Usando o telescópio espacial Hubble e uma nova técnica de observação, os astrônomos descobriram que a matéria escura forma aglomerados muito menores do que se pensava anteriormente.
© Hubble (quasares e suas galáxias hospedeiras)
Este resultado confirma uma das previsões fundamentais da teoria amplamente aceita da "matéria escura fria".
Todas as galáxias, de acordo com esta teoria, se formam e estão embebidas dentro de nuvens de matéria escura. A matéria escura propriamente dita consiste de partículas lentas, ou "frias", que se juntam para formar estruturas que variam de centenas de milhares de vezes a massa da Via Láctea até aglomerados não mais massivos do que um avião comercial.
A observação do Hubble fornece novas ideias sobre a natureza da matéria escura e de como se comporta.
A matéria escura é uma forma invisível de matéria que compõe a maior parte da massa do Universo e cria os andaimes sobre os quais as galáxias são construídas. Embora não é possível ver a matéria escura, os astrônomos podem detectar a sua presença indiretamente medindo como a sua gravidade afeta as estrelas e as galáxias. A detecção das formações menores de matéria escura, procurando estrelas incorporadas, pode ser difícil ou impossível, porque contêm muito poucas estrelas.
Embora já tenham sido detectadas concentrações de matéria escura em torno de galáxias grandes e médias, até agora ainda não tinham sido encontrados aglomerados muito menores de matéria escura. Na ausência de evidências observacionais de tais aglomerados de pequena escala, alguns pesquisadores desenvolveram teorias alternativas, incluindo "matéria escura quente". Esta ideia sugere que as partículas de matéria escura se movem rapidamente, passando depressa demais para se fundirem e formarem concentrações menores. As novas observações não suportam este cenário, descobrindo que a matéria escura é "mais fria" do que teria que ser na teoria alternativa da matéria escura quente.
A procura de concentrações de matéria escura sem estrelas provou ser um desafio. A equipe do Hubble, no entanto, usou uma técnica na qual não precisavam de procurar a influência gravitacional de estrelas como rastreadores de matéria escura. A equipe teve como alvos oito "candeeiros" cósmicos poderosos e distantes, chamados quasares, ou seja, regiões em torno de buracos negros ativos que emitem enormes quantidades de luz. Os astrônomos mediram como a luz emitida pelo oxigênio e neônio, em órbita de cada um dos buracos negros dos quasares, é distorcida pela gravidade de uma galáxia massiva no plano da frente, que atua como uma lupa.
Usando este método, foi descoberto grupos de matéria escura ao longo da linha de visão do telescópio até aos quasares, bem como dentro e ao redor das galáxias intervenientes. As concentrações de matéria escura detectadas pelo Hubble têm 1/10.000 a 1/100.000 vezes a massa do halo de matéria escura da Via Láctea. Muitos destes pequenos grupos provavelmente não contêm sequer galáxias pequenas e, portanto, seriam impossíveis de detectar pelo método tradicional de procurar estrelas embebidas.
Os oito quasares e galáxias estavam alinhados tão precisamente que o efeito de distorção, chamado lente gravitacional, produziu quatro imagens distorcidas de cada quasar. O efeito é como olhar para um espelho de uma casa de diversões numa feira. As imagens quádruplas de quasares são raras devido ao alinhamento quase exato necessário entre a galáxia em primeiro plano e o quasar no plano de trás. No entanto, os ipesquisadores precisaram de várias imagens para realizar uma análise mais detalhada.
A presença de aglomerados de matéria escura altera o brilho e a posição aparentes de cada imagem distorcida do quasar. Os astrônomos compararam estas medições com previsões de como as imagens dos quasares seriam sem a influência da matéria escura. Os pesquisadores usaram as medições para calcular as massas das pequenas concentrações de matéria escura. Para analisar os dados, os cientistas também desenvolveram elaborados programas de computação e técnicas intensivas de reconstrução.
Os pesquisadores usaram o instrumento WFC3 (Wide Field Camera 3) do Hubble para captar a luz infravermelha próxima de cada quasar e para dispersá-la nas suas cores componentes para estudo com espectroscopia. As emissões únicas dos quasares de fundo são melhor observadas no infravermelho. As observações do Hubble, a partir do espaço, permitem fazer estas medições em sistemas de galáxias que não seriam acessíveis com telescópios terrestres de menor resolução, e a atmosfera da Terra é opaca à luz infravermelha.
As lentes gravitacionais foram descobertas através de levantamentos aqui na Terra, como o SDSS (Sloan Digital Sky Survey) e o DES (Dark Energy Survey), que fornecem os mapas tridimensionais mais detalhados do Universo já feitos. Os quasares estão localizados a aproximadamente 10 bilhões de anos-luz da Terra; as galáxias no plano da frente, a cerca de 2 bilhões de anos-luz.
O número de pequenas estruturas detectadas no estudo fornece mais pistas sobre a natureza da matéria escura. No entanto, o tipo de partícula que compõe a matéria escura é ainda um mistério.
Os astrônomos poderão realizar estudos de acompanhamento da matéria escura usando telescópios espaciais de próxima geração como o JWST (James Webb Space Telescope) e o WFIRST (Wide Field Infrared Survey Telescope), ambos observatórios infravermelhos. O Webb será capaz de obter eficazmente estas medições para todos os quasares quadruplamente ampliados por lentes gravitacionais. A nitidez e o amplo campo de visão do WFIRST vão ajudar a fazer observações de toda a região do espaço afetada pelo imenso campo gravitacional de galáxias massivas e aglomerdos de galáxias.
A equipe apresentou os seus resultados na 235.ª reunião da Sociedade Astronômica Americana em Honolulu, Havaí. Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.
Fonte: Space Telescope Science Institute