quinta-feira, 30 de março de 2017

Detectada super bolha de gás em expansão ao redor de buracos negros

Num estudo, liderado por Sandy Morais, uma aluna de doutoramento do Instituto de Astrofísica e Ciências do Espaço (IA) e Faculdade de Ciências da Universidade do Porto (FCUP), os pesquisadores descobriram gigantescas bolhas de gás  e poeira em torno de duas radiogaláxias longínquas, a cerca de 11,5 bilhões de anos-luz de distância.

radiogaláxia e bolha de gás

© NASA/NAOJ (radiogaláxia e bolha de gás)

O quadro à esquerda da imagem composta acima mostra uma radiogaláxia e bolha de gás, no visível, infravermelho e raios X, e o quadro à direita é uma ilustração da galáxia, com emissão de jatos.

As radiogaláxias são um tipo de galáxias com núcleos ativos de galáxias (AGNs) no seu centro. Estes AGNs consomem material, como gás, a taxas extremamente elevadas, o que provoca a emissão de radiação em todo o espectro eletromagnético. Os AGNs também emitem potentes jatos de matéria, que brilha nas frequências do rádio.

“Ao estudar galáxias violentas como estas, adquirimos uma nova compreensão sobre a forma como os buracos negros supermassivos afetam a evolução das galáxias onde estes se encontram,” comentou Andrew Humphrey, do IA e Universidade do Porto.

Os pesquisadores usaram dois dos maiores telescópios da atualidade, o Keck II (Havaí) e o Gran Telescópio de Canárias (GTC), para observar TXS0211−122 e TXS 0828+193, duas potentes radiogaláxias que abrigam um dos tipos de AGNs mais energéticos que se conhece. Este tipo de galáxia tem os mais massivos buracos negros e as mais potentes emissões contínuas de energia conhecidas.

A equipe descobriu super bolhas de gás em expansão ao redor de TXS0211−122 e TXS 0828+193, muito provavelmente provocadas pela atividade de “feedback”. Esta ocorre quando o AGN injeta grandes quantidades de energia na galáxia progenitora, dando origem a fortes ventos que empurram gás e poeiras, formando uma super bolha em expansão.

O estudo desta simbiose entre os buracos negros supermassivos e a galáxia hospedeira é essencial para perceber a evolução das galáxias mais massivas do Universo. A radiação ultravioleta emitida pelo disco de acreção do buraco negro pode inibir temporariamente a formação de estrelas, ao ionizar o gás no meio interestelar, e o gás caindo para o buraco negro pode levar a uma inibição permanente de formação de estrelas.

O artigo intitulado “Ionization and feedback in Lyα haloes around two radio galaxies at z ∼ 2.5” foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica e Ciências do Espaço

quarta-feira, 29 de março de 2017

Estrelas nascidas em ventos de buracos negros supermassivos

A vizinha da Via Láctea, Andrômeda, contém uma fonte predominante de emissão de raios X altamente energéticos, mas a sua identidade permanecia misteriosa até agora.

Galáxia de Andrômeda

© Jacob Bers (Galáxia de Andrômeda)

Relatado num novo estudo, a missão NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA localizou um objeto responsável por esta radiação de alta energia.

Segundo os pesquisadores, o objeto Swift J0042.6+4112 é um possível pulsar, o remanescente denso, altamente magnetizado e giratório de uma estrela moribunda. Esta interpretação é baseada na sua emissão de raios X altamente energéticos, que o NuSTAR é excepcionalmente capaz de medir. O espectro do objeto é muito semelhante aos pulsares conhecidos da Via Láctea.

Está provavelmente localizado num sistema binário, onde material de uma companheira estelar é puxado para o pulsar, ejetando radiação altamente energética à medida que este material aquece.

"Nós não sabíamos o que era até que olhamos para ele com o NuSTAR," comenta Mihoko Yukita, autor principal de um estudo sobre o objeto, da Universidade Johns Hopkins em Baltimore, EUA.

Este candidato a pulsar é visto como um ponto azul na imagem da Galáxia de Andrômeda, também conhecida como M31, obtida pelo NuSTAR em raios X, onde a cor azul é escolhida para representar os raios X mais energéticos. É mais brilhante, em raios X altamente energéticos, do que qualquer outro objeto na galáxia.

O estudo reúne muitas observações diferentes do objeto obtidas por várias missões. Em 2013, o satélite Swift da NASA reportou-o como uma fonte altamente energética, mas a sua classificação era desconhecida, pois existem muitos objetos que emitem raios X de baixa energia na região. A emissão de raios X de baixa energia, do objeto, ao que parece é uma fonte identificada pela primeira vez na década de 1970 pelo Observatório Einstein da NASA. Outros observatórios, como o Chandra da NASA e o XMM-Newton da ESA, também já a haviam detectada. No entanto, foi só com este estudo mais recente do NuSTAR, auxiliado por dados do satélite Swift, que os cientistas perceberam que era o mesmo objeto, pois este provável pulsar domina a radiação altamente energética de raios X em Andrômeda.

Tradicionalmente, os astrõnomos pensam que a alimentação ativa de buracos negros, mais massivos que os pulsares, geralmente domina a radiação altamente energética de raios X das galáxias. À medida que o gás espirala para cada vez mais perto do buraco negro, numa estrutura chamada disco de acreção, este material é aquecido a temperaturas extremamente altas e emite radiação altamente energética. Este pulsar, que tem uma massa menor do que qualquer um dos buracos negros de Andrômeda, é mais brilhante em energias altas do que toda a população de buracos negros da galáxia.

Até o buraco negro supermassivo no centro de Andrômeda não tem emissão altamente energética de raios X associada. É inesperado que um único pulsar, ao invés, domine a galáxia em raios X altamente energéticos.

"O NuSTAR fez-nos perceber a importância geral dos sistemas pulsares como componentes de galáxias que emitem raios X e a possibilidade de que os raios X altamente energéticos de Andrômeda sejam dominados por um único sistema pulsar só acrescenta a esta imagem emergente," comenta Ann Hornschemeier, do Goddard Space Flight Center da NASA.

Andrômeda é uma galáxia espiral ligeiramente maior que a Via Láctea. Encontra-se a 2,5 milhões de anos-luz da nossa Galáxia, o que é considerado muito próximo, dada a escala mais ampla do Universo. Os observadores do céu podem ver Andrômeda sem telescópio em noites escuras e limpas.

"Uma vez que não podemos sair da nossa Galáxia e estudá-la de forma imparcial, Andrômeda é o mais próximo que temos parecido com olhar num espelho," conclui Hornschemeier.

O estudo foi publicado na revista The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

Astrônomos identificam anã marron mais pura e massiva

Uma equipe internacional de astrônomos identificou uma anã marron com a composição mais "pura" e a massa mais alta já conhecida.

ilustração da recém-descoberta anã marron

© John Pinfield (ilustração da recém-descoberta anã marron)

O objeto, conhecido como SDSS J0104+1535, é um membro do chamado halo da Via Láctea, composto por estrelas antigas.

As anãs marrons são objetos intermediários entre os planetas e as estrelas. A sua massa é demasiado pequena para a plena fusão nuclear de hidrogênio em hélio (com a consequente liberação de energia), mas geralmente são significativamente mais massivas que os planetas.

Localizada a 750 anos-luz de distância na direção da constelação de Peixes, SDSS J0104+1535 é composta por gás cerca de 250 vezes mais puro que o Sol, de modo que consiste de mais de 99,99% de hidrogênio e hélio. Estima-se ter sido formada há cerca de 10 bilhões de anos atrás e as medições também sugerem que tem uma massa equivalente a 90 vezes a de Júpiter, o que a torna na anã marron mais massiva já encontrada.

Anteriormente, não se sabia se as anãs marrons podiam ser formadas a partir de gás tão primordial, e a descoberta aponta o caminho para uma maior população, por descobrir, de anãs marrons extremamente puras do passado antigo da nossa Galáxia.

A equipe de pesquisa foi liderada pelo Dr. ZengHua Zhang do Instituto de Astrofísica das Ilhas Canárias. "Nós realmente não esperávamos ver anãs marrons assim tão puras. Tendo encontrado uma, isso sugere-nos uma população muito maior até agora desconhecida; ficaria muito surpreso se não existissem objetos semelhantes lá fora, à espera de serem encontrados,"  afirma Dr. Zhang.

A SDSS J0104+1535 foi classificada como uma ultra-subanã do tipo L usando o seu espectro óptico e infravermelho próximo, medido pelo Very Large Telescope (VLT) do ESO. Esta classificação baseou-se num esquema recentemente estabelecido pelo Dr. Zhang.

A descoberta foi relatada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

terça-feira, 28 de março de 2017

Buraco negro supermassivo foi expulso do centro de galáxia

Uma equipe internacional de astrônomos usando o telescópio espacial Hubble descobriu um buraco negro supermassivo que foi impulsionado para fora do centro da galáxia distante 3C186.

galáxia com um buraco negro supermassivo ejetado

© STScI/ESA/M. Chiaberge (galáxia com um buraco negro supermassivo ejetado)

O buraco negro provavelmente foi ejetado pelo poder das ondas gravitacionais. Esta é a primeira vez que os astrônomos encontraram um buraco negro supermassivo a uma distância tão grande de seu centro galáctico de acolhimento.

Embora vários outros buracos negros suspeitos tenham sido vistos em outros lugares, até agora nenhum deles foi confirmado. Agora os astrônomos detectaram um buraco negro supermassivo, com uma massa de um bilhão de vezes a do Sol, sendo expulso de sua galáxia progenitora."Estimamos que a energia equivalente de 100 milhões de supernovas explodiu simultaneamente para descartar o buraco negro", descreve Stefano Bianchi, da Roma Tre University, na Itália.

As imagens tiradas pelo Hubble forneceram a primeira pista que a galáxia, nomeada 3C186, era incomun. As imagens da galáxia, localizadas a 8 bilhões de anos-luz de distância, revelaram um quasar brilhante, a assinatura energética de um buraco negro ativo, localizado longe do núcleo galáctico. "Buracos negros residem nos centros de galáxias, por isso é incomum ver um quasar não no centro", lembra o líder da equipe Marco Chiaberge, pesquisador da ESA-AURA no Space Telescope Science Institute, EUA.

A equipe calculou que o buraco negro já viajou cerca de 35.000 anos-luz do centro, que é mais do que a distância entre o Sol e o centro da Via Láctea. E continua seu voo a uma velocidade de 7,5 milhões de quilômetros por hora. A esta velocidade o buraco negro poderia viajar da Terra para a Lua em três minutos. Como o buraco negro não pode ser observado diretamente, a massa e a velocidade dos buracos negros supermassivos foram determinadas através da análise espectroscópica de seu gás circundante.

Embora outros cenários para explicar as observações não possam ser excluídos, a fonte mais plausível da energia propulsiva é que este buraco negro supermassivo foi lançado por ondas gravitacionais desencadeada pela fusão de dois buracos negros massivos no centro de sua galáxia hospedeira. Esta teoria é suportada por forças de maré em forma de arco identificadas pelos cientistas, produzidas por um rebocador gravitacional entre as duas galáxias em colisão.

Primeiramente predito por Albert Einstein, as ondas gravitacionais são ondulações no espaço que são criadas pela aceleração de objetos massivos. As ondulações são semelhantes aos círculos concêntricos produzidos quando uma pedra é jogada em uma lagoa. Em 2016, o Laser Interferometer Gravitational-wave Observatory (LIGO) ajudou os astrônomos a provar que as ondas gravitacionais existem detectando-as emanando da união de dois buracos negros de massa estelar, que são várias vezes maismassivos do que o Sol.

De acordo com a teoria apresentada pelos cientistas, 1 a 2 bilhões de anos atrás, duas galáxias, cada uma com enormes buracos negros centrais, se fundiram. Os buracos negros giraram ao redor um do outro no centro da galáxia elíptica recém-formada, criando ondas gravitacionais que foram lançadas para fora. Como os dois buracos negros não tinham a mesma massa e taxa de rotação, eles emitiram ondas gravitacionais mais fortemente ao longo de uma direção. Quando os dois buracos negros finalmente se fundiram, a emissão anisotrópica de ondas gravitacionais propiciou o disparo do buraco negro resultante para fora do centro galáctico. Os buracos negros se aproximam ao longo do tempo à medida que irradiam energia gravitacional.

"Se a nossa teoria está correta, as observações fornecem fortes evidências de que os buracos negros supermassivos podem realmente se fundir", explica Bianchi sobre a importância da descoberta. "Já há evidências de colisões entre buracos negros de massa estelar, mas o processo que regula buracos negros supermassivos é mais complexo e ainda não completamente entendido".

Os pesquisadores têm a sorte de ter captado este evento único porque nem todas as fusões de buracos negros produzem ondas gravitacionais desequilibradas que impulsionam um buraco negro para fora da galáxia. A equipe agora quer empregar o Hubble, em combinação com a Atacama Large Millimeter/submillimeter Array (ALMA) e outras instalações, para medir com mais precisão a velocidade do buraco negro e seu disco de gás circundante, o que pode trazer mais informações da natureza deste objeto raro.

Os resultados do estudo foram apresentados no artigo The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source? da revista Astronomy & Astrophysics.

Fonte: ESA

segunda-feira, 27 de março de 2017

Estrelas nascidas em ventos de buracos negros supermassivos

Com o auxílio do Very Large Telescope (VLT) do ESO foram descobertas estrelas formando-se nos poderosos fluxos de matéria lançados por buracos negros supermassivos, situados nos núcleos de galáxias.

ilustração de estrelas nascidas em ventos de buracos negros supermassivos

© ESO/M. Kornmesser (ilustração de estrelas nascidas em ventos de buracos negros supermassivos)

Tratam-se das primeiras observações confirmadas de estrelas em formação neste tipo de ambiente extremo. A descoberta tem muitas consequências para a compreensão da evolução e propriedades das galáxias.

Um grupo de astrônomos europeus liderado pelo Reino Unido utilizou os instrumentos MUSE e X-shooter montados no VLT, no Observatório do Paranal no Chile, para estudar uma colisão entre duas galáxias, chamadas coletivamente IRAS F23128-5919, situadas a cerca de 600 milhões de anos-luz de distância da Terra. A equipe observou os ventos colossais de matéria que têm origem perto do buraco negro supermassivo situado no núcleo da galáxia do par mais ao sul, e descobriu evidências claras de formação de estrelas ocorrendo nestes fluxos. As estrelas formam-se nos fluxos a taxas muito elevadas; os astrônomos pensam que são formadas estrelas correspondentes a um total de 30 vezes a massa do Sol por ano, o que equivale a mais de um quarto da formação estelar em todo este sistema de galáxias em fusão.

Este tipo de fluxos galácticos tem origem na enorme liberação de energia por parte dos centros ativos e turbulentos das galáxias. Os buracos negros supermassivos “escondem-se” no coração da maioria das galáxias e ao “engolirem” matéria aquecem o gás ao seu redor, lançando-o para fora da galáxia hospedeira sob a forma de ventos densos e poderosos. A expulsão do gás sob a forma de fluxos galácticos dá origem a um meio pobre em gás no interior da galáxia, o que pode muito bem ser a razão pela qual algumas galáxias param de formar novas estrelas à medida que envelhecem. Embora estes fluxos tenham muito provavelmente a sua origem em buracos negros supermassivos centrais, também é possível que estes ventos sejam alimentados por supernovas num núcleo com formação estelar explosiva, ou seja, que está formando estrelas de forma vigorosa.

“Os astrônomos já suspeitavam há algum tempo que as condições no interior destes fluxos fossem adequadas para a ocorrência de formação estelar, no entanto ninguém tinha observado ainda o fenômeno acontecendo, já que se trata de uma observação muito difícil,” disse o líder da equipe Roberto Maiolino da Universidade de Cambridge. “Os nossos resultados são excitantes porque mostram sem ambiguidade que estrelas estão se formando no interior destes fluxos.”

A equipe resolveu estudar as estrelas que se encontram diretamente nos fluxos, assim como o gás ao redor. Os instrumentos espectroscópicos MUSE e X-shooter, ambos líderes mundiais, permitiram à equipe realizar um estudo muito detalhado das propriedades da radiação emitida, de modo a identificar a sua fonte.

Sabe-se que a radiação emitida por estrelas jovens faz as nuvens de gás próximas brilharem de um modo particular. A extrema sensibilidade do X-shooter permitiu à equipe descartar outras causas possíveis para este brilho, incluindo choques no gás ou núcleos ativos na galáxia.

A equipe detectou também, sem sombra de dúvidas e de forma direta, uma população estelar muito jovem nos fluxos. Acredita-se que estas estrelas tenham uma idade inferior a algumas dezenas de milhões de anos, e análises preliminares sugerem que estes objetos são mais quentes e brilhantes do que estrelas que se formam em meios menos extremos tais como os discos galácticos.

Como evidências adicionais, os astrônomos determinaram também o movimento e a velocidade destas estrelas. A radiação emitida pela maioria das estrelas na região indica que estas se deslocam a altas velocidades afastando-se do centro da galáxia, o que faz sentido para objetos "apanhados" numa corrente de material que se desloca a alta velocidade.

“As estrelas que se formam no vento próximo do centro galáctico podem ser freadas ou até começar a voltar, mas as estrelas que se formam mais longe apresentam menor desaceleração, podendo até deslocar-se para fora da galáxia,” explica Helen Russell  do Instituto de Astronomia da Universidade de Cambridge.

Esta descoberta nos dá novas informações que ajudarão a compreender vários fenômenos astrofísicos, por exemplo: como que certas galáxias obtêm as suas formas; como que o meio intergaláctico se enriquece de elementos pesados, e qual a origem da inexplicável radiação cósmica de fundo infravermelha.

As galáxias espirais têm uma estrutura em disco óbvia, apresentando no centro um bojo distendido de estrelas e estando rodeadas por uma nuvem difusa de estrelas chamada halo. As galáxias elípticas são essencialmente compostas por estes elementos esferoidais. As estrelas formadas nos fluxos e que são ejetadas do disco principal poderão dar origem a estas estruturas galácticas.

Como é que o espaço entre as galáxias, o meio intergaláctico, se enriquece em elementos pesados é uma questão que ainda permanece em aberto, no entanto as estrelas dos fluxos poderão fornecer uma resposta. Se forem lançadas para fora da galáxia e depois explodirem sob a forma de supernovas, os elementos pesados que contêm poderão ser liberados neste meio.

A radiação cósmica de fundo infravermelha, semelhante à mais famosa radiação cósmica de fundo de microondas, é um brilho fraco na região infravermelha do espectro que vem de todas as direções do espaço. No entanto, a sua origem nas bandas do infravermelho próximo nunca foi verificada de modo satisfatório. Uma população de estrelas de fluxo lançadas para o espaço intergaláctico poderá contribuir para esta radiação.

“Se tivermos de fato formação estelar ocorrendo na maioria dos fluxos galácticos, como algumas teorias prevêem, então poderemos ter um cenário completamente diferente de evolução das galáxias,” disse Maiolino.

Este trabalho foi descrito no artigo científico intitulado “Star formation in a galactic outflow” de Maiolino et al., que foi publicado hoje na revista Nature.

Fonte: ESO

Os nomes peculiares de objetos astronômicos

Alguns objetos astronômicos têm apelidos cativantes ou peculiares, inspirados pela mitologia ou sua própria aparência.

NGC 4424 e LEDA 213994

© Hubble (NGC 4424 e LEDA 213994)

Tomemos, por exemplo, a constelação de Órion (O Caçador), a Galáxia do Sombrero, a Nebulosa Cabeça de Cavalo, ou mesmo a Via Láctea. No entanto, a grande maioria dos objetos cósmicos aparecem em catálogos astronômicos, e são dados nomes menos poéticos baseados na ordem de sua descoberta.

Duas galáxias são claramente visíveis nesta imagem do Hubble, a maior delas é a NGC 4424. Esta galáxia é catalogada no Novo Catálogo Geral de Nebulosas e Aglomerados de Estrelas (NGC), que foi compilado em 1888. O NGC é um dos maiores catálogos astronômicos, por isso aparecem fotografias de muitos objetos NGC realizadas pelo Hubble. No total há 7.840 entradas no catálogo e eles também são geralmente os objetos maiores, mais brilhantes e mais atraentes no céu noturno, e, portanto, os mais facilmente vistos por astrônomos.

A galáxia menor, plana e brilhante, situada logo abaixo da NGC 4424, é chamada de LEDA 213994. O Lyon-Meudon Extragalactic Database (LEDA) é muito mais moderno do que o NGC. Criado em 1983 no Observatório de Lyon, contém milhões de objetos. No entanto, muitos objetos NGC ainda constam com seus nomes iniciais simplesmente porque eles foram batizados dentro do NGC primeiro. Nenhum astrônomo pode resistir a uma boa sigla, e "LEDA" é mais atraente do que o "LMED", talvez graças à antiga afinidade astronômica com a mitologia quando se trata de nomear as coisas: Leda era uma princesa na mitologia grega antiga.

Fonte: ESA

Lá em cima

Nesta imagem o Very Large Telescope (VLT) do ESO parece um telescópio muito pequeno!

a Via Láctea e o Very Large Telescope

© ESO/B. Tafreshi (a Via Láctea e o Very Large Telescope)

Visto desta perspectiva, torna-se difícil distinguir as silhuetas dos quatro Telescópios Principais de 8,2 metros do VLT, que estão colocados no alto do Cerro Paranal, no deserto chileno do Atacama.

A localização do VLT foi escolhida de modo extremamente cuidadoso. É vital que o local seja tão seco quanto possível, uma vez que o vapor d'água absorve a radiação infravermelha e degrada as observações. De modo a reduzir o máximo possível os efeitos da atmosfera terrestre, o VLT situa-se 2600 metros acima do nível do mar, minimizando assim a quantidade de atmosfera até as estrelas.

Devido a esta localização remota, o Paranal é um lugar praticamente imperturbado e livre de poluição luminosa. Até as estradas serpenteantes que conduzem ao local através do deserto do Atacama estão fracamente iluminadas de modo a evitar luz desnecessária.

Nesta imagem, uma trilha de estrelas corta o céu noturno, tal como fumaça subindo através de uma chaminé celeste. Trata-se da nossa casa galática, a Via Láctea. Em direção ao topo da imagem vemos uma seção mais brilhante e larga, que corresponde ao bojo galáctico repleto de estrelas e que se situa no coração da Via Láctea.

Fonte: ESO

sábado, 25 de março de 2017

Revelando o campo magnético da Terra

Os satélites Swarm da ESA estão observando a história magnética impressa na crosta terrestre.

campo magnético litosférico em Bangui

© ESA/DTU Space/DLR (campo magnético litosférico em Bangui)

Para ver o campo magnético litosférico terrestre, acesse o vídeo clicando na imagem acima.

A anomalia detectada no campo magnético ao redor da cidade de Bangui, na República Centro-Africana, pode ser causada pelo impacto de um meteorito a 540 milhões de anos atrás. Nesta região o campo magnético é significativamente mais forte do que no resto do planeta. A alteração foi observada em um novo mapa do campo magnético que possui a maior resolução já alcançada.

“Medições do espaço têm grande valor, pois oferecem uma visão global nítida sobre a estrutura magnética da camada externa rígida do nosso planeta,” diz Rune Floberghagen, líder da missão Swarm.

Compreender o campo magnético da Terra, assim como suas anormalidades, é importante para desvendar a história do planeta contida em sua crosta. Este campo magnético é como um enorme invólucro que nos protege da radiação cósmica e das partículas carregadas que bombardeiam nosso planeta com o vento solar, sem o qual não existiria a vida tal como conhecemos.

A maior parte do campo magnético terrestre se forma a 3.000 quilômetros de profundidade, pelo movimento de ferro fundido do núcleo externo. Os 6% restantes são originados pelas correntes elétricas existentes no espaço que rodeia a Terra e as rochas magnetizadas na litosfera superior, a porção rígida mais exterior do planeta, que corresponde à crosta e o manto superior.

"Combinando as medições do Swarm com os dados históricos do satélite alemão CHAMP e usando uma nova técnica de modelagem, foi possível extrair os minúsculos sinais magnéticos de magnetização da crosta," explicou Nils Olsen, da Technical University of Denmark.

O mapa construído pela equipe de cientistas europeus conseguiu mostrar com detalhes as variações no campo magnético litosférico, que por ser mais fraco, é mais difícil de ser observado do espaço. Uma delas é a que está localizada em Bangui. Os pesquisadores suspeitam que ela tenha sido originada por um impacto com um objeto rochoso no passado, pois ele muda conforme uma nova crosta é criada pela atividade vulcânica e pelo resfriamento do magma. Estes minerais solidificados deixam um registro da história magnética da Terra.

O campo magnético está em um estado permanente de fluxo. O norte magnético vagueia, e a cada poucas centenas de milhares de anos a polaridade gira de modo que uma bússola aponte para o sul em vez de indicar o norte. Quando a nova crosta é gerada através da atividade vulcânica, principalmente ao longo do fundo do oceano, os minerais ricos em ferro no magma solidificado são orientados para o norte magnético, capturando assim um "instantâneo" do campo magnético no estado onde estava quando as rochas esfriaram.

O último mapa de Swarm nos dá uma visão global sem precedentes das faixas magnéticas associadas às placas tectônicas refletidas nas cristas oceânicas.

"Estas faixas magnéticas são evidências de reversões dos polos, cuja análise dos registros magnéticos do fundo oceânico permite a reconstrução de mudanças do campo do núcleo passadas, e investigar os movimentos das placas tectônicas," disse Dhananjay Ravat da Universidade de Kentucky, nos EUA. "O novo mapa define as características do campo magnético até cerca de 250 km e ajudará na pesquisa da geologia e das temperaturas na litosfera da Terra".

Fonte: ESA

quinta-feira, 23 de março de 2017

SH2-155: A Nebulosa da Caverna

Esta paisagem celeste mostra o brilho empoeirado e avermelhado, devido aos átomos de hidrogênio ionizados da região de emissão do catálogo Sharpless, conhecida como Sh2-155, a Nebulosa da Caverna.

SH2-155

© Eric Coles/Mel Helm (SH2-155)

Localizada a aproximadamente 2.400 anos-luz de distância da Terra, a cena localiza-se ao longo do plano da Via Láctea, em direção à constelação do céu do norte de Cepheus. As explorações astronômicas da região revelam que ela se formou na fronteira da massiva nuvem molecular Cepheus B e as estrelas azuis, jovens e quentes da associação Cepheus OB3.

O brilhante anel de gás de hidrogênio ionizado é energizado pela radiação de estrelas quentes, dominada pela brilhante estrela azul do Tipo-O localizada na parte superior da imagem. As frentes de ionização impulsionadas pela radiação são provavelmente criadas pelos núcleos de estrelas que estão colapsando e por novas formações de estrelas. Com um tamanho apropriado de um berçário estelar, a caverna cósmica tem mais de 10 anos-luz de diâmetro.

Fonte: NASA

Uma estrela vagando em direção a um buraco negro

Há cerca de 290 milhões de anos atrás, uma estrela muito parecida com o Sol vagueou demasiado perto do buraco negro central da sua galáxia.

ilustração do evento de ruptura de maré ASASSN-14li

© Goddard Space Flight Center (ilustração do evento de ruptura de maré ASASSN-14li)

As marés intensas dilaceraram a estrela, o que produziu um surto de radiação visível, ultravioleta e raios X que chegou à Terra em 2014. Agora, uma equipe de cientistas usou observações do satélite Swift da NASA para mapear como e onde estes vários comprimentos de onda foram produzidos no evento, denominado ASASSN-14li, enquanto os destroços da estrela desintegrada orbitavam o buraco negro.

"Descobrimos mudanças de brilho em raios X que ocorreram cerca de um mês após alterações semelhantes no visível e no ultravioleta," comenta Dheeraj Pasham, astrofísico do Massachusetts Institute of Technology (MIT) em Cambridge, EUA, pesquisador principal do estudo. "Achamos que isso significa que a emissão óptica e ultravioleta surgiu longe do buraco negro, onde fluxos elípticos de matéria em órbita colidiram uns com os outros."

Os astrônomos pensam que o evento ASASSN-14li ocorreu quando uma estrela parecida com o Sol vagueou demasiado perto de um buraco negro com 3 milhões de vezes a massa do Sol, análogo com o que se encontra no centro da Via Láctea. Em comparação, o horizonte de eventos para um buraco negro como este é cerca de 13 vezes maior que o Sol, e o disco de acreção formado pela estrela desintegrada poderá estender-se a mais de duas vezes a distância entre a Terra e o Sol.

Quando uma estrela passa demasiado perto de um buraco negro com 10.000 vezes a massa do Sol, ou mais, as forças de maré superam a própria gravidade da estrela, convertendo o astro numa corrente de detritos. Este evento é chamado de ruptura de maré. A matéria que cai na direção de um buraco negro acumula-se num disco de acreção giratório, onde se torna comprimida e é aquecida antes de eventualmente cair para além do horizonte de eventos do buraco negro, o ponto a partir do qual nada consegue escapar. Os surtos de ruptura de maré contêm informações importantes acerca de como estes detritos se instalam inicialmente num disco de acreção.

Sabe-se que a emissão de raios X nestas erupções surgem muito perto do buraco negro. Mas a localização da luz óptica e ultravioleta não era clara, era até intrigante. Em alguns dos eventos mais estudados, esta emissão parecia estar localizada muito mais longe do local onde as forças de maré do buraco negro conseguem fragmentar a estrela. Além disso, o gás que emite a luz parecia permanecer com temperaturas estáveis por muito mais tempo do que o esperado.

O evento ASASSN-14li foi descoberto no dia 22 de novembro de 2014, em imagens obtidas pelo All Sky Automated Survey for SuperNovae (ASASSN), que inclui telescópios robóticos no Havaí e no Chile. As observações de seguimento com os telescópios do Swift começaram oito dias depois e continuaram, a cada poucos dias, durante os nove meses seguintes. Os cientistas suplementaram observações posteriores do Swift com dados ópticos do Observatório Las Cumbres, com sede em Goleta, Califórnia.

Os pesquisadores mostram nesta pesquisa como as interações entre a matéria em queda podem produzir a emissão óptica e ultravioleta observada.

Os detritos de maré caem inicialmente em direção ao buraco negro, mas falham, arqueando para trás ao longo de órbitas elípticas e, eventualmente, colidindo com o fluxo de entrada.

"Os aglomerados de detritos que retornam atingem o fluxo de entrada, o que resulta em ondas de choque que emitem luz visível e luz ultravioleta," comenta Bradley Cenko, pesquisador principal do Swift e membro da equipe científica. "À medida que estes aglomerados caem para o buraco negro, também modulam a emissão de raios X."

Serão necessárias mais observações de outros eventos de ruptura de maré futuros para esclarecer ainda mais a origem da luz óptica e da luz ultravioleta.

Um artigo que descreve os resultados foi publicado na revista The Astrophysical Journal Letters.

Fonte: Massachusetts Institute of Technology

Marte tem anéis?

Conhecemos algumas características dos planetas do nosso Sistema Solar, tais como: Júpiter é o maior, Saturno tem anéis, Mercúrio é o mais próximo do Sol, Marte é vermelho, mas é possível que um dos nossos vizinhos mais próximos também tenha tido anéis no seu passado e que possa vir a ter novamente algum dia.

ilustração da desintegração de lua de Marte

© U. Purdue (ilustração da desintegração de lua de Marte)

Esta é a teoria apresentada por cientistas financiados pela NASA da Universidade Purdue, EUA. David Minton e Andrew Hesselbrock desenvolveram um modelo que sugere que detritos expelidos para o espaço por um asteroide ou por outro corpo que colidiu com Marte há cerca de 4,3 bilhões de anos alterna entre a formação de um anel planetário e a aglomeração para formar uma lua.

Uma teoria sugere que a grande bacia polar norte de Marte, a Bacia Borealis, que cobre cerca de 40% do planeta no seu hemisfério norte, foi criada por esse impacto, expulsando detritos para o espaço.

"Este grande impacto teria ejetado material suficiente, da superfície de Marte, para formar um anel," comenta Hesselbrock.

O modelo de Hesselbrock e Minton sugere que à medida que o anel se formava, e os detritos lentamente se afastavam do Planeta Vermelho e se espalhavam, este começou a aglomerar-se e formou, eventualmente, uma lua. Ao longo do tempo, a força gravitacional de Marte teria puxado esta lua em direção do planeta até atingir o limite de Roche, a distância na qual as forças de maré de um planeta desintegram um corpo celeste unido apenas pela gravidade.

Fobos, uma das luas de Marte, está ficando cada vez mais próxima do planeta. De acordo com o modelo, Fobos irá desintegrar-se quando atingir o limite de Roche, e produzir um conjunto de anéis daqui a cerca de 70 milhões de anos. Dependendo da posição do limite de Roche, Minton e Hesselbrock pensam que este ciclo poderá ter-se repetido entre três e sete vezes ao longo de bilhões de anos. Segundo o modelo, de cada vez que uma lua se desintegra e é reformada a partir do anel resultante, a sua lua sucessora seria cinco vezes menor do que a anterior, e os detritos teriam caído para o planeta, possivelmente explicando depósitos sedimentares enigmáticos encontrados perto do equador de Marte.

"Poderíamos ter sedimentos lunares com quilômetros de espessura a chovendo nos primeiros tempos da história do planeta, e existem depósitos sedimentares enigmáticos em Marte sem nenhuma explicação de como lá chegaram," comenta Minton. "E agora é possível estudar esse material."

Outras teorias sugerem que o impacto que produziu a Bacia Polar Norte levou à formação de Fobos há 4,3 bilhões de anos atrás, mas Minton disse que é improvável que a lua tenha durado todo este tempo. Além disso, Fobos teria que ter sido formada longe de Marte e teria que ter atravessado a ressonância de Deimos, a mais exterior das duas luas de Marte. A ressonância ocorre quando duas luas exercem influência gravitacional uma sobre a outra repetidamente e periodicamente, como fazem as luas principais de Júpiter. Ao passar pela sua ressonância, Fobos teria alterado a órbita de Deimos. Mas a órbita de Deimos está a um grau do equador de Marte, sugerindo que Fobos não teve nenhum efeito sobre Deimos.

"Não aconteceu muita coisa à órbita de Deimos desde que se formou," comenta Minton. "Fobos, ao passar por estas ressonâncias, teria mudado isso."

"Esta pesquisa destaca ainda mais maneiras dos impactos afetarem um corpo planetário," comenta Richard Zurek do Jet Propulsion Laboratory (JPL) da NASA em Pasadena, Califórnia, EUA. Ele é cientista do projeto Mars Reconnaissance Orbiter (MRO) da NASA, cujo mapeamento gravitacional forneceu suporte para a hipótese de que as planícies ao norte foram formadas por um impacto gigante.

Minton e Hesselbrock vão concentrar-se agora ou na dinâmica do primeiro conjunto de anéis formados ou nos materiais que choveram sobre Marte derivados da desintegração das luas.

Um artigo foi publicado na revista Nature Geoscience.

Fonte: Purdue University

terça-feira, 21 de março de 2017

Estrelas fugitivas fornecem indícios de dissolução de sistema estelar

Um conflito gravitacional de um grupo de estrelas terminou com o sistema se afastando e com pelo menos três estrelas expelidas em direções diferentes.

Nebulosa Kleinmann-Low

© Hubble (Nebulosa Kleinmann-Low)

As velozes estrelas desertoras passaram despercebidas durante centenas de anos até que, nas últimas décadas, duas delas foram detectadas em observações no rádio e no infravermelho, comprimentos de onda que podem penetrar a espessa poeira da Nebulosa de Órion.

As observações mostraram que as duas estrelas viajavam a altas velocidades em direções opostas uma à outra. A origem das estrelas, no entanto, era um mistério. Os astrônomos traçaram ambas as estrelas 540 anos para o passado, até ao mesmo local, e sugeriram que faziam parte do mesmo, atualmente extinto, sistema múltiplo. Mas a energia combinada da dupla, que agora as está levando para fora, não era compatível. Os pesquisadores argumentaram que deveria haver pelo menos uma outra estrela, que roubou energia do lançamento estelar.

Agora, o telescópio espacial Hubble ajudou os astrônomos a encontrar a terceira estrela fugitiva. O percurso da estrela recém-descoberta foi seguido de volta ao mesmo local onde as duas estrelas anteriormente conhecidas estavam localizadas há 540 anos. O trio reside numa pequena região de jovens estrelas chamada Nebulosa Kleinmann-Low, perto do centro do vasto complexo da Nebulosa de Órion, localizada a 1.300 anos-luz da Terra.

"As novas observações do Hubble fornecem evidências muito fortes de que as três estrelas foram expelidas de um sistema múltiplo," afirma Kevin Luhman, da Universidade Estatal da Pensilvânia, EUA. "Os astrônomos já tinham encontrado, anteriormente, alguns outros exemplos de estrelas em rápido movimento que traçaram de volta a sistemas estelares múltiplos e que, portanto, provavelmente foram arremessadas. Mas estas três estrelas são os exemplos mais jovens de estrelas ejetadas. Têm provavelmente apenas algumas centenas de milhares de anos. Realmente, com base nas imagens infravermelhas, as estrelas ainda são jovens o suficiente para abrigar discos de material deixado para trás durante sua formação."

Todas as três estrelas se movem extremamente depressa para fora da Nebulosa Kleinmann-Low, a quase 30 vezes a velocidade da maioria dos habitantes estelares da nebulosa. Através de simulações de computador, os astrônomos preveem que estes conflitos gravitacionais ocorram em aglomerados jovens, onde as estrelas recém-nascidas se juntam. "Mas não temos observado muitos exemplos, especialmente em aglomerados muito jovens," comenta Luhman. "A Nebulosa de Órion pode estar rodeada por outras estrelas ejetadas no passado e que agora fogem para o espaço."

Luhman tropeçou na terceira estrela veloz, chamada fonte x, enquanto caçava planetas flutuantes e anãs marrons na Nebulosa de Órion com o membro de uma equipe internacional liderada por Massimo Robberto do Space Telescope Science Institute (STScI). A equipe usou a visão infravermelha do instrumento WFC3 (Wide Field Camera 3) do Hubble para realizar o levantamento. Durante a análise, Luhman comparava novas imagens infravermelhas obtidas em 2015 com observações de 1998 pelo NICMOS (Near Infrared Camera and Multi-Object Spectrometer). Ele notou que a fonte x havia mudado consideravelmente de posição, em relação às estrelas próximas, nos 17 anos entre as imagens do Hubble, indicando que a estrela se movia rapidamente, a mais de ‪200.000 km/h.

O astrônomos então olharam para as posições anteriores da estrela, projetando o seu caminho de volta no tempo. Ele percebeu que, na década de 1470, a fonte x estivera perto da mesma localização inicial na Nebulosa Kleinmann-Low que as outras duas estrelas fugitivas, Becklin-Neugebauer (BN) e fonte I.

A BN foi descoberta em 1967 com recurso a imagens infravermelhas, mas o seu rápido movimento só foi detectado em 1995, quando observações no rádio determinaram que a velocidade da estrela era cerca de ‪96.000 km/h. A fonte I viaja a aproximadamente 35.400 km/h. A estrela só havia sido detectada no rádio; dado que está fortemente envolta em poeira, a sua luz visível e infravermelha é amplamente bloqueada.

As três estrelas provavelmente foram expulsas do seu habitat natal quando se envolveram num conflito gravitacional. O que muitas vezes acontece quando um sistema múltiplo desmorona é que duas das estrelas se aproximam o suficiente uma da outra, fundem-se ou formam um binário muito íntimo. Em ambos os casos, o evento libera energia gravitacional suficiente para impulsionar para fora todas as estrelas do sistema. O episódio energético também produz um fluxo massivo de material, que pode ser visto em imagens do NICMOS como "dedos" de matéria que flui para longe da posição da embebida estrela apelidada de fonte I.

Os telescópios futuros, como o James Webb Space Telescope (JWST), vão ser capazes de observar uma grande faixa da Nebulosa de Órion. Através da comparação de imagens da nebulosa, obtidas pelo JWST, com aquelas obtidas anos antes pelo Hubble, é esperado identificar mais estrelas fugitivas que se separaram de outros sistemas múltiplos.

Os resultados foram publicados na revista The Astrophysical Journal Letters.

Fonte: NASA & ESA

Versão 4 do programa Cartes du Ciel

Lançada a versão 4 do software astronômico Cartes du Ciel. Ele é gratuito e está disponível em 32 e 64 bits para os sistemas operacionais Windows, Mac OS X e Linux.

Cartes du Ciel

© Cartes du Ciel (tela de abertura)

O software astronômico Cartes du Ciel permite desenhar cartas celestes através de dados de diversos catálogos de estrelas, nebulosas e galáxias; além de mostrar a posição dos planetas, asteroides e cometas. Ele executa a simulação de eclipses e possibilita o controle de telescópios.

O objetivo deste programa é preparar diferentes mapas do céu para uma observação particular. Um grande número de parâmetros ajuda você a escolher especificamente ou automaticamente quais catálogos usar, a cor e a dimensão das estrelas e nebulosas, a representação de planetas, a exibição de rótulos e grades de coordenadas, a superposição de imagens, a condição de visibilidade e muito mais. Todas estas características tornam este atlas celestial mais completo do que um planetário convencional.

Novidades referentes aos catalógos:

  • Substituído o catalógo NGC2000 pelo OpenNGC, que está incluído na versão base.
  • Agora é utilizado o nome oficial da estrela da International Astronomical Union (IAU).
  • Nova versão do catálogo GCVS (estrelas varíáveis) e WDS (estrelas duplas).
  • Nova versão do PGC/LEDA com 5 milhões de galáxias da Hyperleda 2017.
  • Adicionado índice para pesquisar a nebulosa planetária pelo nome.
  • Adicionado catálogo Sh2 e Barnard.
  • Atualizado as imagens usando melhores coordenadas do OpenNGC.

Algumas das novas funções são:

  • Nova representação para a Via Láctea.
  • Janela de informações do Sistema Solar atualizada com mais funcionalidade.
  • Traçar imagens para os principais satélites planetários.
  • Mais opções de cores e etiquetas.
  • Opção para adicionar uma mira ao centro do gráfico.
  • Opção para adicionar a linha meridiana com qualquer projeção.
  • Mostrar movimento horário de cometa e asteróide na janela de detalhes.
  • Atualização automática de arquivos TLE dos satélites artificiais.
  • Atualizada URL de download para asteroides e cometas.
  • Movimento horário de cometas e asteroides são mostrados na janela de detalhes.
  • Adicionada conexão Tcp/Ip à interface do telescópio LX200.

Eu traduzi o programa para o idioma português, que é desenvolvido por Patrick Chevalley, e o download pode ser efetuado através do meu site Cometografia.

Fonte: Cosmo Novas

segunda-feira, 20 de março de 2017

Desafiando a convenção cósmica

Algumas galáxias são mais difíceis de serem classificadas do que outras.

NGC 3447

© Hubble (NGC 3447)

Aqui, a confiável Wide Field Camera 3 (WFC3) do Hubble captou uma visão impressionante de duas galáxias interativas localizadas a cerca de 60 milhões de anos-luz de distância na constelação de Leão. O brilho azul mais difuso e desigual que cobre o lado direito da imagem é conhecido como NGC 3447, às vezes denominada NGC 3447B, pois o nome NGC 3447 pode ser aplicado ao par global. O grupo menor na parte superior esquerda é conhecido como NGC 3447A.

O problema é que o espaço é realmente enorme. Os astrônomos, há centenas de anos, estão descobrindo e nomeando galáxias, estrelas, nuvens cósmicas e muito mais. Unificar e regulamentar as convenções e classificações de tudo o que já foi observado é muito difícil, especialmente quando se obtém um objeto ambíguo como o NGC 3447, que obstinadamente desafia a categorização padrão.

Em geral, sabemos que a NGC 3447 compreende um par de galáxias interagindo, mas não temos certeza do que cada uma parecia antes de começarem a se separar. As duas situam-se tão próximas que são fortemente influenciadas e distorcidas pelas forças gravitacionais entre elas, fazendo com que as galáxias se torcem nas formas incomuns e únicas vistas aqui. A NGC 3447A parece exibir os remanescentes de uma estrutura de barra central e alguns braços espirais interrompidos, ambas as propriedades características de certas galáxias espirais. Alguns identificam a NGC 3447B como uma antiga galáxia espiral, enquanto outros a classificam como uma galáxia irregular.

Fonte: ESA

Construindo os primeiros buracos negros supermassivos do Universo

Ao contrário de seus primos de tamanho estelar, que se formam após o colapso de uma estrela massiva, os buracos negros supermassivos nos centros das galáxias são simplesmente muito grandes para resultar da morte de uma única estrela.

ilustração da galáxia CR7

© ESO/M. Kornmesser (ilustração da galáxia CR7)

Mesmo com a recente confirmação de buracos negros de massa intermediária, o mistério não foi resolvido. Enquanto os astrônomos aguardam ansiosamente novas observações através do telescópio espacial James Webb que finalmente tornará possível, eles continuam desenvolvendo teorias para explicar esses objetos misteriosos.

Os buracos negros supermassivos (SMBHs) possuem centenas de milhares a bilhões de massas solares. O buraco negro supermassivo Sgr A* no centro da Via Láctea, é cerca de 4,5 milhões de vezes a massa do Sol. Imagina-se que a formação de tais SMBHs de "massa mais baixa" (alguns milhões de massas solares) ocorre após a formação de um buraco negro "semente" de cerca de 100 massas solares. Um buraco negro deste tamanho é viável após o colapso de uma estrela extremamente massiva. Ao longo do tempo, essa semente acrescenta matéria e possivelmente até se funde com outras sementes próximas, construindo os buracos negros de milhões de massas solares que vemos hoje.

Mas os SMBHs que alimentam quasares jovens e distantes no Universo primitivo não podem ser explicados dessa maneira. O pesquisador John Regan, do Institute for Computational Cosmology da Universidade de Durham, no Reino Unido, e colegas descrevem um modelo para as circunstâncias do início do Universo que poderiam levar à criação de buracos negros de colapso direto (DCBHs). Os buracos negros de colapso direto são um tipo único de buraco negro que requer condições ambientais essencialmente perfeitas para se formar, condições que só existem no início do Universo.

Os quasares são realmente os discos de acreção em torno de um buraco negro supermassivo. Durante os primeiros anos de uma galáxia, tal disco de acreção pode se tornanr tão massivo que ele supera o resto da galáxia por completo, sendo identificado como um quasar. O buraco negro no centro de um quasar já é massivo, com milhões ou bilhões de vezes a massa do Sol. Mas no Universo jovem, simplesmente não houve tempo para acreção e fusões para fazer um buraco negro supermassivo tão grande. Além disso, qualquer estrela de primeira geração grande o suficiente para formar um buraco negro de sementes de quasar teria ventos estelares enormemente poderosos, soprando gás e poeira ao seu redor e sufocando sua capacidade de acumular matéria rapidamente uma vez que o buraco negro é formado.

Os DCBHs poderiam ser o mecanismo responsável por alimentar quasares distantes porque eles não precisam de combustível ou tempo para crescer a partir de algo pequeno. Em vez disso, eles formam grandes massas iniciais quando o gás dentro da galáxia colapsa diretamente em um buraco negro sem etapas entre eles. Se o gás dentro de uma galáxia se formando é aquecido sem esfriar e, em seguida, comprimido por um halo de matéria escura, as condições podem ser apenas favoráveis para formar um buraco negro de colapso direto. A ideia foi apresentada pela primeira vez em 2003 por Volker Bromm e Avi Loeb, e possível evidência para este tipo de buraco negro foi encontrado em 2016 com observações de uma galáxia chamada CR7.

Agora, Regan e seu grupo desenvolveram simulações para determinar se as interações entre protogaláxias vizinhas com aglomerados de galáxias poderiam provocar a formação de DCBH. Quando o gás é aquecido dentro de uma galáxia, ele normalmente "esfria" através de vários processos, sendo a formação de estrelas a mais comum e a emissão de energia a partir de metais, e é formado dentro do núcleo de uma estrela massiva. O truque para a criação de um DCBH é obter o gás para entrar em colapso sem permitir que esses processos de refrigeração ocorram.

Após várias simulações, o grupo de Regan encontrou um "ponto favorável" no qual o aquecimento da radiação de fundo associada ao aglomerado de galáxias, associado a um starburst (um período de formação estelar muito rápido e generalizado) numa protogaláxia próxima, pode conduzir à formação de um DCBH.

Existem várias condições que devem ser atendidas. A formação de buraco negro é mais provável quando o par de galáxias está separado por uma distância entre 200 e 300 parsecs (650 a 1.000 anos-luz). Se as galáxias estiverem muito próximas, o starburst poderia separar os átomos das moléculas do gás da galáxia ou simplesmente explodir o gás. Um starburst próximo poderia também "poluir" suas galáxias companheiras com metais ejetados para fora por suas supernovas; os metais iriam então arrefecer o gás e permitir que ele se fragmentasse em estrelas (em vez de formar uma DCBH). Mas se as galáxias estiverem muito distantes, elas simplesmente não interagem energicamente ou rapidamente o suficiente para que o starburst influencie sua vizinhança.

Além disso, a escalas de tempo do starburst e da formação de estrelas em protogaláxias vizinhas deverão estar "sincronizadas". Se o starburst acontece no momento errado, as galáxias vizinhas já terão começado a formação estelar e as condições para um DCBH não serão realizadas.

O tempo ideal para um starburst acender é de cerca de 4 milhões de anos antes das estrelas terem de outra forma começado a formar em sua vizinhança. Mas se o starburst acontecer mais de 10 milhões de anos antes da formação estelar começar, ele não terá o efeito desejado. Um starburst que dure por muito tempo afetará adversamente seus vizinhos através da poluição do metal ou da radiação excessivamente energética.

Regan e seus colegas afirmam que a observação de pares próximos de jovens protogaláxias com o futuro telescópio espacial James Webb poderia fornecer os dados necessários para provar o seu cenário de formação de DCBH.

Um artigo foi publicado na Nature Astronomy.

Fonte: Astronomy