Na busca por planetas parecidos com o nosso, um importante ponto de comparação é a densidade do planeta.
© NASA/JPL-Caltech (ilustração de um exoplaneta orbitando duas estrelas)
Uma densidade baixa diz-nos que o planeta é provavelmente gasoso como Júpiter, e uma densidade alta está associada com planetas rochosos como a Terra. Mas um novo estudo sugere que alguns são menos densos do que se pensava anteriormente devido a uma segunda estrela escondida nos seus sistemas.
À medida que os telescópios olham fixamente para zonas particulares do céu, nem sempre conseguem diferenciar entre uma estrela e duas. Um sistema composto por duas estrelas em órbita íntima pode aparecer em imagens como um único ponto de luz, mesmo através de observatórios sofisticados como o telescópio espacial Kepler da NASA. Isto pode ter consequências importantes na determinação dos tamanhos dos planetas que orbitam apenas uma destas estrelas.
Sabe-se que alguns dos exoplanetas mais bem estudados orbitam estrelas individuais. Conhecemos o Kepler-186f, um exoplaneta do tamanho da Terra na zona habitável, que orbita uma estrela sem companheira. O TRAPPIST-1, a anã ultrafria que abriga sete planetas do tamanho da Terra, também não tem uma companheira. Isso significa que não existe uma segunda estrela para complicar as estimativas dos diâmetros dos planetas e, por conseguinte, as suas densidades.
Mas imagens recentes de alta resolução revelaram que outras estrelas têm uma companheira nas proximidades. O NExScI (NASA Exoplanet Science Institute) em combinação com outras investigações, confirmou que muitas das estrelas onde o Kepler encontrou planetas são estrelas duplas. Em alguns casos, os diâmetros dos planetas em órbita destas estrelas foram calculados sem levar em consideração a estrela companheira. Isto significa que as estimativas dos seus tamanhos devem ser menores, e as suas densidades mais elevadas, do que os valores verdadeiros.
Os estudos anteriores determinaram que aproximadamente metade de todas as estrelas semelhantes ao Sol, na nossa vizinhança estelar, têm uma companheira até 10.000 UA (uma UA, ou unidade astronômica, é equivalente à distância média entre o Sol e a Terra, cerca de 150 milhões de quilômetros). Com base nisto, cerca de 15% das estrelas no campo de visão do Kepler têm uma companheira brilhante e próxima, o que significa que os planetas ao redor destas estrelas podem ser menos densos do que se pensava anteriormente.
Quando um telescópio detecta um planeta passando em frente da sua estrela, um evento chamado trânsito, é possível medir a diminuição aparente no brilho estelar. A quantidade de luz bloqueada durante um trânsito depende do tamanho do planeta; quanto maior é, mais luz bloqueia e maior a queda de luz observada. Os cientistas usam esta informação para determinar o raio do planeta.
Caso existam duas estrelas no sistema, o telescópio mede a luz combinada de ambas as estrelas. Mas um planeta em órbita de apenas uma destas estrelas só provoca a diminuição de brilho numa delas. Portanto, se não soubermos da existência de uma segunda estrela, estamos subestimando o tamanho do planeta.
Por exemplo, caso um telescópio observe uma estrela que diminui 5% de brilho, os cientistas podem determinar o tamanho do planeta em trânsito relativamente a esta estrela. Mas se uma segunda estrela acrescenta luz, o planeta deverá ser maior para provocar a mesma quantidade de escurecimento.
Se o planeta orbita a estrela mais brilhante do binário, a maioria da luz no sistema vem desta estrela de qualquer maneira, de modo que a segunda estrela não terá um efeito tão grande no tamanho calculado do planeta. Mas se o planeta orbita a estrela mais tênue, a maior estrela primária contribui com mais luz para o sistema e a correção do raio calculado do planeta pode ser grande. Isto afetará a forma como se calcula a distância orbital do planeta, o que pode fazer com que este se situe, ou não, na zona habitável.
Se as estrelas têm aproximadamente o mesmo brilho, o "novo" raio do planeta é aproximadamente 40% maior caso se assumisse que a luz era proveniente de uma única estrela. Dado que a densidade é calculada usando, em parte, o raio ao cubo, isto significaria uma diminuição de densidade por um fator de quase 3. O impacto desta correção é mais importante para planetas pequenos porque significa que um planeta anteriormente considerado rochoso pode ser, na verdade, gasoso.
No novo estudo, os pesquisadores focaram-se em 50 planetas do campo de visão do observatório Kepler cujas massas e raios foram previamente estimados. Estes planetas orbitam todas estrelas com companheiras até cerca 1.700 UA. Para 43 destes 50 exoplanetas, as estimativas anteriores dos seus tamanhos não tiveram em conta a contribuição da luz de uma segunda estrela. Isto significa que é necessária uma revisão dos tamanhos relatados.
Na maioria dos casos, a alteração dos tamanhos dos planetas será pequena. Dados anteriores mostraram que 24 dos 50 planetas orbitam a maior e mais brilhante estrela do sistema. Além disso, foi determinado que 11 destes planetas seriam demasiado grandes para serem considerados planetas caso orbitassem a companheira mais tênue e pequena. Assim, para 35 dos 50 exoplanetas, os tamanhos publicados não mudarão substancialmente.
Mas para 15 dos planetas, os cientistas não conseguiram determinar se orbitam a estrela mais fraca ou a estrela mais brilhante do par. Para cinco dos 15, as estrelas em questão têm aproximadamente o mesmo brilho, e as suas densidades vão diminuir substancialmente, independentemente da estrela que orbitam.
Este efeito das estrelas companheiras é importante para caracterizar os planetas descobertos pelo Kepler, que encontrou milhares de exoplanetas. Também será importante para a futura missão TESS (Transiting Exoplanet Survey Satellite) da NASA, que procurará planetas pequenos em torno de estrelas próximas, brilhantes, pequenas e frias.
Os tamanhos e as densidades corretas dos planetas são fundamentais para as observações futuras de planetas de alto valor pelo telescópio espacial James Webb da NASA. O conhecimento de quais os planetas pequenos e rochosos vai ajudar na probabilidade de encontrar planetas do tamanho da Terra em outros cantos da Via Láctea.
O estudo será publicado no periódico The Astronomical Journal.
Fonte: Jet Propulsion Laboratory