quarta-feira, 16 de abril de 2014

Um estudo em escarlate

A nova imagem abaixo obtida no Observatório de La Silla do ESO, no Chile revela uma nuvem de hidrogênio chamada Gum 41.

região de formação estelar Gum 41

© ESO (região de formação estelar Gum 41)

No seio desta nebulosa pouco conhecida, estrelas luminosas, quentes e jovens, emitem radiação que faz brilhar o hidrogênio circundante num caraterístico tom escarlate.

A região do céu austral na constelação do Centauro acolhe muitas nebulosas brilhantes, cada uma associada a estrelas quentes recém nascidas que se formaram das nuvens de hidrogênio gasoso. A intensa radiação emitida pelas estrelas jovens excita o hidrogênio restante, fazendo com que este brilhe na cor vermelha típica das regiões de formação estelar. Outro exemplo famoso do mesmo fenômeno pode ser observado na Nebulosa da Lagoa, uma enorme nuvem que brilha em semelhantes tons escarlates.

Nebulosa da Lagoa

© ESO (Nebulosa da Lagoa)

A nebulosa Gum 41 situa-se a cerca de 7.300 anos-luz de distância da Terra. Foi descoberta pelo astrônomo australiano Colin Gum em fotografias obtidas no Observatório de Mount Stromlo, próximo de Canberra. Gum incluiu este objeto no seu catálogo de 84 nebulosas de emissão, publicado em 1955. Gum 41 é, na realidade, uma pequena parte de uma estrutura muito maior chamada Nebulosa Lambda Centauri, também conhecida pelo nome mais exótico de Nebulosa da Galinha Fugitiva. Gum morreu tragicamente em 1960, ainda jovem, num acidente de esqui na Suíça.
Nesta imagem de Gum 41, as nuvens parecem ser muito espessas e brilhantes, no entanto não é este o caso. Se um hipotético viajante espacial passasse pelo meio desta nebulosa, muito provavelmente nem a notaria. É que, mesmo de muito perto, a nebulosa apresenta-se tênue demais para poder ser detectada com o olho humano, fato que ajuda a perceber como é que um objeto tão grande apenas foi descoberto em meados do século XX, a sua radiação expande-se de modo muito tênue e o brilho vermelho não se consegue observar adequadamente no domínio ótico.
Esta nova imagem da Gum 41, provavelmente uma das melhores obtidas até agora, foi criada a partir de dados do instrumento Wide Field Imager (WFI), montado no telescópio MPG/ESO de 2,2 metros, no Observatório de La Silla, no Chile. Trata-se de uma combinação de imagens captadas através de três filtros de cor (azul, verde e vermelho) e de um filtro especial que capta a radiação vermelha emitida pelo hidrogênio.

Fonte: ESO

Nascimento de uma nova lua em Saturno?

A sonda Cassini da NASA tem documentado a formação de um pequeno objeto congelado dentro dos anéis de Saturno que pode ser uma nova lua do gigante gasoso, e pode também fornecer pistas para a formação das luas já conhecidas do planeta.

possível formação de nova lua de Saturno

© Cassini (possível formação de nova lua de Saturno)

Imagens feitas pela câmera de ângulo restrito da sonda Cassini, em 15 de Abril de 2013, mostram distúrbios na borda do Anel A de Saturno, o mais externo dos brilhantes anéis. Um desses distúrbios é um arco, cerca de 20% mais brilhante do que o ambiente ao redor, que tem cerca de 1.200 quilômetros de comprimento e 10 quilômetros de largura. Os cientistas também encontraram protuberâncias incomuns no perfil normalmente suave  da borda do anel. Os cientistas, acreditam que o arco e as protuberâncias sejam causadas pelos efeitos gravitacionais de um objeto próximo.

Não é esperado que o objeto cresça mais, e na verdade ele pode até se partir. Mas o processo da sua formação e o seu movimento contribui para o nosso entendimento sobre como as luas congeladas de Saturno, incluindo Titã e Encélado, possam ter se formado em anéis muito massivos a muito tempo atrás. Esses estudos também fornecem ideias sobre como a Terra e os outros planetas no nosso Sistema Solar, se formaram e migraram para longe do Sol.

“Nós nunca tínhamos visto algo assim antes”, disse Carl Murray da Queen Mary University de Londres, e o principal autor do artigo que descreve a descoberta. “Nós podemos estar olhando para o ato de nascimento, onde esse objeto está apenas deixando os anéis e saindo para ser uma lua propriamente dita”.

O objeto, informalmente chamado de Peggy, é muito pequeno para ser visto nas imagens. Os cientistas estimam que ele tenha provavelmente não mais do que um quilômetro de diâmetro. As luas congeladas de Saturno variam de tamanho dependendo da sua proximidade com o planeta, quanto mais distante do planeta maiores elas são. E muitas luas de Saturno são compostas primariamente de gelo, já que são as partículas que formam os anéis. Com base nesses fatos, e outros indicadores, os pesquisadores propuseram recentemente que as luas congeladas se formam de partículas dos anéis e então se movem para longe do planeta, fundindo com outras luas no caminho.

“Testemunhar o possível nascimento de uma pequena lua, é algo animador, e um evento inesperado”, disse Linda Spilker, cientista de projeto da Cassini no Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia. De acordo com Spilker, a órbita da Cassini será movida para mais perto da borda externa do Anel A no final de 2016 e fornecerá assim, uma oportunidade para se poder estudar Peggy em mais detalhe e até mesmo, quem sabe, fazer imagens do pequeno satélite.

É possível que o processo de formação de luas nos anéis de Saturno tenha terminado com Peggy, já que os anéis estão agora, muito depletados para gerar novas luas. Como provavelmente esse processo não será observado novamente, Murray e seus colegas estão tirando das observações tudo que eles podem aprender.

“A teoria diz que Saturno a muito tempo atrás tinha um sistema de anéis mais massivo capaz de gerar grandes luas”, disse Murray. “À medida que as luas se formaram perto da borda, elas exauriram os anéis e evoluíram, assim, as que se formaram primeiro são as maiores e mais distantes”.

Detalhes das observações foram publicados na edição de 14 de Abril de 2014 da revista Icarus.

Fonte: NASA

Escolhido o local da instalação da Rede de Telescópios Cherenkov

O local do ESO Paranal-Armazones no Chile foi escolhido como um dos dois potenciais locais no hemisfério sul para instalar o International Cherenkov Telescope Array, uma grande rede de telescópios para a astronomia de raios gama feita a partir do solo.

Cherenkov Telescope Array

© ESO (Cherenkov Telescope Array)

Trata-se de um importante passo na realização deste projeto e, se o local for efetivamente escolhido, será uma nova fronteira que se abrirá para o ESO.
No dia 10 de abril de 2014 representantes dos governos de 12 dos países envolvidos no projeto Cherenkov Telescope Array (CTA) juntaram-se em Munique e decidiram começar negociações em dois locais, Aar na Namíbia e Paranal-Armazones no Chile, mantendo Leoncito na Argentina como uma terceira opção.
O projeto CTA trata-se de uma iniciativa para construir a próxima geração de instrumentos no solo que operarão nas altas energias, os raios gama. O projeto CTA pretende usar a deteção da energia dos raios gama para investigar o Universo das altas energias.
O porta-voz do Consórcio CTA, o Professor Werner Hofmann, disse: “A escolha do local é um passo crucial na implementação do CTA; esta decisão representa um enorme passo em frente na concretização do projeto e por isso agradecemos a devoção e o apoio das agências que nos financiam e dos delegados dos países envolvidos na decisão.”
Os raios gama são emitidos pelos objetos do Universo mais quentes e poderosos, tais como buracos negros de massa extremamente elevada, supernovas e possivelmente restos do Big Bang. Quando um fóton de alta energia choca com a atmosfera da Terra, pode causar uma cascata de partículas secundárias, dando origem a um tipo de emissão conhecida por radiação de Cherenkov, um tênue flash de luz azul visível bastante característico. Este flash pode durar apenas alguns bilionésimos de segundo, por isso é necessário capturá-lo em imagens de modo extremamente rápido e com o auxílio de telescópios que possuam grande poder de colectar luz.
O Cherenkov Telescope Array é um projeto multinacional de todo o mundo, onde se encontram envolvidos 1.000 cientistas e engenheiros de 28 países e mais de 170 instituições de pesquisa. Com o CTA será dado um salto de uma ordem de magnitude em termos de sensibilidade, relativamente aos atuais instrumentos, e teremos acesso a conhecimentos novos sobre alguns dos processos mais extremos no Universo. A maioria dos sistemas que medem a radiação de Cherenkov usam apenas alguns telescópios. O CTA será constituído por cerca de 100 telescópios de Cherenkov, com diâmetros de 23, 12 e 4 metros, situados no hemisfério sul. Haverá ainda um local mais pequeno no hemisfério norte. Uma rede desta extensão fará aumentar o número de flashes que podem ser detectados, cobrirá todo o intervalo de energia necessário e aumentará de forma drástica a resolução angular, permitindo a identificação dos objetos emissores a outros comprimentos de onda. Instrumentos de baixas energias (menos de 100 GeV) terão um campo de visão moderado de cerca de 4-5 graus; os de energia média (100 GeV até 1 TeV) cobrirão cerca de 6-8 graus e os de alta energia capturarão os flashes mais intensos, mais de 10 TeV, num campo de visão muito maior, de cerca de 10 graus.
“Embora as conversações formais não tenham ainda começado, a escolha do Paranal-Armazones como potencial local do CTA ilustra bem a excelência do local e das infraestruturas do Very Large Telescope e do European Extremely Large Telescope. Se for escolhido, o CTA tirará partido da grande experiência que o ESO possui na astronomia feita no solo,” disse o Diretor Geral do ESO, Tim de Zeeuw. “Aguardamos com expectativa as conversações com o CTA.”

Fonte: ESO

segunda-feira, 14 de abril de 2014

Primeiro eclipse total da Lua no ano

Na madrugada da próxima terça-feira, dia 15, ocorrerá um eclipse lunar total.

Eclipse Lunar

© Fred Espenak (Eclipse Lunar)

Este será o primeiro fenômeno de uma tétrade de luas cheias que vão acontecer a cada seis meses. O próximo eclipse ocorrerá em 8 de outubro deste ano, seguido por um em 4 de abril de 2015 e outro em 28 de setembro de 2015. O alinhamento perfeito entre a Terra, a Lua e o Sol não acontece desde 10 de dezembro de 2011. A última sequência de quatro eclipses lunares totais ocorreu entre 2003 e 2004 e a próxima ocorrência será entre 2032 e 2033.

O fenômeno ocorre quando a Lua passa através da sombra provocada pela Terra. Nessa configuração, a Terra fica entre o Sol e a Lua. Quando a Lua penetra totalmente no cone de sombra projetado pela Terra é o eclipse lunar total. A luz proveniente do Sol é desviada sobre a Lua eclipsada e ao atingir a atmosfera da Terra absorve a tonalidade azul do espectro de cores, resultando na cor avermelhada da Lua durante a fase de totalidade do eclipse.

A Lua estará entre a estrela Espiga e Marte (que hoje está mais próximo da Terra) durante o eclipse que terá início às 1h53 (horário de Brasília), nessa fase (penumbra) apenas parte da luz solar estará sendo bloqueada pela Terra. A Lua entrará no cone de sombra total da Terra (umbra), aproximadamente às 2h58 (início do eclipse parcial). A Lua estará completamente encoberta as 4h06, sendo ápice do eclipse total às 4h45, e o nosso satélite natural começará a sair da umbra às 5h24, saindo totalmente da umbra às 6h33 (fim do eclipse parcial). O fenômeno finalizará às 7h37. A duração do eclipse total, ou seja, a Lua imersa no cone de sombra da Terra, será de aproximadamente 78 minutos.

Fonte: NASA e Cosmo Novas

domingo, 13 de abril de 2014

Saturno em azul e dourado

Por que Saturno é parcialmente azul?

Saturno

© Cassini (Saturno)

A imagem acima de Saturno, que mostra o planeta com as cores aproximadas àquelas que um ser humano as veriam se estivesse flutuando próximo do gigante, foi feita em 2006 pela sonda Cassini. Nessa imagem os anéis de Saturno aparecem como uma fina linha vertical. Os anéis mostram suas complexas estrutuas na sombra que é projetada na parte esquerda da imagem. A lua chafariz de Saturno, Encélado, aparecem na imagem como saliência nos anéis. O hemisfério norte de Sarurno aparece parcialmente azul pela mesma razão que o céu da Terra também aparece azul, ou seja, moléculas nas porções sem nuvens da atmosfera de ambos os planetas espalham melhor a luz azul do que a luz vermelha. Quando se olha nas profundezas das nuvens de Saturno a tonalidade dourada natural do planeta torna-se dominante. Não se sabe ao certo por que o hemisfério sul de Saturno não apresenta essa mesma tonalidade azulada; uma hipótese é que as nuvens nessa parte do planeta sejam mais altas. Também não se sabe por que as huvens de Saturno apresentam essa tonalidade dourada.

Fonte: NASA

sábado, 12 de abril de 2014

Estrelas nascem nos limites da Via Láctea

Pela primeira vez astrônomos detectaram estrelas em um enorme fluxo de gás lançado pelas Nuvens de Magalhães, as duas galáxias mais brilhantes que orbitam a nossa Via Láctea.

Braço Dianteiro e Fluxo de Magalhães

© NRAO/D. Nidever (Braço Dianteiro e Fluxo de Magalhães)

Procuradas há décadas, essas estrelas recém-descobertas são jovens, o que significa que se formaram recentemente, quando o gás das Nuvens de Magalhães colidiu com o gás da Via Láctea.
As estrelas recém-nascidas oferecem informações sobre processos que ocorreram no passado do Universo, quando pequenas galáxias ricas em gás colidiam para dar origem a gigantes como a Via Láctea. “Essa é a primeira e única interação galáctica que podemos modelar em detalhes”, declara Dana Casetti-Dinescu, astrônoma da Southern Connecticut State University, que aponta que outras colisões de nuvens gasosas entre galáxias ficam mais distantes, e que portanto são mais difícieis de observar. “Nós não temos tantas informações sobre interações entre sistemas mais distantes”.
Cerca de duas dúzias de galáxias revolvem ao redor da Via Láctea, mas apenas as Nuvens de Magalhães são brilhantes o suficiente para que astrônomos amadores possam vê-las a olho nu. O que realmente diferencia as duas é seu vigor: ao contrário de outros satélites da Via Láctea, as Nuvens de Magalhães têm grandes quantidades de gás, a matéria-prima de novas estrelas.
As Nuvens de Magalhães com certeza ficam próximas: a Grande Nuvem de Magalhães fica a apenas 160 mil anos-luz da Terra, enquanto a Pequena Nuvem de Magalhães fica a 200 mil anos-luz de nós, e a 75 mil anos-luz de sua companheira. Conforme as duas galáxias orbitam a Via Láctea, é provável que também orbitem uma a outra.
Um olhar mais detalhado das Nuvens de Magalhães revela mais detalhes. No início dos anos 70, rádio-astrônomos descobriram um longo fluxo de gás que acompanha as duas galáxias enquanto elas nos orbitam.
Esse gás, chamado de Fluxo de Magalhães, consiste principalmente de átomos neutros de hidrogênio, que transmitem ondas de rádio com 21 centímetros de comprimento. Um componente gasoso mais curto fica adiante das Nuvens de Magalhães, e por isso foi batizado de Braço Dianteiro. Do início do Braço Dianteiro até o fim do Fluxo de Magalhães, essa faixa gasosa tem pelo menos 200 graus de comprimento e se estende por mais de meio milhão de anos-luz de espaço.
Assim como a Lua eleva os mares terrestres, o arrasto gravitacional da Grande Nuvem de Magalhães removeu a maior parte desse gás da Pequena Nuvem de Magalhães, que não tem tanta força para segurá-lo. Estrelas também devem ter se espalhado a partir das Nuvens de Magalhães. Ainda que tanto estrelas quanto gás existam entre as Nuvens de Magalhães, ninguém nunca tinha encontrado qualquer estrela no Fluxo de Magalhães ou no Braço Dianteiro. Até agora.
Casett-Dinescu e seus colegas usaram o telescópio Walter Baade, de 6,5 metros,  no Observatório Las Campanas, no Chile, para revelar seis luminosas estrelas azuis no Braço Dianteiro. “Elas se formaram no local”, declara a pesquisadora. “Elas não têm outra opção, porque são muito jovens, elas não tiveram tempo suficiente para viajar das Nuvens até sua localização atual durante seu tempo de vida”. Cinco das seis estrelas estão a aproximadamente 60 mil anos-luz do centro da Via Láctea, perto da periferia do disco estelar de nossa galáxia.
Como a maioria das galáxias espirais, a Via Láctea mantém um vasto reservatório de gás hidrogênio que circunda o disco estelar. Então as estrelas recém-nascidas podem ter se originado em nossa galáxia. Porém, as estrelas compartilham a velocidade do gás no Braço Dianteiro, sugerindo que elas surgiram conforme seu gás se chocou com o disco externo de gás da Via Láctea, comprimindo o gás do Braço até que ele produzisse estrelas.
“Essa é a primeira evidência razoável de estrelas associadas ao Braço Dianteiro”, declara David Nidever da University of Michigan, que está conduzindo sua própria busca. Ele está especialmente intrigado com a sexta estrela que os astrônomos localizaram, a mais distante. Localizada a 130 mil anos-luz do centro galáctico, cerca de duas vezes a distância das outras estrelas, ela fica muito além da borda do disco estelar da Via Láctea, no vasto halo externo. A estrela tem um tipo espectral O6, que corresponde a uma temperatura de superfície de 44 mil kelvins. Uma estrela tão quente tem um brilho poderoso, mas breve; ela se formou há apenas um ou dois milhões de anos. “Parece que aquela estrela realmente deve ter nascido no halo”, comenta Nidever.
O halo externo da Via Láctea, ainda que em sua maior parte destituído de estrelas, possui um gás quente difuso que recebe o gás vindo do Braço Dianteiro. “Esse material está mergulhando no halo da Via Láctea, que é muito quente”, observa Casetti-Dinescu. O gás de Magalhães já atingiu o gás do halo, acredita ela, sendo comprimido e forjando a estrela de vida curta.
Ainda que as estrelas devam seu nascimento ao gás das Nuvens de Magalhães, elas agora revolvem ao redor de um novo mestre: a Via Láctea, que aumentou seu tamanho já imponente ao arrebatar gás de seus dois satélites mais extravagantes e transformá-lo em novas estrelas, um processo que nossa galáxia deve ter explorado várias vezes em épocas antigas enquanto crescia para se tornar uma gigante.

As descobertas foram relatadas no periódico The Astrophysical Journal Letters.

Fonte: Scientific American

quinta-feira, 10 de abril de 2014

Estrelas de galáxia anã podem ser relíquias do Universo primordial

Uma minúscula galáxia circulando a Via Láctea pode ser um remanescente fóssil do Universo primordial, dizem os astrônomos.

galaxia Segue 1

© SDSS (galáxia Segue 1)

Um estudo recente descobriu que as estrelas na galáxia chamada Segue 1 contêm menos elementos pesados do que os de qualquer outra galáxia conhecida, o que implica que o objeto pode ter parado de evoluir quase 13 bilhões de anos atrás. Se as informações forem confirmadas, Segue 1 poderia oferecer informações sobre as condições do início do Universo e revelar como algumas das primeiras galáxias surgiram.
Segue 1 é muito, muito pequena. Ela parece conter apenas algumas centenas de estrelas, em comparação com algumas centenas de bilhões de estrelas na Via Láctea. Pesquisadores liderados por Anna Frebel, do Instituto de Tecnologia de Massachusetts coletaram informações detalhadas sobre a composição química de seis das mais brilhantes estrelas da Segue 1 usando o telescópio Magalhães do Observatório de Las Campanas no Chile e do Observatório Keck, no Havaí.
De acordo com artigo aceito para publicação The Astrophysical Journal, as medições revelaram que estas estrelas são constituídas quase inteiramente de hidrogênio e hélio, e contêm apenas pequenas quantidades de elementos mais pesados, como o ferro. Nenhuma outra galáxia estudada tem tão poucos elementos pesados, tornando Segue 1 "a menos evoluída quimicamente entre as galáxias conhecidas."
Elementos complexos são forjados dentro dos núcleos das estrelas pela fusão nuclear de elementos mais básicos, como os átomos de hidrogênio e hélio. Quando as estrelas explodem em supernovas, são gerados átomos ainda mais pesados. Os elementos são então lançados no espaço para infundir o gás que gera a próxima geração de estrelas, de modo que cada geração sucessiva contém elementos ainda mais pesados, conhecidos como metais. "Segue 1 é tão singularmente pobre em metal que nós suspeitamos que pelo menos algumas estrelas são descendentes diretas das primeiras estrelas que explodiram no Universo ", diz o co-autor Evan Kirby, da Universidade da Califórnia.
As supernovas não se formam de forma igual. Quando as estrelas de grande massa explodem elas formam uma mistura de elementos como magnésio e cálcio, enquanto que explosões de estrelas com pouca massa formam quase exclusivamente ferro.
Frebel e seus colegas mediram o conteúdo de cada um desses elementos particulares em estrelas Segue 1  e descobriram que elas continham os produtos de estrelas massivas, mas muito poucos produtos de estrelas de pouca massa. Como estrelas massivas morrem muito mais jovens do que as de pouca massa, essa evidência revela a rapidez com que ocorreu a formação de estrelas na galáxia anã. "As estrelas de Segue 1 são as únicas que nunca foram enriquecidas por essas estrelas de pouca massa, o que significa que formou estrelas muito rapidamente, num piscar de olhos", diz Kirby. "Se tivesse formado estrelas por tempo longo o suficiente, deveriam ter sinais que indicassem contribuições de estrelas de pouca massa."
Os resultados sugerem que Segue 1 passou por um breve momento de formação de estrelas há muito tempo, e depois parou para sempre. "A grande questão é por que parou?", diz o astrofísico James Bullock da Universidade da Califórnia, que não esteve envolvido no estudo. "Uma galáxia como esta deveria ter sido capaz de fazer mais de um milhão de estrelas, mas isso não aconteceu."
Uma possibilidade é a época da reionização. Quando o Universo nasceu estava quente e denso, e todo o gás foi ionizado, ou seja, prótons e elétrons foram isolados e não podiam se unir para formar átomos. Eventualmente, o Universo esfriou o suficiente para permitir que os átomos se formassem no gás e as primeiras estrelas nasceram a partir deste material.
Aquelas estrelas emitiram radiação, que energizou o gás ao redor delas voltando a ionizá-lo por volta de 13,2 bilhões anos atrás. Como as estrelas não podem se formar a partir de gás ionizado,  a reionização poderia ter paralisado a formação de estrelas nas galáxias que existiam naquele momento. "Talvez a formação de estrelas em Segue 1 estivesse em formação, mas ocorreu a reionização e impediu a formação de qualquer estrela na galáxia", diz Kirby. "Isso também pode explicar por que a formação de estrelas durou tão pouco tempo."
O caso não está concluído, no entanto. Bullock, um dos principais autores da idéia de reionização, diz que as últimas simulações teóricas de formação de galáxias sugerem que o desligamento causado por reionização pode ser menos brusco do que os cientistas pensavam anteriormente. "Não é óbvio para mim que a reionização, por si só poderia ter feito isso", questiona ele. "Talvez, mas acho que existem outras possibilidades. Talvez alguma peculiaridade tenha levado Segue 1 a ser incrivelmente ineficiente para formação de estrelas em comparação com outras galáxias.
Segue 1 pode ajudar a revelar não apenas o que interrompe a evolução da galáxia, mas também como a evolução se inicia.  Beth Willman, astrônoma do Haverford College, considera o estudo muito interessante e gostaria de saber se galáxias podem se tornar pequenas como Segue 1 e permanecer assim ou se tem um tamanho ao se formar e em seguida perderem massa. "É possível que esta anã tenha sido uma galáxia muito maior e perdeu a maior parte de suas estrelas, talvez por interferência de sua vizinha próxima, a Via Láctea. Os níveis extremamente baixos de metal em suas estrelas, no entanto, apóiam a idéia de que Segue 1 se formou do tamanho próximo ao que tem agora porque é improvável que as interferências  tivessem ocorrido para atrair apenas os astros ricos em metais da galáxia, deixando para trás os objetos pobres em metal.
Se não há nenhum impedimento para essas pequenas galáxias se formem, mini-galáxias como Segue 1 podem ocorrer em grande número mas não são detectáveis. Só a proximidade entre a Segue 1 e a Via Láctea permitiu detectar a pequena galáxia. "Pode haver 200 galáxias Segue 1 ao nosso redor", diz Willman.

Fonte: Scientific American

quarta-feira, 9 de abril de 2014

Encontro ocasional dá origem a anel de diamantes celeste

Astrônomos utilizaram o Very Large Telescope (VLT) do ESO no Chile para captar esta bela imagem da nebulosa planetária PN A66 33, conhecida normalmente por Abell 33.

nebulosa planetária Abell 33

© ESO/VLT (nebulosa planetária Abell 33)

Formada quando uma estrela já evoluída lançou para o espaço as suas camadas externas, esta bonita bolha azul está, por mero acaso, alinhada com uma estrela que se encontra em primeiro plano, o que torna o conjunto extremamente parecido a um anel de noivado com um diamante. Esta jóia cósmica é raramente simétrica, aparecendo como um círculo quase perfeito no céu.

A maioria das estrelas com massas da ordem da do nosso Sol terminarão as suas vidas sob a forma de anãs brancas, que são corpos quentes, pequenos e muito densos que vão apagando lentamente ao longo de bilhões de anos. Antes desta fase final das suas vidas, as estrelas libertam para o espaço as suas atmosferas, criando nebulosas planetárias, que são nuvens de gás coloridas e luminosas que envolvem as pequenas relíquias estelares brilhantes.
A nebulosa planetária Abell 33 é extraordinariamente circular e está situada a cerca de 2.500 anos-luz de distância da Terra. O fato de ser perfeitamente redonda é bastante incomum neste tipo de objetos, pois geralmente existe algo que perturba a simetria e faz com que a nebulosa planetária apresente formas irregulares. Por exemplo, o modo como a estrela gira, ou se a estrela central é uma componente de um sistema estelar duplo ou múltiplo.
A estrela muito brilhante situada na periferia da nebulosa dá origem a uma bonita ilusão de ótica nesta imagem do VLT. O alinhamento verificado acontece por mero acaso, a estrela, chamada HD 83535, situa-se em primeiro plano, a meio caminho entre Abell 33 e a Terra, no local exato para tornar esta imagem ainda mais bonita. Juntas, a HD83535 e Abell 33 formam um cintilante anel de diamante.
O que resta da estrela progenitora de Abell 33, e que irá formar uma anã branca, pode ser vista, ligeiramente descentralizada no interior da nebulosa, como uma pequeníssima pérola branca. Ainda é bastante brilhante, mais luminosa que o nosso Sol, e emite radiação ultravioleta suficiente para fazer com que a bolha de material expelido brilhe. A estrela central parece ser dupla. Não se sabe se existe efetivamente alguma associação entre as duas ou se se trata apenas de um alinhamento ocasional.
A Abell 33 é apenas um dos 86 objetos catalogados pelo astrônomo George Abell em 1966 no seu Catálogo de Nebulosas Planetárias. Abell perscrutou também os céus em busca de aglomerados de galáxias, tendo compilado no Catálogo de Abell mais de 4.000 aglomerados, tanto no hemisfério norte como no sul.
Esta imagem foi obtida a partir de dados coletados pelo instrumento Focal Reducer and low dispersion Spectrograph (FORS), montado no VLT, no âmbito do programa Jóias Cósmicas do ESO, que trata-se de uma iniciativa no de divulgação científica, que visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado para observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrônomos através do arquivo científico do ESO.

Fonte: ESO

terça-feira, 8 de abril de 2014

Por dentro da Nebulosa de Órion

A Grande Nebulosa de Órion, uma imensa e próxima região de nascimento de estrelas, é provavelmente a nebulosa astronômica mais famosa.

M42

© Raul Villaverde (M42)

Aqui, o gás brilhante ao redor de estrelas jovens e quentes na borda da imensa nuvem molecular interestelar localizada a somente 1.500 anos-luz de distância da Terra. Na imagem profunda acima, composta em cores assinaladas pelo telescópio espacial Hubble, filamentos e lençóis de poeira e gás são particularmente evidentes. A Grande Nebulosa de Órion pode ser encontrada a olho nu perto do cinturão de três estrelas, as “Três Marias”, na popular constelação de Órion. Além de abrigar um brilhante aglomerado aberto de estrelas conhecido como o Trapézio, a Nebulosa de Órion contém muitos berçários estelares, que contém muito gás hidrogênio, estrelas jovens quentes e jatos estelares expelindo material em altas velocidades. Também conhecida como M42, a Nebulosa de Órion se espalha por cerca de 40 anos-luz e está localizada no mesmo braço espiral da Via Láctea onde está localizado o nosso Sistema Solar.

Fonte: NASA

domingo, 6 de abril de 2014

O aglomerado de galáxias El Gordo

O telescópio espacial Hubble da NASA pesou o maior aglomerado de galáxias conhecido no Universo distante.

aglomerado de galáxias El Gordo

© Hubble (aglomerado de galáxias El Gordo)

O objeto catalogado como ACT-CL J0102-4915, cujo apelido: El Gordo, realmente faz jus ao seu peso.

Medindo o quanto a gravidade do aglomerado distorce as imagens das galáxias no fundo distante, uma equipe de astrônomos calculou a massa do aglomerado e chegou ao valor de 3 quatrilhões de vezes a massa do nosso Sol. Os dados do Hubble mostram que o aglomerado de galáxia, que está localizado a cerca de 9,7 bilhões de anos-luz de distância da Terra, é aproximadamente 43% mais massivo do que as estimativas anteriores.

A equipe usou o Hubble para medir quanto a massa do aglomerado distorce o espaço. A alta resolução do Hubble permitiu medidas da chamada lente fraca, onde a imensa gravidade do aglomerado subitamente distorce o espaço como um espelho de parque de dimensões, distorcendo as imagens das galáxias em segundo plano. Quanto mais as imagens aparecem distorcidas, mais massa possui o aglomerado.

Fonte: NASA

Detectado possível sinal de matéria escura

Uma equipe astrofísicos do Fermi National Accelerator Laboratory (Fermilab), Harvard-Smithsonian Center for Astrophysics (CfA), do the Massachusetts Institute of Technology (MIT) e da Universidade de Chicago, utilizaram dados recolhidos pelo observatório espacial Fermi para mapear as emissões de raios gama provenientes da região do núcleo da Via Láctea.

execesso de raios gama no centro galáctico

© U. Chicago/T. Linden (execesso de raios gama no centro galáctico)

A imagem à esquerda é um mapa de raios gama com energias entre 1 e 3,16 GeV detectados no centro da galáxia pelo Large Area Telescope (LAT) do Observatório Fermi; vermelho indica o maior número. Pulsares proeminentes são rotulados. A imagem à direita mostra a remoçao de todas as fontes de raios gama conhecidas revelando o excesso de emissões que podem surgir a partir da aniquilação de matéria escura.

Os novos mapas, os mais precisos obtidos até agora, mostram que essa região da galáxia emite mais radiação gama do que é possível explicar através das contribuições individuais de fontes conhecidas como por exemplo pulsares, sistemas binários de alta energia e colisões de raios cósmicos no gás interestelar.

Este excesso de emissão não é de todo inesperado, podendo ser uma manifestação sutil da matéria escura que, de acordo com os mais recentes resultados do Observatório Planck, constitui cerca de 84,5% da matéria total do Universo, os restantes 15,5% constituem a matéria normal, a face visível do Universo, enquanto a energia escura mais matéria escura constitui 95,1% do conteúdo total do Universo. Com base no modelo padrão da cosmologia, a massa e energia total do Universo conhecido contém 4,9% de matéria comum, 26,8% de matéria escura e 68,3% de energia escura.

A existência da matéria escura foi estabelecida de forma robusta ao longo de décadas e sabe-se hoje que as galáxias estão envolvidas por um halo gigante constituído por matéria escura. Os seus efeitos gravitacionais são evidentes nos movimentos das estrelas nas galáxias e das galáxias dentro dos aglomerados.

A matéria escura interage com a matéria normal através da força nuclear fraca (de curto alcance e responsável, por exemplo, pela radioatividade) e da força da gravidade, o que dificulta a realização de experiências com o intuito de determinar a sua natureza. De fato, até o momento ainda não foi possível identificar os seus constituintes. De acordo com algumas teorias, a matéria escura é constituída por partículas designadas de WIMPs (Weakly Interacting Massive Particles), que têm a particularidade de, em caso de colisão, se aniquilarem, produzindo raios gama potencialmente detectáveis pelo telescópio LAT.

O centro da Via Láctea contém a maior concentração de massa da galáxia e por isso, devido à forte influência gravitacional, deverá conter também a maior concentração de matéria escura no halo que a envolve. Isto implica que nessa região a probabilidade de colisão entre WIMPs, caso existam, seja mais elevada. Os cientistas, baseados neste pressuposto, estudaram em pormenor a emissão proveniente dessa região e eliminaram sistematicamente as fontes de radiação gama que podiam ser identificadas. No final, o mapa que obtiveram mostra ainda um claro excesso de radiação gama com energias entre 1 e 3,16 GeV (Giga elétron-Volt) que se estende até pelo menos 5 mil anos-luz do centro da galáxia. Nas palavras de Dan Hooper, um astrofísico do Fermilab, e um dos autores do estudo: “O sinal que identificamos não pode ser explicado pelas teorias alternativas existentes e coincide de forma precisa com as previsões de modelos muito simples para a matéria escura”. Baseado na distribuição espectral da radiação gama observada, na simetria da sua distribuição e na luminosidade total, os autores deduzem que as partículas originais de matéria escura deveriam ter uma massa entre os 31 e os 40 GeV. Tais partículas seriam facilmente produzidas pelo LHC mas a sua detecção seria quase impossível.

Este estudo não demonstra que a matéria escura é constituída por partículas com as características dos WIMPs, apenas que existe um excesso de radiação gama no centro da Via Láctea que pode ser explicado de forma convincente pela existência destas partículas.

Um artigo com estes resultados foi publicado na revista Physical Review D.

Fonte: Goddard Space Flight Center

Buraco negro monstruoso revela seu colar de pérolas de estrelas

Um buraco negro massivo, teve pela primeira vez seu colar revelado, uma corrente de aglomerados de estrelas arranjados como se fosse um colar de pérolas estelar.

ilustração de um buraco negro cercado por aglomerados de estrelas

© NASA (ilustração de um buraco negro cercado por aglomerados de estrelas)

Nesta imagem em cor falsa, combinando vários conjuntos de observações, a luz visível está em tons de azul (a partir do telescópio espacial Hubble) mostrando redemoinhos de estrelas; as observações do radiotelescópio Very Large Array estão em verde exibindo uma emissão central com dois jatos, e os cachos recém-descobertos estão em vermelho no meio. O buraco negro está representada por um ponto para mostrar a localização, pois o próprio buraco negro não pode ser visto.

Usando os telescópios infravermelhos do Observatório Keck no topo do Monte Mauna Kea, no Havaí, os astrônomos foram capazes de atravessar a poeira que bloqueia a luz ao redor do buraco negro no centro da galáxia NGC 2110 na constelação de Órion. A NGC 2110 está localizada a 120 milhões de anos-luz de distância da Terra.

À medida que eles faziam um zoom no centro galáctico, o astrônomo Jeremy Mould e o estudante de doutorado Mark Duurré do Centre for Astrophysics and Supercomputing da Universidade de Tecnologia Swinburne (SUT) na Austrália, registraram quatro aglomerados estelares escondidos todos eles bem presos ao redor do buraco negro.

galáxia NGC 2110

© SUT (galáxia NGC 2110)

Nesta imagem em cor falsa, combinando vários conjuntos de observações, a luz visível está em tons de azul (a partir do telescópio espacial Hubble) mostrando redemoinhos de estrelas; as observações do radiotelescópio Very Large Array estão em verde exibindo uma emissão central com dois jatos, e os cachos recém-descobertos estão em vermelho no meio. O buraco negro está representada por um ponto para mostrar a localização, pois o próprio buraco negro não pode ser visto.

A taxa de formação de estrelas no núcleo é de 0,3 M (massa solar) por ano. A dinâmica do gás fotoionizado (He I) implica numa massa de 3 a 4 × 108 M.

“Esses aglomerados estelares não tinham sido vistos antes pois eles estavam escondidos pelas nuvens de poeira ao redor do buraco negro e pelo fato deles serem muito pequenos, mas eles podem ser observados na radiação infravermelha que consegue penetrar as nuvens”, disse Durré.

“A nossa própria galáxia, a Via Láctea, tem um buraco negro que é quase quatro milhões de vezes mais massivo que o nosso Sol; a NGC 2110 tem um buraco negro cerca de 100 vezes maior”.

O buraco negro central da NGC 2110 é muito ativo, puxando matéria e expelindo intensa radiação e jatos de gases velozes. Embora os buracos negros tenham a péssima reputação de destruírem tudo e consumirem matéria, nesse caso, simulações computacionais revelaram que as marés do buraco negro provavelmente sejam o mecanismo fundamental para a formação inicial dos aglomerados. Os ventos estelares de centenas de estrelas contidas em cada aglomerado também provavelmente emitem poderosos ventos estelares que, por sua vez, alimentam o buraco negro.

“Depois de vários milhões de anos, esses aglomerados se separarão, novamente graças a força de maré, e gradativamente se tornarão uma coleção central mais perto ao redor do buraco negro”, adicionou Durré.

Um artigo intitulado “Young Star Clusters In The Circumnuclear Region Of NGC 2110” de Mark Durré e Jeremy Mould fpoi publicado no The Astrophysical Journal.

Fonte: Discovery e Swinburne University of Technology

sexta-feira, 4 de abril de 2014

Novas evidências de oceano sob a crosta de Encélado

Novas evidências confirmam que um oceano de água líquida se esconde sob a superfície congelada de uma das luas de Saturno, Encélado.

Encélado

© Cassini (Encélado)

De acordo com cientistas, a presença de água eleva a posição de Encélado entre os locais do Sistema Solar para a busca de vida extraterrestre.
Encélado intriga pesquisadores desde 2005 quando a sonda Cassini, da NASA, descobriu plumas ricas em água no polo sul da lua, levantando a possibilidade de estarem escapando de um mar líquido subterrâneo. Agora essa mesma sonda acabou de apoiar a hipótese oceânica ao medir o campo gravitacional de Encélado.
Cientistas monitoraram cuidadosamente como a lua desviava a Cassini de seu curso e determinaram que Encélado deve ter mais massa em seu polo sul do que aparenta. Os pesquisadores observaram que como a água líquida é mais densa que o gelo, um oceano subterrâneo poderia contribuir com essa massa oculta. “É muito difícil encontrar uma explicação para esses dados que não envolva uma espessa camada de água líquida sob o gelo” declara David Stevenson, cientista planetário do Instituto de Tecnologia da Califórnia.
Ainda que os dados gravitacionais não tragam provas de que o líquido é água, ela é a explicação mais provável por ser farta em Encélado, mesmo sendo vista principalmente na forma de gelo, e porque rochas não produziriam o padrão gravitacional observado, explica Stevenson.
Ainda que plumas pudessem se formar com o derretimento do gelo da superfície, uma conexão com uma fonte de água subterrânea também é provável. E o fato de as plumas de Encélado se originarem em seu polo sul, a mesma localização do suposto oceano, é outro fator em favor da explicação do oceano aquático. “Esses novos resultados são como uma história de detetive. Encontrar impressões digitais confirma a hipótese de motivo e oportunidade”, compara Larry Esposito, cientista planetário da University of Colorado Boulder, que não se envolveu no estudo.
O próprio Stevenson admite seu ceticismo inicial. “Antes desses resultados não estava claro que Encélado tinha um oceano”, contou Stevenson a jornalistas durante uma teleconferência na quarta-feira. “É possível produzir água simplesmente esfregando blocos de gelo uns contra os outros, assim, não era possível concluir que existia um volume enorme de água. Agora sabemos que existe”.
Os dados da Cassini implicam um oceano com cerca de 10 quilômetros de profundidade abaixo da superfície, cobrindo uma área quase do tamanho do Lago Superior, o maior dos Grandes Lagos americanos, com mais de 82 mil km². Ele ficaria enterrado sob aproximadamente 50 quilômetros de gelo. Teoricamente, um reservatório desse tipo poderia abrigar alguma forma de vida que se acredita depender de água líquida. “Existem organismos terrestres que ficariam perfeitamente confortáveis nesse ambiente” observou Jonathan Lunine, coautor do estudo e cientista planetário da Cornell University. “Isso torna o interior de Encélado um local muito atraente para a busca de vida”.
Encélado não é o único corpo do Sistema Solar que pode abrigar um oceano subterrâneo. Acredita-se que Europa, uma das luas de Júpiter é outro alvo das buscas por vida extraterrestre, contenha um oceano global abaixo do gelo de sua superfície, e outros satélites jovianos, Calisto e Ganimedes, também apresentam evidências de mares subterrâneos. Enquanto o oceano de Ganimedes provavelmente fica abaixo de uma camada mais profunda de gelo, a água de Encélado ficaria sobre o núcleo de silicato da lua. De acordo com Lunine, como o silicato pode fornecer alguns dos compostos químicos necessários para a vida, como sais, fósforo e enxofre, o arranjo poderia oferecer a chance para que esses compostos se misturem com a água líquida e produzam vida.
Para realizar as últimas descobertas, os pesquisadores precisaram rastrear cuidadosamente os movimentos da Cassini, monitorando mudanças minúsculas na frequência do sinal enviado de volta para a Terra, chamadas de desvios Doppler. “É a mesma coisa que estão usando para o avião da Malásia, mas nós conseguimos fazer isso com mais precisão”, declara Stevenson.
Após coletar dados durante três passagens da Cassini nas proximidades de Encélado, cientistas puderam estimar o campo gravitacional da lua com precisão suficiente para determinar que existe alguma massa adicional sob sua superfície. “Se isso estiver correto, teremos novas informações importantes sobre o que pode estar acontecendo abaixo das plumas”, observa Matthew Hedman, cientista planetário da University of Idaho, que não se envolveu na pesquisa.
“Uma pergunta importante que precisa de resposta é: Como um oceano desses se conecta à superfície para produzir plumas?”. Também não se sabe porque o polo norte de Encélado até agora não apresenta sinais de atividade de plumas, ou de um oceano. Cientistas acreditam que marés gravitacionais de Saturno poderiam estar aquecendo o interior da lua, derretendo o gelo para formar o oceano. Esse aquecimento provavelmente seria maior nos polos. “Eu não sei porque isso só acontece no sul”, admite Stevenson.
As novas evidências e as questões que elas levantam só estão deixando os cientistas mais ansiosos para dedicar parte do tempo restante da Cassini em Saturno ao estudo de Encélado. A sonda chegou ao planeta dos aneis em 2004, e deve sofrer uma morte espetacular ao mergulhar na atmosfera de Saturno em 2017. Antes disso, a Cassini tem mais três sobrevoos de Encélado planejados. Com sorte, mais descobertas serão feitas.

Fonte: Science e Scientific American

quinta-feira, 3 de abril de 2014

O manto terrestre fornece indícios sobre a idade da Lua

Pesquisadores obtiveram a melhor estimativa para a idade da data de nascimento da nossa Lua, um evento que aconteceu cerca de 100 milhões de anos depois do surgimento do Sistema Solar.

ilustração do impacto da Terra com Theia

© NASA/JPL-Caltech (ilustração do impacto da Terra com Theia)

Essa nova descoberta sobre a origem da Lua pode ajudar a resolver um mistério sobre por que a Lua e a Terra aparecem virtualmente idênticas em sua constituição.

Os cientistas têm sugerido que a Lua se formou a 4,5 bilhões de anos atrás por uma gigantesca colisão entre um objeto do tamanho de Marte, chamado de Theia, uma colisão que teria derretido boa parte da Terra. Esse modelo sugere que mais de 40% da Lua foi feita de detritos gerados por esse corpo que se chocou com a Terra. A teoria vigente até então sugeria que a Terra teria experimentado alguns impactos gigantescos durante a sua formação, com o impacto que formou a Lua sendo o último.

Contudo, os pesquisadores suspeitam que Theia era quimicamente diferente da Terra. Em contraste, os estudos recentes revelaram que a Lua e a Terra aparecem muito parecidas quando se analisa as versões dos elementos chamados de isótopos, mais do que é sugerido pelo modelo atual de impacto.

“Isso significa que no nível atômico, a Terra e a Lua são corpos idênticos”, diz o líder do estudo Seth Jacobson, um cientista planetário do Observatório de la Côte d’Azur em Nice, na França. “Essa nova informação desafia a teoria do impacto gigantesco para a formação lunar”.

Ninguém contestou seriamente um impacto como sendo o cenário mais provável para a formação da Lua, disse Jacobson. Entretanto, o fato da Terra e da Lua serem virtualmente idênticas no nível atômico colocou as exatas circunstâncias da colisão em questão.

Agora, com uma melhor definição de quando a Lua se formou, Jacobson e seus colegas podem ajudar a explicar por que a Lua e a Terra são corpos misteriosamente idênticos.

Os esforços feitos até hoje para definir uma data para a formação da Lua propuseram uma grande variedade de idades. Algumas teorias sugerem um evento que tenha ocorrido 30 milhões de anos depois da formação do Sistema Solar, enquanto outros sugerem que esse evento tenha ocorrido mais de 50 milhões de anos e possivelmente mais de 100 milhões de anos, depois da formação do Sistema Solar.

Para ajudar a resolver esse mistério, Jacobson e seus colegas simularam o crescimento dos planetas rochosos do Sistema Solar – Mercúrio, Vênus, Terra e Marte – a partir do disco protoplanetário de milhares de blocos planetários orbitando o Sol.

Analisando como esses planetas se formaram e cresceram a partir de mais de 250 simulações computacionais, os pesquisadores descobriram que se o impacto que formou a Lua ocorreu antes, a quantidade de material acrescido na Terra posteriormente seria maior. Se o impacto ocorreu depois, a quantidade seria menor.

Pesquisas anteriores calcularam a quantidade de material acrescido na Terra depois da formação da Lua. Essas estimativas são baseadas em como elementos como o irídio e a platina mostram uma forte tendência de se mover no núcleo da Terra. Após cada impacto gigantesco a Terra nascente era sustentada, esses elementos teriam lixiviado o manto da Terra e aglutinado com um material mais pesado rico em ferro destinado a afundar no núcleo da Terra.

Após o último gigantesco impacto que formou a Lua, o manto deve ter sido quase que completamente despido de irídio, platina e seus elementos primos. Esses elementos estão ainda presentas no manto, mas somente em pequenas quantidades, que sugerem que somente uma pequena quantidade de material foi acrescido na Terra depois da formação da Lua.

Os pesquisadores calcularam que o impacto que formou a Lua deve ter ocorrido cerca de 95 milhões de anos depois da formação do Sistema Solar, com uma incerteza para mais ou para menos de 32 milhões de anos.

“Um evento tardio de formação da Lua, como sugerido pelo nosso trabalho, é mais consistente com o fato da Terra e da Lua, serem corpos idênticos”, disse Jacobson.

Em adição, análises recentes propõem que o impacto que criou a Lua necessita de uma colisão mais rápida e mais energética do que se sugeria anteriormente. Isso faz sentido se o impacto ocorreu relativamente mais tarde com um disco protoplanetário mais velho, como sugerem as descobertas.

“Discos mais velhos tendem a ser dinamicamente mais ativos, já que existem poucos corpos deixados no disco para que a energia seja distribuída entre eles”, disse Jacobson.

Essas novas descobertas levantam um novo quebra-cabeça. Enquanto elas sugerem que a Lua e a Terra se formaram juntas aproximadamente 100 milhões de anos depois do Sistema Solar ter surgido, evidências de meteoritos de Marte, sugerem que ele se formou poucos milhões de anos depois do surgimento do Sistema Solar.

“Isso significa que a Terra e Marte se formaram em escalas de tempo bem diferentes, com Marte se formando muito mais rápido do que a Terra”, disse Jacobson. “Como pode ser isso? É só uma questão de tamanho? Localização? E sobre Mercúrio e Vênus? Eles cresceram em escala de tempo similar ao da Terra ou similar ao de Marte? Eu acho que essas são algumas das questões realmente importantes que nós, como uma comunidade de cientistas planetários, iremos focalizar no futuro”.

Os detalhes das descobertas estão na edição de Abril da revista Nature.

Fonte: Observatoire de la Côte d’Azur

quarta-feira, 2 de abril de 2014

Assassina em série galáctica

Esta nova imagem obtida pelo telescópio MPG/ESO de 2,2 metros situado no Observatório de La Silla do ESO, mostra duas galáxias muito contrastantes: NGC 1316 e a sua companheira menor NGC 1317 (à direita).

as galáxias contrastantes NGC 1316 e NGC 1317

© ESO (as galáxias contrastantes NGC 1316 e NGC 1317)

Estas duas galáxias encontram-se muito próximas uma da outra, mas têm histórias muito distintas. A pequena espiral NGC 1317 tem tido uma vida calma, mas NGC 1316 já engoliu várias outras galáxias ao longo de uma história violenta e mostra bem suas cicatrizes de guerra.

Diversos indícios na estrutura da galáxia NGC 1316 revelam que o seu passado foi turbulento. Por exemplo, o objeto apresenta algumas faixas incomuns de poeira, situadas no interior de um envelope de estrelas muito maior, e uma população de aglomerados estelares globulares particularmente pequenos. Estes fatos sugerem que esta galáxia pode ter engolido uma galáxia em espiral rica em poeira há cerca de três bilhões de anos atrás.

faixas de poeira na galáxia NGC 1316

© Hubble (faixas de poeira na galáxia NGC 1316)

Vêem-se também caudas de maré muito tênues em torno da galáxia, restos e envelopes de estrelas que foram arrancadas das suas posições originais e lançadas para o espaço intergaláctico, resultado de complexos efeitos gravitacionais nas órbitas das estrelas quando outra galáxia se aproxima demais. Todos estes sinais apontam para um passado violento durante o qual a NGC 1316 anexou outras galáxias e sugerem ainda que este comportamento perturbador continua.
A NGC 1316 situa-se  a cerca de 60 milhões de anos-luz de distância na constelação da Fornalha. Tem também o nome de Fornax A, refletindo o fato de ser a mais brilhante fonte de emissão rádio na constelação, é na realidade a quarta fonte rádio mais brilhante em todo o céu. Estes valores correspondem a uma frequência rádio de 1.400 MHz, para outras frequências a ordem é diferente. Esta emissão rádio deve-se ao material que está caindo em direção ao buraco negro de massa extremamente elevada situado no centro da galáxia, ao qual tem sido fornecido, muito provavelmente, combustível adicional devido às interações com outras galáxias.
Esta nova imagem muito detalhada foi criada a partir de muitas imagens individuais do arquivo ESO. O objetivo das observações originais era revelar estes atributos mais tênues e estudar as perturbações neste interessante sistema.
A nova imagem mostra também uma janela para o Universo longínquo, para muito além das galáxias em interação que se vêem em primeiro plano. A maioria dos pontos tênues e difusos da imagem são galáxias muito mais distantes, existindo uma concentração particularmente densa à esquerda da NGC 1316.

Fonte: ESO