sexta-feira, 23 de dezembro de 2016

A estrela Betelgeuse gira mais depressa do que o esperado

O astrônomo J. Craig Wheeler da Universidade do Texas em Austin pensa que Betelgeuse, a estrela brilhante e vermelha que marca o ombro de Órion, o Caçador, pode ter tido um passado mais interessante do que dá a entender.

imagem infravermelha de Betelgeuse

© L. Decin/U. de Leuven/ESA (imagem infravermelha de Betelgeuse)

A imagem infravermelha acima de Betelgeuse, obtida pelo telescópio espacial Herschel em 2012, mostra duas conchas de matéria em interação num lado da estrela.

Trabalhando com um grupo internacional de estudantes, Wheeler encontrou evidências de que a supergigante vermelha nasceu com uma companheira estelar, e que mais tarde engoliu essa estrela. 

Para uma estrela tão bem conhecida, Betelgeuse é misteriosa. Sabe-se que ela é uma supergigante vermelha, uma estrela massiva perto do final da sua vida e que, portanto, inchou até muitas vezes o seu tamanho original. Algum dia explodirá como uma supernova, mas ninguém sabe quando.

"Pode ser daqui a dez mil anos, ou pode ser amanhã à noite," comenta Wheeler, especialista em supernovas.

Uma nova pista para o futuro de Betelgeuse envolve a sua rotação. Quando uma estrela incha para se tornar supergigante, a sua rotação deverá abrandar. É como a clássica patinadora no gelo que rodopia, abrindo os seus braços. À medida que a patinadora estica os seus braços, ela diminui de velocidade. Assim, também, a rotação de Betelgeuse deveria diminuir à medida que a estrela se expande. Mas não foi isso que a equipe de Wheeler encontrou.

"Não conseguimos explicar a rotação de Betelgeuse," realça Wheeler. "Ela gira 150 vezes mais depressa do que qualquer estrela única plausível."

Ele orientou uma equipe de estudantes, incluindo Sarafina Nance, Manuel Diaz e James Sullivan da Universidade do Texas em Austin, EUA, bem como estudantes da China e da Grécia, num estudo de Betelgeuse com um programa de modelagem computacional chamado MESA. Os estudantes usaram o MESA para modelar, pela primeira vez, a rotação de Betelgeuse.

Será que Betelgeuse teve uma companheira quando nasceu? Supondo que a companheira orbita Betelgeuse numa órbita correspondente ao tamanho atual desta estrela. Quando Betelgeuse se tornou numa supergigante vermelha, absorveu-a e engoliu-a.

Ele explicou que a estrela companheira, uma vez engolida, iria transferir o momento angular da sua órbita em redor de Betelgeuse para o seu invólucro externo, acelerando a rotação de Betelgeuse.

Estima-se que a estrela companheira teria tido aproximadamente a mesma massa que o Sol, a fim de explicar a atual rotação de Betelgeuse de com velocidade de 15 km/s.

"Se Betelgeuse engoliu, realmente, uma estrela companheira, é provável que a interação entre as duas tenha provocado com que a supergigante liberasse alguma matéria para o espaço," comenta Wheeler.

Possuindo a velocidade a que a matéria sai de uma estrela gigante vermelha, cerca de 10 km/s, Wheeler afirmou que foi capaz de estimar aproximadamente quão longe de Betelgeuse este material deveria estar hoje.

"Então, na minha ingenuidade, debrucei-me sobre a literatura e li mais sobre Betelgeuse, e ao que parece existe uma concha de matéria situada para além de Betelgeuse, apenas um pouco mais perto do que tinha suposto," explica Wheeler.

Imagens infravermelhas de Betelgeuse, captadas em 2012 por Leen Decin da Universidade de Leuven, Bélgica, com o telescópio espacial Herschel, mostram duas conchas de matéria interagindo de um lado de Betelgeuse. Existem várias interpretações; há quem diga que esta matéria é uma onda de choque criada à medida que a atmosfera de Betelgeuse empurra através do meio interestelar.

Ninguém sabe a origem com certeza. Mas existem evidências de que Betelgeuse teve algum tipo de distúrbio aproximadamente nesta escala de tempo, isto é, há 100.000 anos atrás, quando a estrela se expandiu para supergigante vermelha.

A teoria da companheira estelar poderia explicar tanto a rápida rotação de Betelgeuse como esta matéria vizinha.

Wheeler e a sua equipe de estudantes estão prosseguindo com suas investigações sobre esta estrela enigmática. Esperam estudar Betelgeuse usando uma técnica chamada asterosismologia, procurando ondas sonoras que afetam a superfície da estrela, a fim de obterem pistas sobre o que está ocorrendo nas profundezas do seu casulo. Vão também usar o código MESA para melhor entender o que aconteceria se Betelgeuse tivesse engolido uma estrela companheira.

A pesquisa foi publicada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: McDonald Observatory

Órbita de Proxima Centauri é determinada após um século

O interesse suscitado pelo sistema estelar vizinho de Alfa Centauri tem sido particularmente elevado desde a recente descoberta de um planeta com a massa da Terra, chamado Proxima b, em órbita da terceira estrela do sistema e a mais próxima do Sol, a Proxima Centauri.

órbita de Proxima Centauri

© ESO/DSS 2/P. Kervella (órbita de Proxima Centauri)

Apesar do par estelar maior do sistema, Alfa Centauri A e B, parecer ter um movimento próprio no céu muito semelhante ao da estrela mais tênue e menor, a Proxima Centauri, não foi possível demonstrar que as três estrelas formam na realidade um único sistema triplo gravitacionalmente ligado.

Agora três astrônomos, Pierre Kervella, Frédéric Thévenin e Christophe Lovis, concluíram que as três estrelas formam efetivamente um sistema ligado. Desde o momento que foi descoberta, há 100 anos atrás, que a fraca luminosidade da Proxima Centauri tem tornado extremamente difícil medir de modo preciso a sua velocidade radial, a velocidade à qual a estrela se aproxima ou se afasta da Terra. O instrumento caçador de planetas do ESO, o HARPS, conseguiu fazer uma medição extremamente precisa da velocidade radial desta estrela, tendo atingido uma precisão muito elevada, mesmo tendo já em conta outros efeitos mais sutis.

As medições das velocidades radiais das estrelas foram feitas por observação de estruturas específicas na sua radiação chamadas raias espectrais. Certos efeitos físicos podem fazer deslocar os comprimentos de onda observados destas raias, levando a medições de valores incorretos das velocidades. Por exemplo, se uma estrela apresentar uma superfície instável, este efeito pode dar origem ao chamado desvio para o azul convectivo das raias espectrais, enquanto a sua gravidade pode levar a um desvio para o vermelho gravitacional.

Como resultado, os astrônomos conseguiram deduzir valores muito semelhantes para as velocidades radiais do par Alfa Centauri e de Proxima Centauri, validando a hipótese de que estas estrelas fazem  efetivamente parte um único sistema ligado. Considerando estas novas medições, os cálculos das órbitas das três estrelas indicam que a velocidade relativa entre a Proxima Centauri e o par Alfa Centauri encontra-se bem dentro do limite a partir do qual as três estrelas não estariam ligadas pela gravidade.

Este resultado tem implicações significativas na nossa compreensão do sistema Alfa Centauri e na formação de planetas neste sistema. O resultado sugere que Proxima Centauri e o par Alfa Centauri têm a mesma idade, cerca de 6 bilhões de anos, o que por sua vez nos fornece uma boa estimativa da idade do planeta em órbita, Proxima b.

Os astrônomos sugerem que o planeta se possa ter formado em torno da Proxima Centauri numa órbita mais extensa e tenha depois migrado para a sua posição atual, muito próximo da sua estrela progenitora, resultado da passagem da Proxima Centauri perto das suas primas, o par Alfa Centauri. Alternativamente, o planeta pode ter-se formado em torno do par Alfa Centauri e ter sido mais tarde capturado pela gravidade de Proxima Centauri. Se uma destas hipóteses estiver correta, é possível que o planeta tenha sido antes um mundo gelado que sofreu um descongelamento, tendo agora água líquida à sua superfície.

Este trabalho foi descrito num artigo científico que será publicado na revista da especialidade Astronomy & Astrophysics.

Fonte: ESO

quinta-feira, 22 de dezembro de 2016

Nebulosas festivas iluminam a galáxia satélite da Via Láctea

O puro poder de observação do telescópio espacial Hubble raramente é melhor ilustrado do que esta imagem.

NGC 248 

© Hubble (NGC 248)

Esta incandescente nebulosa cor-de-rosa, denominada NGC 248, está situada a 200.000 anos-luz na Pequena Nuvem de Magalhães, mas ainda pode ser vista em grande detalhe.

Nossa galáxia doméstica, a Via Láctea, faz parte de uma coleção de galáxias conhecida como o Grupo Local. Junto com a Galáxia de Andrômeda, a Via Láctea é um dos membros mais massivos do Grupo, e ao seu redor muitas pequenas galáxias satélites orbitam. As Nuvens de Magalhães são exemplos famosos, que podem facilmente ser vistos a olho nu do hemisfério sul.

Dentro da menor dessas galáxias satélites, a Pequena Nuvem de Magalhães, o telescópio espacial Hubble captou duas nebulosas de emissão de aparência festiva, unidas para que elas apareçam como uma só. A radiação intensa das estrelas centrais brilhantes é causada pelo hidrogênio nas nebulosas que brilham na cor rosa.

Juntas, as nebulosas são chamadas de NGC 248. Foram descobertas em 1834 pelo astrônomo John Herschel. A NGC 248 tem cerca de 60 anos-luz de comprimento e 20 anos-luz de largura. É entre uma série de nebulosas brilhantes de hidrogênio na Pequena Nuvem de Magalhães, que fica na constelação sul de Tucana (O Tucano).

A nebulosa foi observada como parte de uma pesquisa do Hubble, a Small Magellanic cloud Investigation of Dust and Gas Evolution (SMIDGE). Nesta pesquisa os astrônomos estão usando o Hubble para sondar a Pequena Nuvem de Magalhães para entender como a sua poeira - um componente importante de muitas galáxias e relacionado à formação de estrelas - é diferente da poeira da Via Láctea.

Graças à sua relativa proximidade, a Pequena Nuvem de Magalhães é um alvo valioso. Ela também acaba por ter apenas entre um quinto e um décimo da quantidade de elementos pesados ​​que a Via Láctea tem, tornando a poeira semelhante ao que esperamos ver em galáxias no Universo primordial.

Isto permite aos astrônomos usá-lo como um laboratório cósmico para estudar a história do Universo em nosso quintal cósmico. Estas observações também nos ajudam a entender a história de nossa própria galáxia, já que a maior parte da formação estelar ocorreu mais cedo no Universo, numa época em que a porcentagem de elementos pesados ​​na Via Láctea era muito menor do que é agora.

Fonte: ESA

A brilhante galáxia espiral NGC 4707

Em uma noite clara em abril de 1789, o renomado astrônomo William Herschel conduziu sua pesquisa implacável do céu noturno à caça de novos objetos cósmicos, e encontrou motivo para comemorar!

NGC 4707

© Hubble (NGC 4707)

Alongando mais uma vez sua impressionante lista de descobertas cósmicas, o astrônomo viu esta brilhante galáxia espiral, chamada NGC 4707, à espreita na constelação de Canes Venatici. A galáxia NGC 4707 fica a cerca de 22 milhões de anos-luz da Terra.

Mais de dois séculos depois, o telescópio espacial Hubble da NASA/ESA é capaz de ver a mesma galáxia em um detalhe muito maior do que Herschel poderia, permitindo-nos apreciar as complexidades e características da NGC 4707 como nunca antes notadas. Esta impressionante imagem compreende observações da Advanced Camera for Surveys (ACS) do Hubble, um dos poucos instrumentos de alta resolução atualmente a bordo do telescópio espacial.

O próprio Herschel descreveu a NGC 4707 como uma galáxia "pequena, estelar"; enquanto é classificada como uma espiral (tipo Sm), sua forma global, centro e braços espirais são muito soltos e indefinidos, e sua protuberância central é muito pequena ou inexistente. Em vez disso, aparece como uma aspersão de estrelas e lampejos brilhantes em azul em uma tela escura, como se um pintor tivesse pontilhado o cosmos com pequenos toques de tinta brilhante.

As manchas azuis vistas através da moldura destacam regiões de formação de estrelas recentes ou em curso, com estrelas recém-nascidas brilhando em tons brilhantes e intensos de ciano e turquesa.

Fonte: ESA

quarta-feira, 21 de dezembro de 2016

Primeira luz da Banda 5 do ALMA

O Atacama Large Millimeter/submillimeter Array (ALMA) observa o Universo em ondas rádio, a extremidade de menor energia do espectro eletromagnético. Com os receptores de Banda 5 recentemente instalados, o ALMA pode agora “abrir os seus olhos” a uma nova região do espectro rádio, criando assim novas possibilidades de observação.

Arp 220

© ALMA/Hubble (Arp 220)

O cientista de programa europeu do ALMA, Leonardo Testi, explica o significado deste melhoramento: “Os novos receptores tornarão muito mais fácil a detecção de água, um pré-requisito para a vida tal como a conhecemos, no nosso Sistema Solar, em regiões mais distantes da nossa Galáxia e para além dela. Estes receptores permitirão também ao ALMA procurar carbono ionizado no Universo primordial.”

É a localização única do ALMA, a 5.000 metros de altitude no cimo do árido planalto do Chajnantor, no Chile, que torna, antes de mais nada, tais observações possíveis. Uma vez que a água também se encontra presente na atmosfera da Terra, os observatórios situados em locais menos elevados e em ambientes menos áridos têm muito mais dificuldade em identificar a origem da emissão que vem do espaço. A grande sensibilidade do ALMA, aliada à sua elevada resolução angular, implica que até os sinais muito fracos de água no Universo local conseguem observar-se nestes comprimentos de onda. Uma assinatura espectral determinante da água situa-se precisamente nesta região de comprimentos de onda, a 1,64 milímetros.

Os receptores de Banda 5, desenvolvidos pelo Grupo de Desenvolvimento de Receptores Avançados (GARD, acrônimo do inglês) no Observatório Espacial Onsala, Universidade de Tecnologia Chalmers, na Suécia, foram já testados no telescópio APEX, no instrumento SEPIA. Estas observações foram igualmente muito importantes para a seleção de alvos apropriados para os primeiros testes realizados com os receptores montados no ALMA.

Os primeiros receptores foram construídos e entregues ao ALMA na primeira metade de 2015 por um consórcio constituído pela NOVA (Netherlands Research School for Astronomy) e pelo GARD em parceria com o Observatório Nacional de Rádio Astronomia dos Estados Unidos da América (NRAO), que contribuiu para o projeto com o oscilador local. Estes receptores estão agora instalados e estão sendo preparados para poderem ser utilizados pela comunidade astronômica.

Para testar os receptores recentemente instalados fizeram-se observações de vários objetos incluindo as galáxias em colisão Arp 220, uma região de formação estelar massiva situada próximo do centro da Via Láctea, e também uma estrela supergigante vermelha poeirenta, que está quase atingindo a fase de supernova, terminando assim a sua vida.

Para processar os dados e verificar a sua qualidade, astrônomos e especialistas técnicos do ESO e do Centro Regional Europeu do ALMA (ARC), reuniram-se no Observatório Espacial Onsala na Suécia, para a “Semana da Banda 5”, organizada pelo nodo nórdico do ARC. Os resultados finais acabam de ser postos à disposição da comunidade astronômica mundial.

Robert Laing, membro da equipe no ESO, está otimista quanto às possibilidades que se abrem com as observações ALMA na Banda 5: “É extremamente interessante ver estes primeiros resultados da Banda 5 do ALMA, obtidos com dados coletados apenas com um conjunto limitado de antenas. No futuro, a alta sensibilidade e a resolução angular do complemento total da rede ALMA permitirá estudar detalhadamente a água numa grande variedade de objetos, incluindo estrelas em formação e evoluídas, meio interestelar e regiões próximas de buracos negros supermassivos.”

Fonte: ESO

A galáxia Cartwheel vista pelo Hubble

Para alguns, essa galáxia peculiar parece uma roda de um carroça. De fato, por causa de sua aparência oval externa, a presença de uma galáxia central e sua conexão com o que parece ser os raios de uma roda, o objeto à direita da imagem é conhecido como a galáxia lenticular Cartwheel.

Galáxia Cartwheel

© Hubble (Galáxia Cartwheel)

Para outros, no entanto, parece uma complicada interação entre galáxias aguardando melhores explicações. Juntamente com as duas galáxias à esquerda, a Galáxia Cartwheel, também conhecida por Galáxia Roda de Carro ou ESO 350-40, faz parte de um grupo de galáxias que reside a cerca de 400 milhões de anos-luz de distância na direção da constelação do Escultor (Sculptor).

A grande borda da galáxia se estende por mais de 100.000 anos-luz e é composta de berçários estelares cheios de estrelas extremamente brilhantes e massivas. Conforme retratado na imagem acima, vista pelo telescópio espacial Hubble, a forma anelar da Galáxia Cartwheel é o resultado da ruptura gravitacional causada por uma galáxia menor que passou através da maior, comprimindo o gás interestelar e a poeira cósmica e desencadeando uma onda de surtos de formação de estrelas que se move para fora como uma ondulação através da superfície de um lago.

Fonte: NASA

terça-feira, 20 de dezembro de 2016

O passado sombrio de estrela destruidora de planetas

Uma equipe internacional de cientistas, incluindo pesquisadores da Universidade de Chicago, fez a rara descoberta de um sistema planetário com uma estrela hospedeira parecida com o Sol.

ilustração de uma estrela gêmea do Sol engolindo planeta

© IAC/Gabi Perez (ilustração de uma estrela gêmea do Sol engolindo planeta)

Especialmente intrigante é a composição invulgar da estrela, que indica que ingeriu alguns dos seus planetas.

"Isso não significa que o Sol vai ingerir a Terra em breve," comenta Jacob Bean, professor assistente de astronomia e astrofísica da Universidade de Chicago. "Mas a nossa descoberta fornece uma indicação de que histórias violentas podem ser comuns para sistemas planetários, incluindo o nosso."

Ao contrário da artificial "Estrela da Morte", que destrói planetas na saga "Guerra das Estrelas", esta versão natural fornece pistas sobre como os sistemas planetários evoluem ao longo do tempo.

Os astrônomos descobriram o primeiro planeta em órbita de uma estrela que não o Sol em 1995. Desde então, foram identificados mais de dois mil exoplanetas. Entre eles, são raros os que orbitam uma estrela parecida com o nosso Sol. Devido à sua semelhança extrema com o Sol, estes denominados gêmeos solares são alvos ideais para investigar as ligações entre as estrelas e os seus planetas.

Bean e colegas estudaram a estrela HIP 68468, situada a 300 anos-luz de distância, como parte de um projeto de vários anos para descobrir planetas que orbitam gêmeos solares. É complicado extrair conclusões de um único sistema, advertiu Megan Bedell, estudante de doutoramento na mesma universidade e a principal descobridora planetária da colaboração. A equipe planeja estudar mais estrelas como esta para ver se este é um resultado comum do processo de formação planetária.

As simulações computacionais mostram que daqui a bilhões de anos, as interações gravitacionais entre os planetas vão, eventualmente, fazer com que Mercúrio caia para o Sol, realça Debra Fischer, professora de astronomia na Universidade de Yale, que não esteve envolvida na pesquisa. "Este estudo de HIP 68468 é um pós-morte deste processo em torno de uma estrela parecida com o nosso Sol. A descoberta aprofunda a nossa compreensão da evolução dos sistemas planetários."

Usando o telescópio de 3,6 metros do Observatório La Silla no Chile, a equipa descobriu o seu primeiro exoplaneta em 2015. A mais recente descoberta precisa ser confirmada, mas inclui dois candidatos a planeta, um super Netuno e uma super Terra. Orbitam surpreendentemente perto da sua estrela progenitora, um sendo 50% mais massivo que Netuno e localizado à distância de Vênus da sua estrela. O outro, a primeira super Terra em torno de um gêmeo solar, tem três vezes a massa do nosso planeta e está tão perto da estrela que completa uma órbita a cada três dias.

"Estes dois planetas provavelmente não se formaram onde os vemos atualmente," acrescenta Bedell. Em vez disso, devem ter migrado das partes mais externas do sistema planetário. Outros planetas podem ter sido expelidos do sistema ou ingeridos pela estrela hospedeira.

A composição de HIP 68468 aponta para uma história de ingestão planetária. Contém quatro vezes mais lítio do que seria de esperar para uma estrela com 6 bilhões de anos, bem como um excesso de elementos refratários, ou seja, metais resistentes ao calor e que são abundantes em planetas rochosos.

No interior quente de estrelas como HIP 68468 e o Sol, o lítio é consumido ao longo do tempo. Os planetas, por outro lado, preservam o lítio porque as suas temperaturas internas não são altas o suficiente para destruir o elemento químico. Como resultado, quando uma estrela engole um planeta, o lítio que o planeta deposita na atmosfera estelar salta à vista.

Em conjunto, o lítio e o material do planeta rochoso consumido, presentes na atmosfera de HIP 68468, são equivalentes à massa de seis Terras.

"Pode ser muito difícil conhecer a história de uma estrela em particular, mas de vez em quando temos sorte e encontramos estrelas com composições químicas que provavelmente vieram de planetas em queda," esclarece Fischer. "É o caso de HIP 68468. Os remanescentes químicos de um ou mais planetas estão 'manchados' na sua atmosfera."

A equipe continua estudando mais de 60 gêmeos solares à procura de mais exoplanetas. Além disso, o GMT (Giant Magellan Telescope), atualmente em construção no Chile, será capaz de detectar mais exoplanetas parecidos com a Terra ao redor de gêmeos solares.

"Além de encontrar planetas parecidos com a Terra, o GMT permitirá o estudo da composição atmosférica de estrelas em detalhes ainda maiores do que alcançamos hoje," comenta Bean. "Isso vai revelar ainda mais as histórias de sistemas planetários sutilmente impressas nas suas estrelas hospedeiras."

A descoberta foi publicada na revista Astronomy & Astrophysics.

Fonte: Universidade de Chicago

Os planetas exteriores mais comuns são da massa de Netuno

Um novo estudo estatístico de planetas encontrados através de microlente gravitacional sugere que os mundos com a massa de Netuno são provavelmente o tipo mais comum de planeta para se formar nos reinos exteriores dos sistemas planetários.

ilustração de um exoplaneta com a massa de Netuno

© NASA/Francis Reddy (ilustração de um exoplaneta com a massa de Netuno)

O estudo fornece a primeira indicação dos tipos de planetas à espera de ser encontrados longe de uma estrela hospedeira, onde os cientistas suspeitam que os planetas se formam de modo mais eficiente.

"Encontramos o aparente ponto ideal nos tamanhos de planetas frios. Ao contrário de algumas previsões teóricas, inferimos a partir das nossas detecções atuais que os mais numerosos têm massas parecidas com a de Netuno, e que não parece haver o aumento esperado no número a massas mais baixas," afirma Daisuke Suzuki, pesquisador de pós-doutorado do Goddard Space Flight Center e da Universidade de Maryland. "Nós concluímos que os planetas com a massa de Netuno nestas órbitas externas são cerca de dez vezes mais comuns do que os planetas com a massa de Júpiter em órbitas semelhantes à de Júpiter."

As microlentes gravitacionais tiram proveito dos efeitos de flexão da luz de objetos massivos previstos pela teoria geral da relatividade de Einstein. Ocorrem quando uma estrela de primeiro plano, a lente, alinha aleatoriamente com uma distante estrela de fundo, a fonte, a partir do ponto de vista da Terra. À medida que a estrela "lente" percorre a sua órbita em torno da Galáxia, o alinhamento muda ao longo de dias até semanas, alterando o brilho aparente da fonte. O padrão preciso dessas mudanças fornece pistas sobre a natureza da estrela da lente, incluindo quaisquer planetas que possa abrigar.

"Nós determinamos principalmente a massa do planeta em relação à estrela progenitora e sua separação," realça o astrofísico David Bennett, astrofísico do Goddard Space Flight Center. "Para cerca de 40% dos planetas de microlentes, podemos determinar a massa da estrela hospedeira e, portanto, a massa do planeta."

Foram descobertos mais de 50 exoplanetas usando microlentes, em comparação com os milhares detectados por outras técnicas, como a detecção do movimento ou diminuição do brilho de uma estrela provocada pela presença de planetas. Dado que os alinhamentos necessários entre as estrelas são raros e ocorrem aleatoriamente, os astrônomos precisam de monitorar milhões de estrelas em busca das mudanças de brilho que assinalam um evento de microlente.

No entanto, as microlentes possuem um grande potencial. Podem detectar planetas centenas de vezes mais distantes do que a maioria dos outros métodos, permitindo a investigação de uma ampla faixa da Via Láctea. A técnica pode localizar exoplanetas com massas menores e a maiores distâncias das suas estrelas hospedeiras e é sensível o suficiente para encontrar planetas flutuando sozinhos pela Via Láctea, sem ligação a estrelas.

As missões Kepler e K2 da NASA têm sido extraordinariamente bem-sucedidas a encontrar planetas que diminuem o brilho das suas estrelas, tendo até à data confirmado mais de 2.500 descobertas. Essa técnica é sensível a planetas mais íntimos, mas não a mais distantes. Os levantamentos de microlentes são complementares, são mais eficientes nas partes exteriores dos sistemas planetários com uma menor sensibilidade a planetas mais próximos das suas estrelas.

"A combinação das microlentes com outras técnicas fornece-nos uma visão geral mais clara do conteúdo planetário da nossa Galáxia," afirma o membro da equipe Takahiro Sumi da Universidade de Osaka, no Japão.

De 2007 a 2012, o grupo MOA (Microlensing Observations in Astrophysics), uma colaboração entre pesquisadores do Japão e da Nova Zelândia, emitiu 3.300 alertas informando a comunidade astronômica sobre eventos de microlentes em curso. A equipe de Suzuki identificou 1.474 eventos de microlentes bem observados, 22 deles mostrando sinais planetários claros. Isto inclui quatro planetas nunca antes divulgados.

Para estudar estes eventos em maior detalhe, a equipe inclui dados do outro grande projeto de microlentes que operava durante o mesmo período, o OGLE (Optical Gravitational Lensing Experiment), bem como observações adicionais de outros projetos.

A partir desta informação, os cientistas determinaram a frequência de planetas em comparação com a taxa da massa do planeta/massa da estrela, juntamente com as distâncias que os separam. Para uma típica estrela que abriga um planeta, com 60% da massa do Sol, o típico planeta de microlente é um mundo que tem entre 10 e 40 vezes a massa da Terra. Para comparação, Netuno no nosso próprio Sistema Solar, tem o equivalente a 17 Terras.

Os resultados implicam que os mundos frios com a massa de Netuno são provavelmente os tipos mais comuns de planetas além da chamada "linha de neve", o ponto onde a água permanece congelada durante a formação planetária. No Sistema Solar, pensa-se que a linha de neve estivesse localizada a cerca de 2,7 vezes a distância média entre a Terra e o Sol, colocando-a, hoje em dia, no meio d cinturão de asteroides.

"Para além da linha de neve, os materiais que seriam gasosos mais perto da estrela condensam-se em corpos sólidos, aumentando a quantidade de material disponível para iniciar o processo de construção planetária," acrescenta Suzuki. "É aqui que pensamos que a formação planetária seja mais eficiente e é também a região onde a técnica de microlentes é mais sensível."

O WFIRST (Wide Field Infrared Survey Telescope) da NASA, com lançamento previsto para meados da década de 2020, finalizará uma extensa pesquisa de microlentes. Espera-se que forneça determinações da massa e da distância para milhares de exoplanetas, completando o trabalho iniciado pelo Kepler e fornecendo o primeiro censo galáctico das propriedades planetárias.

O artigo que divulga estas descobertas foi publicado na revista The Astrophysical Journal.

Fonte: Goddard Space Flight Center

Onde está o gelo de Ceres?

À primeira vista, Ceres, o maior corpo no cinturão de asteroides, pode não parecer gelado.

Ceres

© NASA/JPL-Caltech (Ceres)

As imagens obtidas pela sonda Dawn da NASA, que está atualmente voando numa órbita elíptica a mais de 7.200 km de Ceres, revelaram um mundo escuro e altamente craterado cuja área mais brilhante é composta por sais altamente refletivos, e não gelo. Mas estudos recentemente publicados por cientistas da Dawn mostram duas linhas distintas de evidência para gelo à superfície ou perto da superfície do planeta anão. Os pesquisadores apresentaram os seus achados na reunião da União Geofísica Americana de 2016 em San Francisco.

"Estes estudos suportam a ideia que o gelo se separou da rocha no início da história de Ceres, formando uma camada crustal rica em gelo, e que o gelo permaneceu perto da superfície durante o resto da história do Sistema Solar," comenta Carol Raymond, pesquisadora principal adjunta da missão Dawn, no Jet Propulsion Laboratory (JPL) da NASA em Pasadena, no estado norte-americano da Califórnia.

A água gelada em outros corpos planetários é importante porque é um ingrediente essencial para a vida como a conhecemos. "Ao encontrarmos corpos ricos em água no passado distante, podemos descobrir pistas sobre onda a vida pode ter existido no início do Sistema Solar," realça Raymond.

A superfície de Ceres é rica em hidrogênio, com uma maior concentração em latitudes médias e altas, consistente com grandes extensões de água gelada.

"Em Ceres, o gelo não está apenas localizado em algumas crateras. Está em toda a parte e está mais próximo da superfície a latitudes mais altas," afirma Thomas Prettyman, pesquisador principal do instrumento GRaND (Gamma Ray and Neutron Detector) da Dawn, que pertence ao Instituto de Ciências Planetárias em Tucson, Arizona, EUA.

Os pesquisadores usaram o instrumento GRaND para determinar as concentrações de hidrogênio, ferro e potássio até um metro de profundidade em Ceres. O GRaND mede o número e energia de raios gama e nêutrons emanados de Ceres. Os nêutrons são produzidos à medida que os raios cósmicos galácticos interagem com a superfície de Ceres. Alguns são absorvidos pela superfície enquanto outros conseguem escapar. Dado que o hidrogênio diminui a velocidade dos nêutrons, está associado com a fuga de um menor número de nêutrons. Em Ceres, o hidrogênio está provavelmente na forma de água gelada.

Em vez de uma camada sólida de gelo, é provável que exista uma mistura porosa de materiais rochosos na qual o gelo preenche os poros, descobriram os cientistas. Os dados do GRaND mostram que o gelo corresponde a cerca de 10% da massa da mistura.

"Estes resultados confirmam previsões feitas há quase três décadas de que o gelo pode sobreviver durante bilhões de anos logo abaixo da superfície de Ceres," realça Prettyman. "A evidência reforça o caso para a presença de água gelada perto da superfície em outros asteroides do cinturão principal."

As concentrações de ferro, hidrogênio, potássio e carbono fornecem evidências adicionais de que a camada superior de material que cobre Ceres foi alterada por água líquida no interior de Ceres. Os cientistas teorizam que o decaimento de elementos radioativos no interior de Ceres produziu calor que dirigiu este processo de alteração, separando Ceres num interior rochoso e numa camada gelada exterior. A separação do gelo e da rocha levaria a diferenças na composição química da superfície e do interior de Ceres.

Dado que a classe de meteoritos a que chamamos condritos carbonáceos também foram alterados por água, os cientistas estão interessados em compará-los com Ceres. Estes meteoritos provavelmente vêm de corpos menores que Ceres, que tiveram fluxos líquidos limitados, de modo que podem fornecer pistas sobre a história do interior de Ceres. O estudo publicado na revista Science mostra que Ceres tem mais hidrogênio e menos ferro do que estes meteoritos, talvez porque as partículas mais densas afundaram-se enquanto os materiais ricos em salmoura subiram até à superfície. Alternativamente, Ceres ou os seus componentes podem ter-se formado numa região diferente do Sistema Solar do que os meteoritos.

Um segundo estudo, liderado por Thomas Platz do Instituto Max Planck para Pesquisa do Sistema Solar, em Göttingen, Alemanha, e publicado na revista Nature Astronomy, focou-se em crateras permanentemente à sombra no hemisfério norte de Ceres. Os cientistas examinaram cuidadosamente centenas destas crateras frias e escuras, algumas com menos de –160 ºC, tão frias que muito pouco do gelo se transforma em vapor ao longo de bilhões de anos. Foram encontrados depósitos de material brilhante em 10 destas crateras. Numa cratera parcialmente iluminada, o espectrômetro de mapeamento infravermelho da Dawn confirmou a presença de gelo.

Isto sugere que a água gelada pode ser armazenada em crateras escuras e frias em Ceres. O gelo nestas armadilhas frias já tinha sido avistado em Mercúrio e, em alguns casos, na Lua. Todos estes corpos têm inclinações muito pequenas em relação aos seus eixos de rotação, de modo que os seus polos são extremamente frios e salpicados com crateras permanentemente à sombra. Os cientistas acreditam que corpos impactantes podem ter entregado gelo a Mercúrio e à Lua. As origens do gelo nas armadilhas frias de Ceres são, no entanto, mais misteriosas.

"Estamos interessados em saber como este gelo aí chegou e como conseguiu durar tanto tempo," acrescenta Norbert Schorghofer da Universidade do Havaí. "Pode ter vindo da crosta rica em gelo de Ceres, ou pode ter sido entregue a partir do espaço."

Independentemente da sua origem, as moléculas de água em Ceres têm a capacidade de pular de regiões mais quentes para os polos. Uma pesquisa anterior sugeriu uma tênue atmosfera de água, incluindo observações do vapor de água de Ceres realizadas pelo Observatório Espacial Herschel em 2012-13. As moléculas de água que deixam a superfície caem de volta para Ceres e podem aterrar nas armadilhas frias. Com cada salto existe uma hipótese de que a molécula seja perdida para o espaço, mas uma parte delas acaba nas armadilhas frias, onde se acumulam.

A área mais brilhante de Ceres, no interior da cratera Occator do hemisfério norte, não brilha por causa do gelo, mas sim por causa de sais altamente refletivos. A brilhante região central de Occator, que inclui uma abóbada com fraturas, recebeu recentemente o nome de Cerealia Facula. O conjunto de manchas menos refletivas chama-se Vinalia Faculae.

Fonte: Jet Propulsion Laboratory

domingo, 18 de dezembro de 2016

Um olhar mais atento sobre uma galáxia espiral barrada

Em 1900, o astrônomo Joseph Lunt fez uma descoberta: ao ver através de um telescópio no observatório da Cidade do Cabo na África do Sul, o cientista britânico-sul-africano notou esta bela vista na constelação sul de Grus de uma galáxia espiral barrada, agora chamada IC 5201.

IC 5201

© Hubble (IC 5201)

Mais de um século depois, a galáxia ainda é de interesse para os astrônomos. O telescópio espacial Hubble usou sua Advanced Camera for Surveys (ACS) para produzir esta imagem bonita e intrincada da galáxia. A ACS do Hubble possui resolução para captar estrelas individuais dentro de outras galáxias, tornando-se uma ferramenta inestimável para explorar como várias populações de estrelas surgiram, evoluíram e morreram em todo o cosmos.

A IC 5201 está localizada a mais de 40 milhões de anos-luz de distância da Terra. Como dois terços de todas as galáxias espirais que vemos no Universo, incluindo a Via Láctea, a galáxia IC 5201 também possui uma barra de estrelas cortando seu centro.

Fonte: NASA

sábado, 17 de dezembro de 2016

Anéis em torno de estrela sugerem formação de planetas

Os astrônomos sabem agora que a nossa Galáxia está repleta de planetas, desde mundos rochosos do tamanho da Terra até gigantes gasosos maiores que Júpiter. Quase todos estes exoplanetas foram descobertos em órbita de estrelas maduras com um sistema planetário completamente evoluído.

composição do disco protoplanetário ao redor de estrela jovem

© ALMA/A. Isella/B. Saxton (composição do disco protoplanetário ao redor de estrela jovem)

Novas observações com o ALMA (Atacama Large Millimeter/submillimeter Array) contêm evidências convincentes de que dois planetas recém-nascidos, cada um do tamanho de Saturno, estão em órbita de uma jovem estrela de nome HD 163296. Estes planetas, que ainda não estão completamente formados, revelaram-se pela dupla impressão que deixam nas porções de gás e poeira do disco protoplanetário da estrela.

As observações anteriores de outros sistemas estelares jovens ajudaram a reformular a nossa compreensão da formação de planetas. Por exemplo, as imagens ALMA de HL Tauri e TW Hydrae revelaram lacunas impressionantes e estruturas anulares proeminentes nos discos empoeirados das estrelas. Estas características podem ser os primeiros sinais tentadores do nascimento de planetas. Surpreendentemente, estes sinais aparecem ao redor de estrelas muito mais jovens do que era achado ser possível, sugerindo que a formação planetária pode ter início logo após a formação de um disco protoplanetário.

"O ALMA mostrou-nos imagens surpreendentes e nunca antes vistas de anéis e lacunas em torno de estrelas jovens que podem ser as características da formação de planetas. No entanto, como estávamos apenas olhando para a poeira nos discos com detalhe suficiente, não tínhamos a certeza do que criava essas características," comenta Andrea Isella, astrônoma da Universidade Rice em Houston, no estado norte-americano do Texas.

Ao estudar a estrela HD 163296 através do ALMA, foi traçado pela primeira vez a distribuição tanto dos componentes de poeira como do gás monóxido de carbono (CO) no disco com aproximadamente o mesmo nível de detalhe.

Estas observações revelaram três lacunas distintas no disco protoplanetário da HD 163296. A primeira divisão está localizada aproximadamente a 60 UA (Unidades Astronômicas - 1 UA é a distância média entre a Terra e o Sol) da estrela central, mais ou menos equivalente à distância entre o Sol e Netuno. As outras duas lacunas estão a 100 UA e a 160 UA da estrela central, equivalente a uma distância bem superior ao Cinturão de Kuiper do nosso Sistema Solar, a região de corpos gelados além da órbita de Netuno.

Usando a capacidade do ALMA em detectar o tênue "brilho" de comprimento de onda milimétrico emitido por moléculas de gás, Isella e a sua equipe descobriram que existe também um mergulho apreciável na quantidade de CO nas duas divisões exteriores da poeira.

Através da observação das mesmas características tanto nos componentes gasosos como nos componentes poeirentos do disco, os astrônomos pensam que encontraram evidências convincentes para a existência de dois planetas coalescendo incrivelmente longe da estrela central.

Na lacuna mais próxima da estrela foi encontrado pouca ou nenhuma diferença na concentração do gás monóxido de carbono em comparação com o disco empoeirado circundante. Isto significa que a lacuna mais interior poderá ter sido produzida por algo que não seja um planeta emergente.

"A poeira e o gás comportam-se de forma muito diferente em torno de estrelas jovens," acrescenta Isella. "Sabemos, por exemplo, que existem certos processos químicos e físicos que podem produzir estruturas anulares na poeira como as vistas anteriormente. Nós certamente pensamos que estas estruturas podem ser o resultado de um planeta nascente através da poeira, mas simplesmente não podemos excluir outras possíveis explicações. As nossas novas observações fornecem evidências intrigantes de que planetas estão realmente se formando em torno desta estrela jovem."

A HD 163296 tem cerca de 5 milhões de anos e mais ou menos o dobro da massa do Sol. Está localizada a aproximadamente 400 anos-luz da Terra na direção da constelação de Sagitário.

Um artigo sobre as observações foi publicado na revista Physical Review Letters.

Fonte: National Radio Astronomy Observatory

Galáxia distante tem aumento excepcional na geração de estrelas

Os astrônomos usaram o observatório de raios X Chandra da NASA e outros telescópios para mostrar que uma galáxia recentemente descoberta está passando por um extraordinário incremento na construção estelar.

simulação e composição da galáxia SPT 0346-52

© Hubble/Chandra/ALMA (simulação e composição da galáxia SPT 0346-52)

A galáxia está a 12,7 bilhões de anos-luz da Terra, visto em um estágio crítico na evolução das galáxias cerca de um bilhão de anos após o Big Bang.

Depois que os astrônomos descobriram a galáxia, conhecida como SPT 0346-52, com o telescópio South Pole Telescope (SPT), eles o observaram com vários telescópios espaciais e terrestres. Dados do Atacama Large Millimeter/submillimeter Array (ALMA) revelaram anteriormente uma emissão de infravermelha extremamente brilhante, sugerindo que a galáxia está passando por uma explosão tremenda no nascimento de estrelas.

No entanto, uma explicação alternativa permaneceu: Foi em grande parte a emissão infravermelha causada por um buraco negro supermassivo em rápido crescimento no centro da galáxia?

O gás caindo em direção ao buraco negro se tornaria muito mais quente e mais brilhante, fazendo com que a poeira e o gás circundante brilhasse na luz infravermelha. Para explorar essa possibilidade, os pesquisadores utilizaram o observatório de raios X Chandra e o radiotelescópio Australia Telescope Compact Array da CSIRO.

Nenhum raio X ou ondas de rádio foram detectados, assim os astrônomos foram capazes de descartar um buraco negro sendo responsável pela maior parte da luz infravermelha brilhante.

"Agora sabemos que esta galáxia não tem um buraco negro, mas sim está brilhando com a luz das estrelas recém-nascidas", disse Jingzhe Ma, da Universidade da Flórida, que liderou o novo estudo. "Isso nos dá informações sobre como as galáxias e as estrelas dentro delas evoluem durante os instantes iniciais no Universo".

As estrelas estão se formando a uma taxa de cerca de 4.500 vezes a massa do Sol a cada ano na SPT0346-52, uma das taxas mais altas vistas em uma galáxia. Isto está em contraste com uma galáxia como a Via Láctea que só forma cerca de uma massa solar de novas estrelas por ano.

A alta taxa de formação de estrelas implica que um grande reservatório de gás fresco na galáxia está sendo convertido em estrelas com eficiência incomumente alta.

Os astrônomos esperam que, ao estudar mais galáxias como a SPT0346-52, aprenderão mais sobre a formação e o crescimento de galáxias massivas e os buracos negros supermassivos em seus centros.

A SPT0346-52 faz parte de uma população de galáxias de lente gravitacional forte descobertas com o SPT. Ela aparece cerca de seis vezes mais brilhante do que seria sem a lente gravitacional, permitindo aos astrônomos observar mais detalhes do que seria de outra forma possível.

Um artigo descrevendo esses resultados aparece em uma edição recente do The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 13 de dezembro de 2016

Buraco negro em rotação destruindo uma estrela

Foi observado, há cerca de um ano atrás, um ponto de luz extraordinariamente brilhante numa galáxia distante supondo tratar-se da supernova mais brilhante observada até hoje.

ilustração de estrela próxima de um buraco negro em rotação

© ESO/ESA/Hubble/M. Kornmesser (ilustração de estrela próxima de um buraco negro em rotação)

No entanto, novas observações obtidas em vários observatórios, incluindo o ESO, lançam agora dúvidas relativas a essa classificação. Um grupo de astrônomos propõe que este evento correspondeu a um fenômeno ainda mais extremo e raro, um buraco negro em rotação rápida destruindo uma estrela que se aproximou demais dele.

Em 2015, o rastreio ASAS-SN (All Sky Automated Survey for SuperNovae) detectou um evento, ao qual se deu o nome ASASSN-15lh, que foi registado como sendo a supernova mais brilhante já observada e catalogado por isso como uma supernova superluminosa, isto é, a explosão de uma estrela extremamente massiva que chegou ao final da sua vida. Este evento era duas vezes mais brilhante que a anterior detentora do recorde de supernova mais luminosa, apresentando-se no seu pico máximo de intensidade 20 vezes mais brilhante que a radiação total emitida pela Via Láctea inteira.

Uma equipe internacional de astrônomos, liderada por Giorgos Leloudas do Instituto de Ciências Weizmann, Israel, e do Centro de Cosmologia Escura, Dinamarca, fez agora observações adicionais da galáxia distante, situada a cerca de 4 bilhões de anos-luz de distância da Terra, onde a explosão ocorreu, tendo proposto uma nova explicação para este evento extraordinário.

“Observamos esta fonte luminosa durante os 10 meses que se seguiram ao evento e concluímos que a explicação deste fenômeno não se encontra, muito provavelmente, numa supernova extraordinariamente brilhante. Os nosso resultados indicam que o evento foi provavelmente causado por um buraco negro em rotação rápida quando destruiu uma estrela de pequena massa,” explica Leloudas.

Este cenário indica que as forças gravitacionais extremas de um buraco negro supermassivo, situado no centro da galáxia hospedeira, despedaçaram uma estrela do tipo do Sol que se aproximou demais dele, num evento chamado perturbação por forças de maré, um fenômeno que só foi observado cerca de 10 vezes até agora. No processo a estrela foi “espaguetificada” e choques nos restos em colisão assim como calor gerado pela acreção deram origem à explosão luminosa. Este fato fez com que o evento se parecesse com uma explosão de supernova muito brilhante, apesar desta estrela nunca se transformaria, de qualquer modo, numa supernova, já que não tinha massa suficiente para terminar a sua vida desta maneira.

A equipe baseou as novas conclusões em observações obtidas por uma quantidade de telescópios, instalados tanto no solo como no espaço. Entre eles encontra-se o Very Large Telescope (VLT) instalado no Observatório do Paranal do ESO, o New Techonology Telescope (NTT) instalado no Observatório de La Silla do ESO e o Telescópio Espacial Hubble da NASA/ESA. As observações obtidas com o NTT foram executadas no âmbito do rastreio PESSTO (Public ESO Spectroscopic Survey of Transient Objects).

“Há vários aspetos independentes nas observações que sugerem que este evento foi de fato originado por uma perturbação por forças de maré e não por uma supernova superluminosa,” explica Morgan Fraser da Universidade de Cambridge, Reino Unido (agora na University College Dublin, Irlanda).

Em particular, os dados revelaram que o evento passou por três fases distintas ao longo dos 10 meses que duraram as observações de acompanhamento. Os dados de modo geral parecem-se muito mais com o que se espera de uma perturbação de maré do que de uma supernova superluminosa. Um aumento do brilho na radiação ultravioleta assim como um aumento na temperatura reduzem ainda mais a probabilidade de um evento de supernova. Adicionalmente, a localização do evento, numa galáxia vermelha, massiva e bastante passiva, não é a normal para explosões de supernovas superluminosas, as quais ocorrem geralmente em galáxias anãs azuis que apresentam formação estelar intensa.

Apesar da equipe achar que uma supernova é algo muito improvável para explicar este evento, uma perturbação de maré também não explica de modo adequado o fenômeno observado. Nicholas Stone, membro da equipe da Columbia University, EUA, explica: “O evento de perturbação de maré que propomos não pode ser explicado por um buraco negro supermassivo que não esteja em rotação. Por isso pensamos que o ASASSN-15lh se tratou de um evento de perturbação de maré com origem num tipo muito particular de buraco negro.”

A massa da galáxia hospedeira indica-nos que o buraco negro no seu centro tem pelo menos 100 milhões de vezes a massa do Sol. Um buraco negro com esta massa é normalmente incapaz de despedaçar estrelas situadas além do seu horizonte de eventos, a fronteira a partir da qual já nada pode escapar à atração gravitacional do objeto. No entanto, se o buraco negro apresentar uma rotação rápida, o chamado buraco negro de Kerr, a situação muda e este limite já não se aplica.

“Mesmo com todos os dados coletados não podemos ter uma certeza total que o evento ASASSN-15lh se tratou de uma perturbação de maré,” conclui Leloudas. “No entanto, esta é de longe a explicação mais plausível.”

Fonte: ESO

Ventos de rubis e safiras atingem o céu de planeta gigante

De acordo com uma nova pesquisa realizada pela Universidade de Warwick, foram detectados sinais de ventos poderosos num planeta 16 vezes maior que a Terra, a mais de 1.000 anos-luz de distância; é a primeira vez que sistemas climáticos foram encontrados num gigante gasoso para além do nosso Sistema Solar.

ilustração do exoplaneta HAT-P-7b

© U. Warwick/Mark Garlick (ilustração do exoplaneta HAT-P-7b)

David Armstrong, do Grupo de Astrofísica da Universidade de Warwick, descobriu que o gigante gasoso HAT-P-7b é afetado por mudanças em larga escala pelos fortes ventos que se movimentam pelo planeta, provavelmente gerando tempestades catastróficas.

Esta descoberta foi alcançada estudando a luz refletida pela atmosfera de HAT-P-7b e pela identificação de alterações nesta luz, mostrando que o ponto mais brilhante do planeta muda de posição.

Esta alteração é provocada por um jato equatorial com velocidades de vento dramaticamente variáveis, sendo que no seu pico de intensidade, empurram vastas quantidades de nuvens pelo planeta.

As próprias nuvens seriam visualmente deslumbrantes, provavelmente compostas de corindo, o mineral que forma rubis e safiras.

O planeta nunca poderia ser habitável devido aos seus prováveis sistemas climáticos violentos e a temperaturas inóspitas, entre outras características. Um lado do planeta está sempre voltado para a estrela, porque existe bloqueio de marés, e este lado permanece muito mais quente que o outro, a temperatura média do lado diurno atinge os 2.860 K (2.587 ºC).

Graças a esta pesquisa pioneira, os astrofísicos podem agora começar a explorar como os sistemas meteorológicos em outros planetas fora do nosso Sistema Solar mudam ao longo do tempo.

O Dr. Armstrong comenta: "Usando o satélite Kepler da NASA, fomos capazes de estudar a luz refletida pela atmosfera de HAT-P-7b e descobrimos que mudava ao longo do tempo. O HAT-P-7b é um exoplaneta com bloqueio de marés, em que o mesmo lado está sempre voltado para a estrela. Há formação de nuvens no lado noturno e frio do planeta, mas evaporariam rapidamente no lado diurno.

"Estes resultados mostram que ventos fortes circulam o planeta, transportando nuvens do lado noturno para o lado diurno. Os ventos mudam de velocidade drasticamente, levando a à acumulação de enormes formações de nuvens que depois desaparecem. Esta é a primeira detecção de um sistema meteorológico num gigante gasoso para além do nosso Sistema Solar."

Descoberto pela primeira vez em 2008, HAT-P-7b está a 320 parsecs (mais de 1.040 anos-luz) de distância. É um exoplaneta 40% maior que Júpiter e 500 vezes mais massivo que a Terra, e orbita uma estrela 50% mais massiva e com o dobro do tamanho do nosso Sol.

Fonte: University of Warwick

sábado, 10 de dezembro de 2016

A Nebulosa do Camarão

Ao sul da estrela Antares, na cauda da constelação de Escorpião (Scorpius), um lugar rico em nebulosas, encontra-se a nebulosa de emissão IC 4628.

IC 4628

© ESO/INAF/R. Colombari (IC 4628)

Vizinhas a essa nebulosa habitam estrelas jovens de grande massa, as quais energizam a nuvem cósmica com a invisível radiação ultravioleta, arrancando os elétrons de seus átomos. Os elétrons eventualmente se recombinam com outros átomos para produzir o brilho visível da nebulosa, dominado pela emissão vermelha de hidrogênio.

Residindo a uma distância estimada de 6.000 anos-luz da Terra, a região vista acima tem cerca de 250 anos-luz de diâmetro, cobrindo uma área equivalente a quatro luas cheias no céu. A nebulosa IC 4628 também é catalogada como Gum 56 pelo astrônomo australiano Colin Stanley Gum, mas os astrônomos amantes de frutos do mar se referem a esta nuvem cósmica como a Nebulosa do Camarão.

A impressionante imagem colorida é uma nova composição astronômica usando dados da câmera de campo largo OmegaCAM do ESO e imagens do astrônomo amador Roberto Colombari captadas nos céus escurecidos nas Ilhas Canárias em Tenerife.

Fonte: NASA