerado globular tenham se formado num mesmo período aproximadamente, seguindo uma tendência específica imposta pela idade do aglomerado e baseada em suas massas. Mas essas estrelas azuis errantes não seguem essa regra, elas parecem ser mais brilhantes e mais jovem do que elas teriam que ser. Embora sua natureza precisa seja um mistério esses objetos pouco comuns são provavelmente formados durante o encontro, possivelmente colisões entre estrelas que povoam o centro dos aglomerados globulares.
Fonte: ESA
Asteroide com formato de ampulheta
Um asteroide em formato de ampulheta, um relógio de areia. foi encontrado por astrônomos.
© Sky & Telescope (formato do asteroide 2001QG298)
O corpo celeste é um "objeto do Cinturão de Kuiper", um membro de uma enorme gama de rochas dos mais diversos tamanhos que orbita o Sol além de Netuno.
Os cientistas acreditam que os objetos do Cinturão de Kuiper são os "fósseis" mais bem preservados da origem do Sistema Solar.
O Dr. Pedro Lacerda e seus colegas da Universidade de Belfaste acreditam que a "ampulheta espacial" seja formada por dois objetos distintos, orbitando um em torno do outro, eventualmente se tocando. O conjunto foi batizado de 2001QG298.
"Imagine que você cole dois ovos ponta com ponta - este é aproximadamente o formato do 2001QG298. Ele se parece com um relógio de areia," disse Lacerda.
Mas sua distância é grande demais para que os astrônomos obtenham muito mais detalhes.
© P. Lacerda (ampulheta espacial formada por dois objetos distintos)
"É impossível dizer a partir das observações originais se a rotação e o plano orbital do 2001QG298 estão alinhados ou perpendiculares, isto é, se o objeto gira horizontalmente como as lâminas de um helicóptero ou roda verticalmente como a hélice de um avião," disse Lacerda.
O mais interessante é que os astrônomos acreditam que essas ampulhetas rochosas são bastante comuns.
Quando Scott Sheppard e David Jewitt observaram o 2001QG298 pela primeira vez, em 2004, eles calcularam que 10% de todos os objetos do Cinturão de Kuiper são binários - mas eles estimaram que suas rotações eram aleatórias.
Só agora Lacerda e sua equipe descobriram o giro preciso do binário, mantendo sua forma de relógio de areia.
Fonte: Physorg
segunda-feira, 3 de outubro de 2011
O ALMA abre os olhos
Atualmente, a rede ALMA é composta por cerca de apenas um terço das 66 antenas de rádio previstas, com separações entre si de no máximo 125 metros, em vez dos até 16 quilômetros possíveis.
© ESO (galáxias Antena vista em conjunto pelo ALMA e Hubble)
A rede encontra-se em crescimento no planalto do Chajnantor, no norte do Chile, a uma altitude de 5.000 metros. No entanto, mesmo em construção, o ALMA (Atacama Large Millimeter/submillimeter Array) já tornou-se o melhor telescópio do seu tipo - como demonstrado pelo incrível número de astrônomos que pediram tempo de observação do ALMA.
O ALMA observa o Universo nos comprimentos de onda do milímetro e submilímetro, aproximadamente mil vezes maiores que os comprimentos de onda da radiação visível. Utilizando estes comprimentos de onda maiores os astrônomos podem estudar objetos no espaço extremamente frios - tais como as nuvens densas de gás e poeira cósmicas, a partir das quais se formam estrelas e planetas - assim como objetos muito distantes, situados no Universo primitivo.
O ALMA é radicalmente diferente dos telescópios que observam no óptico e no infravermelho. Este instrumento consiste numa rede de antenas ligadas entre si que funciona como um único telescópio gigante, detectando comprimentos de onda muito maiores que os da radiação visível. É por isso que as suas imagens não se parecem nada com as fotografias do cosmos mais familiares a que estamos habituados.
© ESO (19 antenas do ALMA no planalto do Chajnantor)
Nos últimos meses a equipe ALMA vem experimentando os sistemas do observatório. Um dos resultados destes testes é a primeira imagem divulgada, oriunda de um telescópio ainda em fase de crescimento. A maior parte das observações utilizadas para criar esta imagem das galáxias Antena foram obtidas com apenas doze antenas trabalhando simultaneamente - muito menos do que as que serão utilizadas nas primeiras observações científicas - e com as antenas também muito mais próximas umas das outras. À medida que o observatório for crescendo, a nitidez, eficiência e qualidade das observações aumentará de forma dramática.
As galáxias Antena são um par de galáxias em colisão que apresentam formas muito distorcidas. Enquanto que a radiação visível nos mostra as estrelas nas galáxias, a imagem do ALMA revela algo que não pode ser visto no óptico: as nuvens de gás frio e denso a partir das quais se formam as novas estrelas. Esta é a melhor imagem no milímetro/submilímetro já obtida das galáxias Antena.
© ESO (galáxias Antena vista pelo ALMA)
A imagem revela enormes concentrações de gás não apenas nos centros das duas galáxias mas também na região caótica onde elas colidem. Ali a quantidade total de gás corresponde a bilhões de vezes a massa do nosso Sol - um reservatório rico em matéria para gerações futuras de estrelas. Observações como esta abrem uma nova janela no Universo submilimétrico e serão vitais na compreensão de como as colisões galácticas podem dar origem à formação de novas estrelas. Este é apenas um exemplo de como o ALMA revela partes do Universo que não poderiam ser observadas com telescópicos ópticos e infravermelhos.
Um dos projetos escolhidos para as primeiras observações científicas do ALMA é o de David Wilner do Harvard-Smithsonian Center of Astrophysics, Cambridge, Massachussets, EUA. O projeto terá como alvo a estrela AU Microscopii, situada a 33 anos-luz de distância e com apenas 1% da idade do nosso Sol.
Qualquer procura de planetas habitáveis em torno de outras estrelas começa geralmente pela procura de água nesses sistemas solares distantes. Quando existem discos de detritos, imensas quantidades de poeira, gás e rochas em torno das estrelas, estes objetos poderão igualmente conter pedaços de gelo com sulcos cheios com água gelada, gás e até muito possivelmente moléculas orgânicas - a astroquímica da vida.
Simon Casassus, da Universidade do Chile, e a sua equipe utilizarão o ALMA para observar o disco de gás e poeira em torno de HD142527, uma estrela jovem situada a 400 anos-luz de distância. O disco de poeira em torno desta estrela possui uma grande fenda, que pode ter tido origem durante a formação de planetas gigantes. No exterior desta fenda, o disco contém gás suficiente para formar cerca de doze planetas do tamanho de Júpiter. No interior da fenda, pode estar ainda se formando um planeta gasoso jovem, se existir material gasoso disponível. As observações obtidas com o ALMA medirão a massa e as condições físicas do gás no interior da fenda.
Mais longe, a 26.000 anos-luz de distância no centro da nossa Galáxia, encontra-se Sagitário A*, um buraco negro de alta massa com quatro milhões de vezes a massa do Sol. O gás e poeira situados entre nós e este objeto o esconde dos olhos dos telescópios ópticos. No entanto, o ALMA está preparado para observar através da escuridão galática e captar imagens soberbas da Sagitário A*.
O ALMA permitirá a observação de jatos de luz emitidos pela região em torno deste buraco negro de alta massa, e obter imagens das nuvens de gás capturadas pela enorme atração gravitacional. É possível que parte do gás possa estar escapando da força gravitacional, com velocidades próximas à da velocidade da luz.
Masami Ouchi, da Universidade de Tóquio, Japão, utilizará o ALMA para observar Himiko, uma galáxia brilhante e longínqua que produz pelo menos 100 estrelas do tipo do Sol por ano, rodeada por uma nebulosa brilhante muito grande.
Durante as primeiras observações científicas, o ALMA continuará a ser construído nos Andes chilenos, no remoto planalto do Chajnantor, situado no inóspito deserto do Atacama. Cada nova antena, devidamente preparada para o clima que irá enfrentar, irá se juntar à rede e será ligada às outras através de cabos de fibra ótica. As imagens obtidas por cada antena distante serão incorporadas numa única imagem por um dos supercomputadores mais rápidos do mundo preparado para esta tarefa, o correlacionador ALMA, que é capaz de executar 17 quatrilhões de operações por segundo.
Em 2013, a rede do ALMA terá um máximo de 16 km de comprimento e será constituída por 66 antenas rádio de alta precisão, que coletarão radiação nos comprimentos de onda do milímetro/submilímetro e que trabalharão em conjunto como um único telescópio.
Fonte: ESO
domingo, 2 de outubro de 2011
Bolhas brilhantes de gás de uma galáxia anã
As famosas imagens de galáxias feitas pelo Telescópio Espacial Hubble normalmente mostram elegantes galáxias espirais ou galáxias elípticas de lado.
© Hubble (galáxia Holmberg II)
Mas essas belas formas não representam somente as grandes galáxias. Galáxias menores como a galáxia anã e irregular Holmberg II se apresentam em diferentes formas e tipos que são difíceis de serem classificados. Essa forma confusa de galáxia é pontilhada com imensas bolhas brilhantes de gás, que foram capturadas nessa imagem feita pelo Telescópio Espacial Hubble.
As intrigantes conchas brilhantes de gás observadas na Holmberg II foram criadas pelo ciclo de vida energético de muitas gerações de estrelas. Estrelas de grande massa se formaram em uma densa região de gás e posteriormente na vida expeliram fortes ventos estelares que sopraram para longe o material ao redor. Na parte final de suas vidas, elas explodiram como supernovas. Ondas de choque produzidas nessa explosão passaram através dessas regiões menos densas soprando e aquecendo o gás, formando assim as delicadas conchas que podemos observar hoje.
A Holmberg II é uma colcha de retalhos formada por densas regiões de formação de estrelas e extensas áreas com menos material, que podem se espalhar por milhares de anos-luz. Como numa galáxia anã, a Homberg II não possui os belos braços espirais típicos de galáxias como a Via Láctea, e nem o núcleo denso de uma galáxia elíptica.
Enquanto a galáxia Holmberg II tem um tamanho pequeno, ela possui muitos aspectos intrigantes. Além da sua aparência, que garantiu a ela um lugar de honra no Atlas of Peculiar Galaxies de Halton Arp, e além de ser um tesouro de objetos estranhos e maravilhosos, a galáxia hospeda uma fonte de raios-X ultraluminosa no meio das três bolhas de gás observadas na parte superior direita da imagem. Existem algumas teorias que tentam explicar essa poderosa fonte de radiação, um possibilidade intrigante é que exista ali um buraco negro de massa intermediária que está puxando material de suas redondezas.
Fonte: ESA
sexta-feira, 30 de setembro de 2011
Número de asteroides próximos a Terra é menor do que o estimado
A NASA anunciou que a população de asteroides próximos à Terra é menor que o previsto. O novo "censo" foi obtido graças às observações do telescópio espacial WISE. Os dados do projeto serão divulgados na revista científica "Astrophysical Journal".
© NASA (censo dos asteroides)
Os astrônomos afirmam que a comunidade científica internacional já conhece 93% dos asteroides com comprimento acima de 1.000 metros. São 911 objetos descobertos contra um total 981 estimados. Nenhum deles pode cair na Terra nos próximos séculos, segundo os especialistas.
Saber quem esses "gigantes" são e onde eles estão reduz as chances de um impacto com a Terra que não possa ser previsto. Acredita-se que todos os asteroides acima de 10 quilômetros - que poderiam acabar com a vida na Terra - são conhecidos e monitorados.
Durante o censo, a equipe do WISE considerou os astros que orbitam o Sol a uma distância de 195 milhões de quilômetros. Isso os torna próximos à Terra, que gira ao redor da estrela a aproximadamente 150 milhões de quilômetros.
Já os asteroides médios (entre 100 m e 1.000 m) também são menos frequentes do que se pensava. Existe apenas 19 mil deles perto da Terra, contra os 35 mil imaginados antes dos dados do WISE serem divulgados, mas ainda existem 15 mil a serem descobertos.
A NASA comemorou ter atingido uma meta definida no Congresso dos EUA em 1998, que obrigava a agência a descobrir onde estavam 90% dos asteroides maiores que frequentam a vizinhança terrestre. As informações providas pelo WISE atualizam um monitoramento que já dura 12 anos, antes realizado a partir de instrumentos na Terra.
O telescópio WISE já vasculhou duas vezes todos os céus ao redor de todos os pontos da Terra - entre fevereiro de 2010 e janeiro de 2011. Foram vistoriados 585 asteroides próximos ao planeta durante o projeto. Entre Marte e Júpiter, o equipamento observou 100 mil objetos, cuja região do Sistema Solar possui um cinturão de asteroides.
Para objetos menores que 100 metros, os cientistas afirmam que os dados do WISE não são confiáveis, e acreditam que 1 milhão deles existam perto da Terra. Porém, o instrumento é capaz de detectar objetos mesmo pequenos e distantes, pois detecta o calor que eles emitem captando sinais em infravermelho.
Fonte: NASA
Rios de lava formaram planícies de Mercúrio
Fendas vulcânicas se abriram há bilhões de anos em Mercúrio, o planeta mais próximo do sol, e liberaram a lava que formou suas planícies suaves.
© NASA (Bacia do Goethe no pólo norte de Mercúrio)
Entre 3,5 e 4 bilhões de anos atrás, fendas vulcânicas se abriram na crosta de Mercúrio e expeliram lava, formando as planícies que ocupam 6% do planeta pequeno e quente e que cobrem uma superfície equivalente a 60% dos Estados Unidos.
As descobertas foram efetuadas com auxílio da sonda Messenger da NASA que começou a orbitar Mercúrio em março. As fendas que derramaram lava não eram como os vulcões de montanha, que se formam gradualmente ao longo do tempo, como os do Havaí, por exemplo, mas profundos cortes que expulsaram rios de lava incandescente que em alguns lugares fluíam a até dois quilômetros de profundidade.
"Estes enormes respiradores, de até 25 km de comprimento, parecem ser a fonte de enormes volumes de lava muito quente que saíram para a superfície de Mercúrio", disse um dos autores do estudo, James Head, professor de Ciências Geológicas da Universidade Brown, na costa leste dos Estados Unidos.
"Os fluxos de lava foram para a superfície, talhando vales e criando crostas em forma de lágrima no terreno subjacente. Um destes depósitos é tão enorme que o vulcanismo tem que ser importante em outros lugares", disse Head.
Os vulcões contribuíram para a formação dos planetas, inclusive Marte, e ajudam estes corpos celestes a liberar seu calor interno. Na Terra, erupções vulcânicas similares formaram o terreno ao longo do rio Columbia nos estados de Washington e Oregon, no noroeste dos Estados Unidos, de 12 a 17 milhões de anos, segundo o Serviço Geológico dos Estados Unidos (USGS).
Os cientistas vislumbraram algo na superfície de Mercúrio a partir de um trio de sobrevoos do Messenger. A sonda foi lançada em 2004 e entrou na órbita de Mercúrio em 18 de março. A sonda Mariner 10 foi a primeira a se aproximar de Mercúrio em 1974 e em 1975 e fazer um mapa de 45% da superfície do planeta.
A NASA espera que a Messenger forneça mais detalhes sobre a composição da superfície de Mercúrio enquanto orbita o planeta a cada 12 horas a uma altura mínima de 200 km. Os instrumentos da sonda Messenger também mostraram que Mercúrio é varrido por ventos solares.
O planeta Mercúrio não tem atmosfera, o que significa que pode chegar a temperaturas de 430ºC, mas também perder todo o calor quando se distancia do Sol, atingindo os -170º C. O pequeno planeta é o único, além da Terra, que tem um campo magnético ao seu redor, mas Mercúrio não gera o mesmo escudo resistente contra a radiação solar. Ele possui muitas crateras que fazem com que sua superfície se assemelhe à Lua. O menor dos oito planetas do Sistema Solar é cerca de um terço do tamanho da Terra, quase tão denso e orbita ao redor do Sol aproximadamente a cada 88 dias terrestres.
Os resultados indicam que a frágil magnetosfera de Mercúrio oferece muito pouca proteção do planeta frente aos ventos solares.
Fonte: Science
quinta-feira, 29 de setembro de 2011
Nova anatomia em torno de buraco negro
A nebulosa do Pacman
Estrelas de grande massa são importantes pois elas são responsáveis por grande parte da energia que é bombeada dentro da nossa galáxia durante a sua vida.
© NASA (NGC 281 em raios-X e infravermelho)
Infelizmente, essas estrelas são pouco entendidas pois elas são poucas e estão localizadas relativamente longe além de poderem ser obscurecidas pelo gás e pela poeira. O aglomerado de estrelas NGC 281, é uma exceção a essa regra. Ele está localizado a aproximadamente 6.500 anos-luz de distância da Terra e, de maneira impressionante, está localizado a quase 1.000 anos-luz acima do plano da galáxia, dando aos astrônomos um ponto de vista quase não afetado da formação de estrelas que acontece dentro dele.
Essa imagem composta do NGC 281 contém dados de raios-X do Chandra, mostrados em roxo, com observações em infravermelho do Spitzer mostradas em vermelho, verde e azul. As estrelas de grande massa no NGC 281 dirigem muitos aspectos do ambiente galáctico através de poderosos ventos fluindo de suas superfícies e da intensa radiação que cria partículas carregadas arrancando elétrons dos átomos. A morte eventual de estrelas massivas, como supernovas também alimentarão a galáxia com matéria e energia.
O NGC 281 é conhecido informalmente como a Nebulosa do Pacman, pois ela tem uma aparência em imagens ópticas com o Pacman dos jogos. Nas imagens ópticas, como a apresentada abaixo, a boca do Pacman aparece escura pois é obscurecida pela poeira e pelo gás, mas nas imagens infravermelhas do Spitzer a poeira na região brilha fortemente.
© NASA (NGC 281 no óptico)
O NGC 281 é normalmente dividido em duas sub-regiões: a região na metade superior da imagem, que é envolta por um gás roxo com temperatura de 10 milhões de graus, e uma região mais jovem na parte inferior da imagem. Existe a evidência de que a formação de um aglomerado que aparece na parte inferior direita da imagem foi disparada por uma geração anterior de formação de estrelas. Também, os astrônomos encontraram algumas regiões de formação de estrelas isoladas no lado esquerdo da imagem que parecem ter ocorrido na mesma época da formação de estrelas em outras regiões do aglomerado. Isso suporta a ideia que algo externo está disparando o elevado nascimento de estrelas no NGC 281.
Fonte: NASA
Aglomerados de galáxias confirmam Teoria da Relatividade
A Teoria Geral da Relatividade prevê que a luz emitida por estrelas e galáxias pode ser desviada pela gravidade.
© Hubble (aglomerado de galáxias Abell 1689)
Contudo, até hoje nunca havia sido possível testar a teoria da gravidade de Einstein em escalas maiores do que o Sistema Solar.
Agora, astrofísicos dinamarqueses conseguiram medir o quanto a luz emitida por aglomerados de galáxias é afetada pela gravidade.
E as observações confirmam as previsões teóricas, não apenas as de Einstein, mas também as hipóteses mais recentes da energia escura e da matéria escura.
Observações de grandes distâncias no Universo são baseadas em medições do desvio para o vermelho, que é um fenômeno onde o comprimento de onda da luz de corpos celestes distantes é deslocado mais para o vermelho quanto maior é a distância que essa luz percorre.
O desvio para o vermelho indica o quanto o Universo se expandiu desde que a luz foi emitida até sua detecção na Terra.
Além disso, de acordo com a Teoria Geral da Relatividade de Einstein, a luz é afetada pela gravidade de grandes massas, como aglomerados de galáxias, o que provoca um desvio para o vermelho gravitacional da luz. Mas a influência gravitacional sobre a luz nunca havia sido medida em uma escala cosmológica.
Radek Wojtak e seus colegas Steen Hansen e Hjorth Jens, da Universidade de Copenhangue, analisaram medições da luz de galáxias em cerca de 8.000 aglomerados de galáxias.
Os pesquisadores estudaram as galáxias localizadas no centro dos aglomerados e galáxias na borda dos aglomerados, e mediram os comprimentos de onda da luz emitida por elas.
Em seguida, eles mediram a massa total do aglomerado de galáxias e, com isso, obtiveram seu potencial gravitacional.
Usando a Teoria da Relatividade Geral, calcularam o desvio para o vermelho gravitacional para as diferentes localizações das galáxias no interior dos aglomerados.
Descobriram que os cálculos teóricos do desvio para o vermelho gravitacional baseados na Teoria da Relatividade Geral estão em completo acordo com as observações astronômicas.
A análise das observações dos aglomerados de galáxias mostra que o desvio para o vermelho da luz é proporcionalmente deslocado em relação à influência gravitacional do aglomerado de galáxias.
A comprovação em escala cosmológica da Teoria Geral da Relatividade propicia uma forte indicação da presença da energia escura.
Fonte: Nature
quarta-feira, 28 de setembro de 2011
Buracos negros primordiais e matéria escura
Uma nova ideia pode ajudar os cientistas a detectar evidências da matéria escura; ao prestar atenção em ondulações na superfície das estrelas, as vibrações poderiam indicar que um estranho objeto de matéria escura, hipotético, conhecido como um buraco negro primordial, passou através delas.
© Princeton University(efeito de um buraco negro primodial)
Esta imagem ilustra as ondas de vibração, resultando como um buraco negro primordial (pontos brancos) que passa pelo centro de uma estrela. As diferentes cores correspondem à densidade do buraco negro primordial e a força da vibração.
As ondulações poderiam fornecer a prova observável da matéria escura, que os cientistas acreditam que é responsável por mais de 80% de toda a matéria no Universo, mas até agora não foi detectada. Identificar um buraco negro primordial teria profundas implicações para nossa compreensão da origem do Universo e da matéria escura.
Os cientistas acreditam que apenas 4% do Universo é composto de material ordinário, que nós podemos ver. O resto é uma coisa estranha, chamada de energia escura e matéria escura.
Embora a matéria escura teoricamente domine o Universo, os cientistas ainda não a observaram diretamente, apenas inferiram sua existência através de efeitos gravitacionais sobre a matéria que eles podem ver.
O novo estudo pode ajudar os cientistas a obter um melhor controle sobre o que é a matéria escura. Para isso, eles simularam o que aconteceria se um buraco negro primordial passasse por uma estrela.
Buracos negros primordiais são remanescentes teóricos do Big Bang, o evento explosivo que criou o Universo. Esses objetos estranhos, que ainda não foram observados, são uma das várias estruturas cósmicas que podem ser a fonte de matéria escura.
Buracos negros primordiais são muito menores do que os buracos negros “normais” e, portanto, não engolem uma estrela e toda a sua luz. Ao contrário, suas colisões com estrelas causariam vibrações perceptíveis nas superfícies das estrelas.
As simulações dos pesquisadores também colocam alguns números em quão grande um buraco negro primordial teria que ser para causar uma ondulação perceptível. Eles descobriram que um objeto com a massa de um asteroide de tamanho decente provocaria o fenômeno.
Se buracos negros primordiais existirem de verdade, os cientistas devem ser capazes de detectar um em algum ponto. A Via Láctea tem 100 bilhões de estrelas, então cerca de 10.000 eventos detectáveis devem estar acontecendo a cada ano na nossa galáxia.
Os resultados da pesquisa foram publicados este mês na revista Physical Review Letters.
Fonte: LiveScience