sábado, 23 de janeiro de 2021

Encontrado exoplaneta em sistema triplo

Pouco depois da missão Kepler da NASA ter começado operações em 2009, o telescópio espacial avistou o que se pensava ser um planeta com metade do tamanho de Saturno num sistema estelar múltiplo.

© Caltech/R. Hurt (ilustração do exoplaneta KOI-5Ab)

O KOI-5Ab foi apenas o segundo candidato a planeta a ser encontrado pela missão e, por mais excitante que fosse na época, acabou sendo posto de lado enquanto o Kepler acumulava cada vez mais descobertas exoplanetárias. 

No final das operações da missão, em 2018, o Kepler havia descoberto uns colossais 2.394 exoplanetas, planetas que orbitam outras estrelas que não o Sol, e 2.366 candidatos a exoplanetas adicionais que ainda precisavam de confirmação.

Graças a novas observações com a segunda missão de caça exoplanetária da NASA, o TESS (Transiting Exoplanet Survey Satellite), e com uma série de telescópios terrestres, foi possível desvendar todas as evidências em torno de KOI-5Ab e de provar a sua existência.

Existem alguns detalhes intrigantes a ponderar sobre este exoplaneta. Muito provavelmente um planeta gigante gasoso como Júpiter ou Saturno no nosso Sistema Solar, tendo em conta o seu tamanho, KOI-5Ab é incomum porque orbita uma estrela num sistema com outras duas estrelas companheiras, vagueando num plano que está desalinhado com pelo menos uma das estrelas. 

O arranjo questiona como cada membro neste sistema se formou a partir das mesmas nuvens rodopiantes de gás e poeira. 

Usando dados do Observatório W. M. Keck no Havaí, do Observatório Palomar do Caltech perto de San Diego, e do Gemini Norte no Havaí, os astrônomos determinaram que KOI-5Ab parecia estar orbitando uma estrela num sistema estelar triplo. No entanto, ainda não conseguiam descobrir se o sinal do planeta era na verdade um equívoco de uma das outras duas estrelas ou, caso o planeta fosse real, qual das estrelas orbitava. 

Então, em 2018, surgiu o TESS. Tal como o Kepler, o TESS procura o "piscar" da luz estelar produzido pelo trânsito de um exoplaneta, isto é, quando este passa em frente da sua estrela hospedeira a partir do ponto de vista do Sistema Solar. 

O TESS observou uma parte do campo de visão do Kepler, incluindo o sistema KOI-5. O TESS também identificou KOI-5Ab como um candidato a exoplaneta, embora o TESS o denomine TOI-1241b. 

Assim como o Kepler havia observado anteriormente, o TESS descobriu que o planeta completava uma órbita em torno da sua estrela aproximadamente a cada cinco dias. Utilizando uma técnica alternativa à do Kepler e do TESS, o Observatório Keck é frequentemente usado para observações de acompanhamento de exoplanetas, medindo a leve oscilação numa estrela enquanto um planeta orbita ao seu redor e exerce uma atração gravitacional. 

Os astrônomos foram capazes de distinguir uma oscilação produzida pela companheira estelar interna que orbita a estrela primária da oscilação do planeta aparente enquanto orbita a estrela primária. Juntas, as diferentes coleções de dados dos telescópios espaciais e terrestres ajudaram a confirmar que KOI-5Ab é, de fato, um planeta que orbita a estrela primária.

O KOI-5Ab orbita a Estrela A, que tem uma companheira relativamente íntima, a Estrela B. A Estrela A e a Estrela B orbitam-se uma à outra a cada 30 anos. Uma terceira estrela ligada gravitacionalmente, a Estrela C, orbita as estrelas A e B a cada 400 anos. Os dados combinados também revelam que o plano orbital do planeta não está alinhado com o plano orbital da Estrela B, a segunda estrela interna, como seria de esperar caso as estrelas e os planetas fossem todos formados a partir do mesmo disco de material circundante.

Os astrônomos não têm a certeza do que provocou o desalinhamento de KOI-5Ab, mas pensam que a segunda estrela "chutou" gravitacionalmente o planeta durante o seu desenvolvimento, inclinando a sua órbita e fazendo com que migre para dentro.

Os sistemas estelares triplos constituem cerca de 10% de todos os sistemas estelares. Esta não é a primeira evidência de planetas em sistemas duplos ou triplos. Um caso notável envolve o sistema estelar triplo GW Orionis, no qual um disco de formação planetária foi dividido em anéis distintos e desalinhados, onde os planetas podem estar sendo formados.

No entanto, apesar de centenas de descobertas de planetas em sistemas estelares múltiplos, são quantitativamente muito menos comuns do que planetas em sistemas com uma única estrela. 

Fonte: California Institute of Technology

Calculando a idade e o local de explosão de supernova

Os astrônomos estão "voltando atrás no tempo" num remanescente de supernova.

© Hubble (remanescente de supernova 1E 0102.2-7219)

Usando o telescópio espacial Hubble, refizeram o percurso dos estilhaços velozes da explosão a fim de calcular uma estimativa mais precisa da localização e do momento da detonação estelar. 

A vítima é uma estrela que explodiu há muito tempo na Pequena Nuvem de Magalhães, uma galáxia satélite da nossa Via Láctea. A estrela condenada deixou para trás um cadáver gasoso em expansão, um remanescente de supernova chamado 1E 0102.2-7219, que o Observatório Einstein da NASA descobriu pela primeira vez em raios X. 

Os pesquisadores vasculharam imagens de arquivo obtidas pelo Hubble, analisando observações no visível obtidas com 10 anos de intervalo. A equipe, liderada por John Banovetz e Danny Milisavljevic da Universidade Purdue, mediu as velocidades de 45 aglomerados de material em forma de girino, ricos em oxigênio, ejetados pela explosão de supernova. 

O oxigênio ionizado é um excelente rastreador porque brilha mais forte no visível. Para calcular uma idade precisa da explosão, foram escolhidos os 22 aglomerados de ejeção mais rápidos. 

Os cientistas determinaram que estes alvos eram os menos prováveis de verem a sua velocidade diminuída pela passagem pelo material interestelar. Então traçaram o movimento para trás no tempo até que o material ejetado se aglutinasse num ponto, identificando o local da explosão. Uma vez conhecido, foi calculado o tempo necessário para as ejeções velozes viajarem do centro da explosão até à sua posição atual. 

De acordo com a sua estimativa, a luz da explosão chegou à Terra há 1.700 anos, durante o declínio do Império Romano. No entanto, a supernova só seria visível para os habitantes do Hemisfério Sul. Infelizmente, não existem registos conhecidos deste evento titânico. Os resultados diferem das observações anteriores do local da explosão de supernova e da idade. Estudos anteriores, por exemplo, chegaram a idades da explosão de 2.000 e 1.000 anos. 

No entanto, Banovetz e Milisavljevic dizem que a sua análise é mais robusta. "Um estudo anterior comparou imagens obtidas com anos de intervalo e com duas câmaras do Hubble, a WFPC2 (Wide Field Planetary Camera 2) e a ACS (Advanced Camera for Surveys)."

Os astrônomos também aproveitaram as imagens nítidas do instrumento ACS para selecionar quais os aglomerados de material ejetado para análise. Em estudos anteriores, os pesquisadores calcularam a média da velocidade de todos os detritos gasosos para calcular a idade da explosão. No entanto, os dados do ACS revelaram regiões onde o material ejetado desacelerou porque estava chocando com o material mais denso "derramado" pela estrela antes de explodir como supernova. 

Os cientistas precisavam do material ejetado que melhor refletisse as suas velocidades originais da explosão, usando-os para determinar uma estimativa precisa da idade da explosão de supernova. O Hubble também cronometrou a velocidade de uma estrela de nêutrons suspeita que foi expelida pela explosão. 

Com base nas suas estimativas, a estrela de nêutrons deve estar se movendo a mais de 3,2 milhões de quilômetros por hora do centro da explosão para chegar à sua posição atual. A estrela de nêutrons foi identificada em observações com o VLT (Very Large Telescope) do ESO no Chile, em combinação com dados do observatório de raios X Chandra da NASA.

Investigações mais recentes questionam se o objeto é realmente a estrela de nêutrons sobrevivente da explosão de supernova. É potencialmente apenas um amontoado compacto do material ejetado pela supernova que foi iluminado, e os resultados geralmente apoiam esta conclusão. Portanto, a caça à estrela de nêutrons ainda está em andamento. O estudo não resolve o mistério, mas dá uma estimativa da velocidade da estrela de nêutrons candidata.

Fonte: Space Telescope Science Institute

segunda-feira, 18 de janeiro de 2021

O remanescente de supernova da Nebulosa da Medula

O que alimenta esta nebulosa incomum?

© Russell Croman (CTB-1)

A CTB-1 ou Abell 85, apelidada de Nebulosa da Medula por sua forma semelhante a um cérebro, é a camada de gás em expansão que foi deixada quando uma estrela massiva em direção à constelação de Cassiopeia explodiu há cerca de 10.000 anos. 

A estrela provavelmente detonou quando ficou sem elementos, perto de seu núcleo, que poderiam criar pressão estabilizadora com a fusão nuclear. O remanescente de supernova resultante ainda brilha na luz visível pelo calor gerado por sua colisão com o gás interestelar confinante. 

No entanto, por que a nebulosa também brilha na luz de raios X permanece um mistério. Uma hipótese sustenta que um pulsar energético alimenta a nebulosa com um vento que se move rapidamente para fora. 

Seguindo este exemplo, um pulsar foi recentemente encontrado em ondas de rádio que parece ter sido expelido pela explosão de uma supernova a mais de 1.000 quilômetros por segundo. 

Embora a Nebulosa da Medula pareça tão grande quanto uma lua cheia, é tão tênue que levou 130 horas de exposição com dois pequenos telescópios no Novo México, EUA, para criar a imagem apresentada.

Fonte: NASA

domingo, 17 de janeiro de 2021

Descoberta de quasar estabelece novo recorde de distância

Uma equipe internacional de astrônomos descobriu o quasar que é até à data o mais distante, localizado a mais de 13 bilhões de anos-luz da Terra alimentado por um buraco negro supermassivo mais de 1,6 bilhões de vezes mais massivo do que o Sol e mais de 1.000 vezes mais brilhante do que a Via Láctea.

© NOIRLab/J. da Silva (ilustração do quasar J0313–1806)

O quasar, chamado J0313–1806, é visto quando o Universo tinha apenas 670 milhões de anos e está fornecendo informações valiosas sobre como as galáxias massivas e os buracos negros supermassivos nos seus núcleos se formaram no início do Universo. 

A nova descoberta bate o recorde anterior de distância para um quasar, estabelecido há três anos. As observações com o ALMA (Atacama Large Millimeter/submillimeter Array) no Chile confirmaram a medição da distância com alta precisão. 

Os quasares ocorrem quando a poderosa gravidade de um buraco negro supermassivo no núcleo de uma galáxia atrai o material circundante que forma um disco orbital de material superaquecido em torno do buraco negro. O processo libera uma quantidade enorme de energia, tornando o quasar extremamente brilhante, muitas vezes ofuscando o resto da galáxia. O buraco negro no centro de J0313-1806 é duas vezes mais massivo do que o recordista anterior. 

A enorme massa do buraco negro de J0313-1806, num momento tão precoce na história do Universo, descarta dois modelos teóricos de como estes objetos se formaram. No primeiro destes dois modelos, as estrelas massivas individuais explodem como supernovas e colapsam em buracos negros que então coalescem em buracos negros maiores. No segundo, densos aglomerados de estrelas colapsam num enorme buraco negro. 

No entanto, em ambos os casos, o processo leva demasiado tempo para produzir um buraco negro tão massivo quanto o de J0313-1806 no momento em que o vemos. Neste caso, é um mecanismo que envolve grandes quantidades de gás hidrogênio frio e primordial que colapsa diretamente para um buraco negro primordial.

As observações de J0313-1806 pelo ALMA forneceram detalhes tentadores sobre a galáxia hospedeira do quasar, que está formando novas estrelas a um ritmo 200 vezes maior do que o da Via Láctea. 

Esta é uma taxa de formação estelar relativamente alta em galáxias de idade semelhante, e indica que a galáxia hospedeira do quasar está crescendo muito depressa. O brilho do quasar indica que o buraco negro está engolindo o equivalente a 25 sóis todos os anos. 

A energia liberada por esta alimentação rápida provavelmente está gerando um poderoso fluxo de gás ionizado que é visto se movendo a cerca de 20% da velocidade da luz. Pensa-se que tais fluxos sejam o que, em última análise, para a formação de estrelas na galáxia.

Provavelmente estes buracos negros supermassivos foram a razão pela qual muitas das grandes galáxias pararam de formar estrelas em algum ponto. Este quasar é a primeira evidência de que a extinção pode ter acontecido em tempos muito antigos. Este processo também deixará o buraco negro sem nada para se abastecer e interromperá o seu crescimento. 

Além do ALMA, os astrônomos usaram o telescópio Magellan Baade de 6,5 metros, o telescópio Gemini Norte e o Observatório W. M. Keck, ambos no Havaí, e o telescópio Gemini Sul no Chile. Os astrônomos planejam continuar estudando J0313-1806 e outros quasares com telescópios terrestres e espaciais.

Os cientistas apresentaram os seus achados na reunião da Sociedade Astronômica Americana, realizada virtualmente, e num artigo científico aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

quarta-feira, 13 de janeiro de 2021

Encontrados ventos e correntes em anã marrom mais próxima

Astrônomos encontraram bandas e listras na anã marrom mais próxima da Terra, sugerindo processos que agitam o interior de sua atmosfera.

© Daniel Apai (ilustração da anã marrom Luhman 16B)

As anãs marrons são objetos celestes misteriosos que não são exatamente estrelas nem planetas. São aproximadamente do tamanho de Júpiter, mas normalmente dezenas de vezes mais massivas. Ainda assim, são menos massivas do que as estrelas menores, de modo que os seus núcleos não têm pressão suficiente para fundir átomos como as estrelas. Ficam quentes quando se formam e gradualmente arrefecem, têm brilho fraco que diminuem lentamente ao longo das suas vidas, o que as torna difíceis de encontrar. Nenhum telescópio pode ver claramente a atmosfera destes objetos. 

"Será que as anãs marrons se parecem com Júpiter, com as suas bandas regulares formadas por grandes jatos paralelos e longitudinais, ou são dominadas por um padrão em constante mudança de tempestades gigantescas conhecidas como vórtices como aqueles encontrados nos polos de Júpiter?," disse Daniel Apai, pesquisador na Universidade do Arizona. 

Ele e a sua equipe descobriram que as anãs marrons se parecem muito com Júpiter. Os padrões na atmosfera revelam ventos velozes que correm paralelos ao equador das anãs marrons. Estes ventos estão misturando as atmosferas, redistribuindo o calor que emerge do interior quente destes astros. Além disso, tal como Júpiter, os vórtices dominam as regiões polares. 

Alguns modelos atmosféricos previram este padrão atmosférico, onde o vento e a circulação atmosférica em grande escala muitas vezes têm efeitos profundos nas atmosferas planetárias, desde o clima da Terra até ao aspeto de Júpiter, e agora estes jatos atmosféricos de grande escala também moldam as atmosferas das anãs marrons. 

O grupo de Apai na Universidade do Arizona é líder mundial no mapeamento das atmosferas das anãs marrons e exoplanetas usando telescópios espaciais e um novo método. A equipe usou o TESS (Transiting Exoplanet Survey Satellite), um telescópio espacial da NASA, para estudar as duas anãs marrons mais próximas da Terra. 

A apenas 6,5 anos-luz de distância, as anãs marrons são chamadas Luhman 16A e Luhman 16B. Embora ambas tenham aproximadamente o mesmo tamanho de Júpiter, ambas são mais densas e, portanto, contêm mais massa. Luhman 16A tem cerca de 34 vezes a massa de Júpiter, e Luhman 16B tem cerca de 28 vezes a massa de Júpiter e é cerca de 800 ºC mais quente. 

Com algoritmos avançados foram obtidas medições muito precisas das mudanças de brilho conforme as duas anãs marrons giravam. Elas ficam mais brilhantes quando as regiões atmosféricas giram para o nosso ponto de vista e mais escuras quando giram para fora de vista.

Os resultados mostram que há muita semelhança entre a circulação atmosférica dos planetas do Sistema Solar e as anãs marrons. Como resultado, as anãs marrons podem servir como análogos mais massivos de planetas gigantes existentes fora do nosso Sistema Solar em estudos futuros. 

Os astrônomos esperam explorar ainda mais as nuvens, sistemas de tempestade e zonas de circulação presentes nas anãs marrons e exoplanetas para aprofundar a nossa compreensão das atmosferas localizadas além do Sistema Solar.

O novo estudo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Arizona

segunda-feira, 11 de janeiro de 2021

Galáxias distantes em colisão perdendo capacidade de gerar estrelas

As galáxias começam a “morrer” quando param de formar estrelas, mas até agora os astrônomos nunca tinham observado claramente o início deste processo numa galáxia distante.

© ESO/M. Kornmesser (ilustração da galáxia ID2299)

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), do qual o Observatório Europeu do Sul (ESO) é um parceiro, os astrônomos observaram uma galáxia ejetar quase metade de seu gás de formação estelar.

Os astrônomos pensam que este evento terá sido desencadeado pela colisão com outra galáxia, o que poderá modificar o modo como as galáxias param de formar novas estrelas. “Esta é a primeira vez que observamos uma galáxia com formação estelar massiva típica no Universo distante prestes a 'morrer' devido a uma ejeção massiva de gás frio,” disse Annagrazia Puglisi, pesquisadora principal do novo estudo, da Universidade de Durham, Reino Unido, e do Centro de Investigação Nuclear de Saclay (CEA-Saclay), França.

A galáxia, ID2299, está tão distante que a sua luz demora 9 bilhões de anos a chegar até nós; vemos isso quando o Universo tinha apenas 4,5 bilhões de anos. A ejeção de gás está acontecendo a uma taxa equivalente a 10.000 sóis por ano, removendo incríveis 46% do gás frio total existente na ID2299.

Como a galáxia também está formando estrelas muito rapidamente, centenas de vezes mais rápido que a Via Láctea, o gás restante será rapidamente consumido em apenas algumas dezenas de milhões de anos. 

O evento responsável pela perda espetacular de gás é uma colisão entre duas galáxias, que eventualmente se fundiram para formar o ID2299. A pista elusiva que apontou os cientistas para este cenário foi a associação do gás ejetado com uma “cauda de maré”. As caudas de maré são correntes alongadas de estrelas e gás que se estendem para o espaço interestelar e que são criadas quando duas galáxias se fundem, mas que são normalmente muito tênues para poderem ser observadas em galáxias distantes.

No entanto, a equipe conseguiu observar esta estrutura relativamente brilhante exatamente quando estava se lançando ao espaço e foi capaz de identificá-la como uma cauda de maré. A maioria dos astrônomos acredita que os ventos causados pela formação estelar e a atividade de buracos negros nos centros de galáxias massivas são responsáveis por lançar para o espaço material que, de outro modo, seria utilizado na formação estelar, terminando assim com a capacidade das galáxias de formar novas estrelas. 

Contudo, o novo estudo sugere que as fusões galácticas podem também ser responsáveis por ejetar para o espaço este "combustível" de formação estelar. 

Esta descoberta surpreendente foi feita por acaso quando a equipe estava analisando um levantamento de galáxias obtido pelo ALMA com o objetivo de estudar as propriedades do gás frio em mais de 100 galáxias distantes.

A ID2299 foi observada pelo ALMA durante apenas alguns minutos, mas o poderoso observatório, localizado no norte do Chile, permitiu à equipe coletar dados suficientes para detectar a galáxia e a sua cauda de ejeção.

No futuro, a equipe poderá usar o ALMA para fazer observações com maior resolução e mais profundas desta galáxia, para tentar compreender melhor a dinâmica do gás ejetado. Observações com o futuro Extremely Large Telescope (ELT) do ESO permitirão à equipe explorar as ligações entre as estrelas e o gás na ID2299, o que poderá nos dar novas pistas sobre a evolução das galáxias. 

Esta pesquisa foi apresentada no artigo intitulado “A titanic interstellar medium ejection from a massive starburst galaxy at z=1.4” que será publicado na revista Nature Astronomy.

Fonte: ESO

Formação estelar em torno de um longínquo buraco negro supermassivo

Esta imagem da distante galáxia espiral NGC 1097, captada pelo instrumento MUSE montado no Very Large Telescope (VLT) do ESO, mostra um exemplo típico de um anel nuclear de formação explosiva de estrelas.

© ESO/VLT (NGC 1097)

Localizado a 45 milhões de anos-luz de distância da Terra, na constelação da Fornalha, este anel se encontra mesmo no centro da galáxia e tem um tamanho de apenas 5.000 anos-luz, o que o torna minúsculo quando comparado com o tamanho total da galáxia hospedeira, que se estende ao longo de dezenas de milhares de anos-luz além do seu centro. 

As faixas mais escuras vistas nesta imagem mostram poeira, gás e restos da galáxia (ou possivelmente de uma galáxia satélite), que estão sendo canalizados para o buraco negro situado no seu centro. 

Este processo aquece a matéria circundante, formando um disco de acreção em torno do buraco negro e levando à ejeção de enormes quantidades de energia para o meio circundante. Consequentemente, a poeira próxima aquece e a formação estelar acelera na região em torno do buraco negro supermassivo, dando origem ao anel nuclear de formação estelar explosiva que vemos em tons de rosa e violeta na imagem. 

O instrumento MUSE (Multi Unit Spectroscopic Explorer) está montado no Yepun, um dos quatro telescópios de 8,2 metros que compõem o VLT, instalado no Observatório do Paranal do ESO. O seu design único permite aos astrônomos mapear mecanismos complexos no seio de muitas galáxias e analisar a formação de estrelas e aglomerados estelares.

Fonte: ESO

quinta-feira, 7 de janeiro de 2021

Descobertas centenas de estrelas de alta velocidade

Uma equipe de pesquisa liderada por astrônomos do NAOC (National Astronomical Observatories of Chinese Academy of Sciences) descobriu 591 estrelas de alta velocidade com base em dados do LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) e do Gaia, e 43 delas podem até escapar da nossa Galáxia.

© NAOC/Xiao Kong (ilustração das posições e órbitas de 591 estrelas de alta velocidade)

Desde que a primeira estrela de alta velocidade foi descoberta em 2005, mais de 550 outras foram descobertas com vários telescópios ao longo de 15 anos. "As 591 estrelas de alta velocidade descobertas desta vez duplicaram o número total anterior, elevando o total atual a mais de 1000," disse a Dra. Yin-Bi Li, autora principal do estudo. 

As estrelas de alta velocidade são uma classe de estrelas que se movem rapidamente e que podem até escapar da Via Láctea. "Embora sejam raras na Via Láctea, as estrelas de alta velocidade, com cinemática única, podem fornecer mais informações sobre uma ampla gama da ciência Galáctica, desde o buraco negro supermassivo central até ao distante halo Galáctico," disse o professor You-Jun Lu do NAOC. 

O LAMOST, o maior telescópio óptico da China, tem a maior taxa de aquisição espectral do mundo e pode observar cerca de 4.000 alvos estelares numa única exposição. Começou os seus levantamentos regulares em 2012 e estabeleceu a maior base de dados espectrais do mundo. 

O Gaia é uma missão espacial do programa de ciências da ESA, lançado em 2013. Forneceu parâmetros astrométricos para mais de 1,3 bilhões de fontes, a maior base de dados de parâmetros astrométricos. 

Com base na cinemática e na química, os pesquisadores descobriram que as 591 estrelas de alta velocidade eram estrelas do halo interno. "As suas metalicidades baixas indicam que a maior parte do halo estelar foi formado como consequência da acreção e da perturbação de maré de galáxias anãs," disse o professor Gang Zhao do NAOC. 

A descoberta destas estrelas de alta velocidade diz-nos que a combinação de vários grandes levantamentos vai, no futuro, ajudar-nos a descobrir mais estrelas de alta velocidade e outras estrelas raras, que serão usadas para estudar este mistério não resolvido da nossa Galáxia.

O estudo foi publicado no periódico The Astrophysical Journal Supplement Series.

Fonte: Chinese Academy of Sciences

sábado, 2 de janeiro de 2021

Como as galáxias próximas formam as suas estrelas

O modo como as estrelas se formam nas galáxias permanece uma grande questão em aberto na astrofísica.

© Robert Feldmann (gás em galáxia com formação estelar)

A imagem mostra uma visualização do gás dentro e em torno de uma galáxia parecida com a Via Láctea (centro) no Universo atual como previsto por uma simulação computacional. O denso hidrogênio atômico e molecular tipicamente forma um grande disco, visto aqui a azul-roxo no centro da imagem. As estrelas (branco) formam-se no disco. Formação estelar adicional pode ter lugar em galáxias satélite, vistas aqui em cima e para a direita e em baixo e para a esquerda. Gás quente e pouco denso (tons verde e vermelho) pode ser encontrado a grandes distâncias, perto da fronteira do halo de matéria escura que rodeia a galáxia principal (círculo branco na imagem maior). A imagem também mostra um grande número de estruturas de matéria escura (púrpura), a maioria das quais estão desprovidas de gás e estrelas.

Um novo estudo da Universidade de Zurique apresenta nova evidência sobre este tópico com a ajuda de uma reanálise baseada em dados de medições observacionais. Descobriu-se que a atividade de formação estelar de galáxias próximas típicas é proporcional à quantidade de gás presente nestas galáxias. Isto aponta para o suprimento de gás a distâncias cósmicas como o principal impulsionador da formação estelar.

As estrelas nascem em nuvens densas de hidrogênio molecular que permeia o espaço interestelar da maioria das galáxias. Embora a física da formação estelar seja complexa, nos últimos anos houve um progresso substancial no sentido de compreender como as estrelas se formam num ambiente galáctico. O que em última análise determina o nível de formação estelar nas galáxias, no entanto, permanece uma questão em aberto. 

Em princípio, dois fatores principais influenciam a atividade da formação das estrelas: a quantidade de gás molecular que está presente nas galáxias e o tempo que o reservatório de gás demora para se esgotar ao converter-se em estrelas. Embora a massa de gás das galáxias seja regulada por uma competição entre fluxos internos e externos de gás, e o consumo de gás, a física da conversão gás-estrela atualmente não é bem compreendida. Considerando a sua função potencialmente crítica, muitos esforços têm sido empreendidos para determinar observacionalmente a escala de tempo do esgotamento de gás. No entanto, estes esforços resultaram em descobertas contraditórias, em parte devido ao desafio em medir as massas de gás de forma confiável, dados os limites de detecção atuais. 

O presente estudo do Instituto para Ciência Computacional da Universidade de Zurique usa um novo método estatístico baseado em modelagem Bayesiana para contabilizar adequadamente as galáxias com quantidades não detectadas de hidrogênio molecular ou atômico para minimizar o viés observacional. Esta nova análise revela que, em típicas galáxias formadoras de estrelas, o hidrogênio molecular e o hidrogênio atômico são convertidos em estrelas em escalas de tempo aproximadamente constantes de 1 e 10 bilhões de anos, respectivamente. No entanto, as galáxias extremamente ativas têm escalas de tempo de esgotamento de gás muito mais curtas. 

"Estas descobertas sugerem que a formação estelar está, de fato, diretamente ligada ao reservatório geral de gás e, portanto, é definida pela taxa na qual o gás entra ou sai de uma galáxia," diz Robert Feldmann, professor do centro para Astrofísica Teórica e Cosmologia. Em contraste, a formação estelar muito mais intensa destas galáxias provavelmente tem uma origem física diferente, como interações galácticas ou instabilidades em discos galácticos. 

Esta análise é baseada em dados observacionais de galáxias próximas. Observações com o ALMA (Atacama Large Millimeter/Submillimeter Array), com o SKA (Square Kilometer Array) e com outros observatórios prometem sondar o conteúdo de gás de um grande número de galáxias ao longo da história cósmica. Será fundamental continuar o desenvolvimento de métodos estatísticos e da ciência de dados para extrair com precisão o conteúdo físico destas novas observações e para descobrir completamente os mistérios da formação estelar nas galáxias.

Um artigo foi publicado no periódico Communications Physics.

Fonte: University of Zurich

terça-feira, 29 de dezembro de 2020

Uma barra de luz brilhante

A magnífica barra central da NGC 2217, também conhecida como AM 0619-271, brilha na constelação de Canis Major, nesta nova imagem obtida pelo telescópio espacial Hubble.

© Hubble (NGC 2217)

A aproximadamente 65 milhões de anos-luz da Terra, esta galáxia espiral barrada tem um tamanho semelhante à nossa Via Láctea com 100 mil anos-luz de diâmetro. 

Muitas estrelas estão concentradas em sua região central formando a barra luminosa, circundada por um conjunto de braços espirais fortemente enrolados. A barra central nestes tipos de galáxias desempenha um papel importante em sua evolução, ajudando a canalizar o gás do disco para o meio da galáxia. 

O gás e a poeira transportados possibilitam a formação de novas estrelas ou abastecem o buraco negro supermassivo no centro da galáxia. Pesando algumas centenas a mais que um bilhão de vezes a massa do nosso Sol, os buracos negros supermassivos estão presentes em quase todas as grandes galáxias. 

Esta imagem foi colorida com dados do telescópio Panoramic Survey Telescope and Rapid Response System (Pan-STARRS).

Fonte: ESA

O nascimento de um magnetar devido a uma colisão colossal

Há muito tempo, no Universo distante, uma enorme explosão de raios gama liberou mais energia em meio segundo do que o Sol irá produzir durante a sua vida inteira de 10 bilhões de anos.

© Hubble (brilho de uma kilonova)

Depois de examinar o surto incrivelmente brilhante no visível, em raios X, no infravermelho próximo e no rádio, astrônomos da Universidade Northwestern acreditam ter, potencialmente, detectado o nascimento de um magnetar. 

Os pesquisadores pensam que o magnetar foi formado pela fusão de duas estrelas de nêutrons, o que nunca tinha sido observado antes. A fusão resultou numa quilonova brilhante, cuja luz finalmente atingiu a Terra no dia 22 de maio de 2020. A radiação veio ao início como um surto de raios gama, a que se dá o nome de explosão curta de raios gama.

"Quando duas estrelas de nêutrons se fundem, o resultado previsto mais comum é que formem uma estrela de nêutrons que colapsa num buraco negro em milissegundos ou menos," disse Wen-fai Fong, da Universidade Northwestern, que liderou o estudo. "O nosso trabalho mostra que é possível que, para esta explosão curta de raios gama em particular, o objeto massivo tenha sobrevivido. Em vez de colapsar para um buraco negro, tornou-se num magnetar: uma estrela de nêutrons que gira rapidamente e tem grandes campos magnéticos, despejando energia para o seu ambiente circundante e criando o brilho muito forte que vemos." 

Fong é professora assistente de física e astronomia do Colégio de Artes e Ciências da Universidade Northwestern e membro do CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics). 

Depois da radiação ter sido detectada pela primeira vez pelo Observatório Neil Gehrels Swift da NASA, os cientistas rapidamente recrutaram outros telescópios, incluindo o telescópio espacial Hubble da NASA, o VLA (Very Large Array), o Observatório W. M. Keck e a rede do Observatório Las Cumbres, para estudar o rescaldo da explosão e a sua galáxia hospedeira.

Em comparação com as observações de raios X e no rádio, a emissão no infravermelho próximo detectada com o Hubble era demasiado brilhante. Na verdade, era 10 vezes mais brilhante do que o previsto. 

Foram discutidas várias possibilidades para explicar o brilho incomum que o telescópio espacial Hubble observou. Os pesquisadores pensam que as explosões curtas são provocadas pela fusão de duas estrelas de nêutrons, objetos extremamente densos com mais ou menos a massa do Sol comprimida no volume de uma grande cidade. 

Basicamente temos as linhas do campo magnético ancoradas na estrela estão a girando cerca de 1.000 vezes por segundo, e isto produz um vento magnetizado. Estas linhas de campo giratórias extraem a energia rotacional da estrela de nêutrons formada na fusão e depositam esta energia no material ejetado pela explosão, fazendo com que o material brilhe ainda mais. 

Pensa-se que as quilonovas, que são normalmente .1000 vezes mais brilhantes do que uma nova clássica, acompanhem explosões curtas de raios gama. Exclusivas à fusão de dois objetos compactos, as quilonovas brilham do decaimento radioativo dos elementos pesados ejetados durante a fusão, produzindo elementos altamente cobiçados como ouro e urânio.

Esta descoberta forneceu a oportunidade de explorar a diversidade de quilonovas e dos seus objetos remanescentes. Caso o brilho inesperado visto pelo Hubble tenha vindo de um magnetar que depositou a energia no material da quilonova, então, dentro de alguns anos, o material ejetado da explosão produzirá radiação que aparece em comprimentos de onda do rádio. As observações posteriores no rádio podem, em última análise, provar que se tratava de um magnetar, levando a uma explicação da origem de tais objetos. 

A pesquisa foi aceita para publicação no periódico The Astrophysical Journal.

Fonte: Space Telescope Science Institute

terça-feira, 22 de dezembro de 2020

A procura de um buraco negro gigante desaparecido

O paradeiro de um buraco negro supermassivo acabou de ficar mais misterioso.

© Chandra/Hubble/Subaru (Abell 2261)

Apesar da procura com o observatório de raios X Chandra e o telescópio espacial Hubble, os astrônomos não conseguem encontrar um buraco negro distante com uma massa estimada entre 3 bilhões e 100 bilhões de vezes a massa do Sol. Este buraco negro ausente deve estar na enorme galáxia no centro do aglomerado de galáxias Abell 2261, localizado a aproximadamente 2,7 bilhões de anos-luz da Terra. 

Esta imagem composta de Abell 2261 contém dados ópticos do telescópio espacial Hubble e do telescópio Subaru, mostrando galáxias do aglomerado e no plano de fundo, e dados do Chandra, mostrando gás quente (em tons de cor-de-rosa) permeando o aglomerado. O meio da imagem mostra a grande galáxia elíptica no centro do aglomerado. 

Quase todas as grandes galáxias do Universo contêm um buraco negro supermassivo no seu centro, com uma massa milhões ou bilhões de vezes a do Sol. Já que a massa de um buraco negro central geralmente acompanha a massa da própria galáxia, os astrônomos esperam que a galáxia no centro de Abell 2261 contenha um buraco negro supermassivo que rivaliza com a massa de alguns dos maiores buracos negros conhecidos no Universo. 

Usando dados do Chandra obtidos em 1999 e 2004, os astrônomos já haviam procurado, no centro da grande galáxia central de Abell 2261, sinais de um buraco negro supermassivo. Procuraram material que foi superaquecido enquanto caía em direção ao buraco negro e que produziu raios X, mas não detectaram tal fonte. 

Agora, com novas e mais longas observações do Chandra obtidas em 2018, uma equipe liderada por Kayhan Gultekin da Universidade do Michigan realizou uma busca mais profunda pelo buraco negro no centro da galáxia. Também consideraram uma explicação alternativa, na qual o buraco negro foi ejetado do centro da galáxia hospedeira. 

Este evento violento pode ter resultado da fusão de duas galáxias para formar a galáxia observada, acompanhada pela fusão dos dois buracos negros de cada galáxia num enorme buraco negro. Quando os buracos negros se fundem, produzem ondulações no espaço-tempo chamadas ondas gravitacionais. Se a enorme quantidade de ondas gravitacionais geradas por tal evento fosse mais forte numa direção do que em outra, a teoria prevê que o novo buraco negro ainda mais massivo teria sido enviado para longe do centro da galáxia na direção oposta. É o que se chama de buraco negro em recuo. 

Os astrônomos não encontraram evidências definitivas de buracos negros em recuo e nem se sabe se os buracos negros supermassivos chegam perto o suficiente uns dos outros para produzir ondas gravitacionais e se fundirem; até agora,  foi apenas verificado as fusões de buracos negros muito menores. A detecção de buracos negros supermassivos em recuo encorajaria os cientistas a usar e desenvolver observatórios para procurar ondas gravitacionais de buracos negros supermassivos que se fundem.

O Abell 2261 é um excelente aglomerado para procurar um buraco negro em recuo porque existem dois sinais indiretos da fusão entre dois buracos negros supermassivos. Em primeiro lugar, os dados das observações ópticas do Hubble e do Subaru revelam um núcleo gigantesco, que é muito maior do que o esperado para uma galáxia do seu tamanho.

O segundo detalhe é que a concentração mais densa de estrelas na galáxia está a mais de 2.000 anos-luz de distância do centro galáctico, o que é surpreendentemente distante. Estas características foram identificadas pela primeira vez por Marc Postman do STScI (Space Telescope Science Institute) e colaboradores nas suas imagens anteriores através do Hubble e Subaru, e levaram-nos a sugerir a ideia de um buraco negro fundido em Abell 2261.

Durante uma fusão, o buraco negro supermassivo de cada galáxia colapsa em direção ao centro da galáxia recém-coalescida. Se ficarem ligados um ao outro pela gravidade e a sua órbita começar a encolher, espera-se que os buracos negros interajam com as estrelas circundantes e as ejetem do centro da galáxia. Isto explicaria o grande núcleo de Abell 2261.

A concentração estelar fora do centro também pode ter sido causada por um evento violento, como a fusão de dois buracos negros supermassivos e o subsequente recuo de um único e maior buraco negro resultante. Embora existam indícios da ocorrência de uma fusão entre buracos negros, nem os dados do Chandra nem os do Hubble mostram evidências do próprio buraco negro. 

Os pesquisadores da Universidade da Virgínia Ocidental, já haviam usado o Hubble para procurar um aglomerado de estrelas que pode ter sido transportado por um buraco negro em recuo. Estudaram três aglomerados perto do centro da galáxia e examinaram se os movimentos das estrelas nestes aglomerados são altos o suficiente para sugerir que contêm um buraco negro com dez bilhões de vezes a massa do Sol. Não encontraram evidências claras de um buraco negro em dois dos aglomerados e as estrelas no outro eram demasiado fracas para produzir conclusões úteis. 

Os pesquisadores também estudaram previamente observações de Abell 2261 com o VLA (Karl G. Jansky Very Large Array). A emissão de rádio detectada perto do centro da galáxia mostrou evidências de atividade de um buraco negro supermassivo ocorrida há 50 milhões de anos, mas não indica que o centro da galáxia atualmente contém um buraco negro.

Voltaram-se então para o Chandra em busca de material que havia sido superaquecido e produzido raios X ao cair em direção ao buraco negro. Embora os dados do Chandra tenham revelado que o gás quente mais denso não estava no centro da galáxia, não revelaram nenhuma possível assinatura de raios X de um buraco negro em crescimento, ou seja, não foi encontrada nenhuma fonte de raios X no centro do aglomerado de galáxias, ou em qualquer um dos aglomerados estelares, ou no local da emissão de rádio. 

Os astrônomos concluíram que ou não há nenhum buraco negro nestes locais ou que está puxando o material demasiado devagar para produzir um sinal de raios X detectável. O mistério da localização deste gigantesco buraco negro continua. Embora a procura não tenha sido bem-sucedida, permanece a esperança para os astrônomos que procurem este buraco negro supermassivo no futuro. Uma vez lançado, o telescópio espacial James Webb poderá revelar a presença de um buraco negro supermassivo no centro da galáxia ou num dos aglomerados de estrelas. Se não for encontrado o buraco negro, então a melhor explicação é que o buraco negro recuou bem para fora do centro da galáxia.

Fonte: Harvard-Smithsonian Center for Astrophysics