sábado, 25 de janeiro de 2020

Mapeando os arredores de um buraco negro

O material que cai num buraco negro lança raios X para o espaço, e agora, pela primeira vez, o observatório de raios X XMM-Newton da ESA usou os ecos reverberantes desta radiação para mapear o comportamento dinâmico e os arredores do próprio buraco negro.


© ESA (ilustração mostra os arredores de um buraco negro)

A maior parte dos buracos negros são demasiado pequenos, no céu, para resolvermos o seu ambiente imediato, mas ainda assim podemos explorar estes objetos misteriosos observando como a matéria se comporta quando se aproxima e cai neles.

À medida que o material espirala em direção a um buraco negro, é aquecido e emite raios X que, por sua vez, ecoam e reverberam à medida que interagem com o gás próximo. Estas regiões do espaço são altamente distorcidas devido à natureza extrema e à gravidade esmagadoramente forte do buraco negro.

Pela primeira vez, pesquisadores usaram o XMM-Newton para rastrear estes ecos de luz e mapear os arredores do buraco negro no núcleo de uma galáxia ativa. Com o nome IRAS 13224–3809, a galáxia hospedeira do buraco negro é uma das fontes de raios X mais variáveis do céu, passando por flutuações muito grandes e rápidas de brilho, na ordem de 50 em poucas horas.

"Todos nós estamos habituados à forma como o eco das nossas vozes soa diferente quando falamos numa sala de aula, em comparação com uma catedral, isto deve-se simplesmente à geometria e aos materiais dos locais, que fazem com que o som se comporte e se mova de maneira diferente," explica William Alston da Universidade de Cambridge, autor principal do novo estudo.

"De maneira semelhante, podemos observar como os ecos da radiação de raios X se propagam nas proximidades de um buraco negro, a fim de mapear a geometria de uma região e o estado de um aglomerado de matéria antes de desaparecer na singularidade. É um pouco como ecolocalização cósmica."

Como a dinâmica do gás em queda está fortemente ligada com as propriedades do buraco negro, William e colegas foram também capazes de determinar a massa e a rotação do buraco negro central da galáxia, observando as propriedades da matéria enquanto espiralava para dentro.

O material em espiral forma um disco enquanto cai para o buraco negro. Acima deste disco encontra-se uma região de elétrons muito quentes, com temperaturas na ordem dos bilhões de graus, chamada coroa. Embora os cientistas esperassem ver os ecos de reverberação que usaram para mapear a geometria da região, também avistaram algo inesperado: a própria coroa mudou de tamanho incrivelmente depressa, em questão de dias.

"À medida que o tamanho da coroa muda, o mesmo ocorre com o eco de luz, um pouco como se o teto da catedral estivesse subindo e descendo, mudando o eco das nossas vozes," acrescenta William.

"Ao rastrear os ecos de luz, fomos capazes de rastrear esta coroa em mudança e também obter valores muito melhores para a massa e para a rotação do buraco negro do que poderíamos determinar se a coroa não estivesse mudando de tamanho. Sabemos que a massa do buraco negro não pode estar flutuando; portanto, qualquer alteração no eco deve ser devida ao ambiente gasoso."

O estudo usou a observação mais longa de um buraco negro em acreção já obtida com o XMM-Newton, recolhida ao longo de 16 órbitas em 2011 e 2016 e totalizando 2 milhões de segundos, ou seja, pouco mais de 23 dias. Isto, combinado com a variabilidade forte e de curto prazo do próprio buraco negro, permitiu aos pesquisadores modelarem os ecos de maneira abrangente ao longo de escalas de tempo de um dia.

A região explorada neste estudo não é acessível a observatórios como o EHT (Event Horizon Telescope), que conseguiu obter a primeira imagem do gás na vizinhança imediata de um buraco negro, aquele localizado no centro da massiva galáxia vizinha M87. O resultado, com base em observações realizadas com radiotelescópios em todo o mundo em 2017 e publicado o ano passado, tornou-se imediatamente uma sensação global.

A imagem do EHT foi obtida usando um método conhecido como interferometria, uma técnica maravilhosa que só pode funcionar nos pouquíssimos buracos negros supermassivos mais próximos da Terra, como o de M87 e o da Via Láctea, porque o seu tamanho aparente no céu é grande o suficiente para este método funcionar.

Em contraste, esta abordagem é capaz de analisar as centenas de buracos negros supermassivos mais próximos que consomem ativamente matéria, e este número aumentará significativamente com o lançamento do satélite Athena da ESA.

A caracterização dos ambientes próximos dos buracos negros é um objetivo científico essencial da missão Athena da ESA, com lançamento previsto para o início da década de 2030 e que revelará os segredos do Universo quente e energético.

A medição da massa, rotação e ritmos de acreção de uma grande amostra de buracos negros é fundamental para entender a gravidade em todo o cosmos. Além disso, dado que os buracos negros supermassivos estão fortemente ligados às propriedades das suas galáxias hospedeiras, estes estudos também são fundamentais para aprofundar o nosso conhecimento de como as galáxias se formam e evoluem ao longo do tempo.

O mapeamento da reverberação é uma técnica excitante que promete revelar muito sobre os buracos negros e sobre o Universo em geral. Espera-se que o XMM-Newton realize campanhas de observação semelhantes para mais algumas galáxias ativas nos próximos anos, para que o método esteja totalmente estabelecido quando a missão Athena for lançada.

Um artigo foi publicado na revista Nature.

Fonte: ESA

sexta-feira, 24 de janeiro de 2020

O aglomerado de estrelas Hyades

O aglomerado aberto de Hyades é o mais próximo do Sol.


© Jose Mtanous (aglomerado aberto das Hyades)

O aglomerado aberto das Hyades é brilhante o suficiente para ter sido observado até milhares de anos atrás, mas não é tão brilhante ou compacto quanto o aglomerado de estrelas nas proximidades das Plêiades (M45). 

Uma imagem particularmente profunda das Hyades mostra cores vivas de estrelas e nebulosas coincidentes fracas. A estrela mais brilhante do campo é Aldebaran (amarelo), o olho do touro em direção à constelação de Touro. Aldebaran, está localizada a 65 anos-luz de distância; agora é conhecida por não estar relacionada ao aglomerado aberto das Hyades, que fica a cerca de 150 anos-luz de distância.

As estrelas centrais das Hyades estão espalhadas por cerca de 15 anos-luz. As Hyades foi formada cerca de 625 milhões de anos atrás, provavelmente compartilha uma origem comum com o aglomerado da Colmeia (M44), um aglomerado estelar aberto que pode ser visto a olho nu em direção à constelação de Câncer; isto é devido ao movimento no espaço de M44 e da idade notavelmente semelhante.

Fonte: NASA

Campanha global do Gaia revela segredos de par estelar

Uma campanha de observação global de 500 dias, liderada há mais de três anos pelo Gaia da ESA, forneceu informações sem precedentes sobre o sistema binário que provocou um aumento incomum de brilho de uma estrela ainda mais distante.


© M. Rębisz (ilustração do sistema binário Gaia16aye)

O aumento no brilho estelar, localizado na constelação de Cisne, foi detectado pela primeira vez em agosto de 2016 pelo programa Gaia Photometric Science Alerts.

Este sistema, gerido pelo Instituto de Astronomia da Universidade de Cambridge, Reino Unido, varre diariamente a enorme quantidade de dados provenientes do Gaia e alerta os astrônomos para o aparecimento de novas fontes ou variações incomuns de brilho em fontes conhecidas, para que possam apontar rapidamente outros telescópios terrestres e espaciais e assim estudar os eventos em detalhe. Os fenômenos podem incluir explosões de supernova e outros surtos estelares.

Neste caso em particular, as observações de acompanhamento realizadas com mais de 50 telescópios em todo o mundo revelaram que a fonte, desde então denominada Gaia16aye, estava se comportando de uma maneira bastante estranha.

A estrela ficou cada vez mais brilhante e então, no espaço de apenas um dia, o seu brilho caiu rapidamente. Este foi um comportamento muito incomum. Quase nenhum tipo de supernova ou outra estrela faz isto.

Os astrônomos perceberam em pouco tempo que este aumento de brilho foi provocado por uma microlente gravitacional, um efeito previsto pela teoria da relatividade geral de Einstein, que curva o espaço-tempo na vizinhança de objetos muito grandes, como estrelas ou buracos negros.

Quando um objeto tão grande, que pode ser demasiado fraco para ser observado da Terra, passa em frente de outra fonte de luz mais distante, a sua gravidade curva o tecido do espaço-tempo nas proximidades. Isto distorce o percurso da radiação oriunda da fonte de fundo, essencialmente comportando-se como uma lupa gigante.

O Gaia16aye é o segundo evento de microlentes detectado pelo satélite Gaia. No entanto, os astrônomos notaram que se comportava estranhamente, mesmo para este tipo de evento.

Neste evento, não só o aumento de brilho estelar caiu acentuadamente, em vez de a um ritmo constante, como após algumas semanas, subiu novamente de brilho. Ao longo de 500 dias de observações, foi visto o aumento e declínio de brilho cinco vezes.

Esta queda repentina e acentuada no brilho sugeriu que a lente gravitacional que provocava o aumento de brilho devia consistir de um sistema binário, um par de estrelas ou outros objetos celestes, ligados entre si pela gravidade mútua.

Os campos gravitacionais combinados dos dois objetos produzem uma lente com uma rede bastante complexa de regiões de alta ampliação. Quando uma fonte de fundo passa por estas regiões no céu, aumenta de brilho e depois cai imediatamente ao sair delas.

A partir do padrão de aumentos e quedas de brilho subsequentes, os astrônomos conseguiram deduzir que o sistema binário estava orbitando a um ritmo bastante rápido.

O longo período de observações, que durou até ao final de 2017, e a grande participação de telescópios terrestres espalhados por todo o mundo, permitiram aos astrônomos recolher uma grande quantidade de dados, quase 25.000 pontos de dados individuais.

Os astrônomos puderam determinar o período de translação do sistema, as massas dos componentes, a sua separação, a forma das suas órbitas, sem ver a luz dos componentes binários.

O par consiste de duas estrelas bastante pequenas, com 0,57 e 0,36 vezes a massa do nosso Sol, respectivamente. Separadas por aproximadamente o dobro da distância Terra-Sol, as estrelas orbitam em torno do seu centro de massa comum em menos de três anos.

Um artigo foi publicado na revista Astronomy & Astrophysics.

Fonte: ESA

terça-feira, 21 de janeiro de 2020

Pode ter sido descoberto um segundo exoplaneta em Proxima Centauri

Cientistas descobriram o que pensam ser um segundo planeta em órbita da estrela mais próxima do nosso Sistema Solar, Proxima Centauri, que ficou famosa em 2016 com a descoberta de um planeta "semelhante à Terra" em órbita, Proxima b.


© Lorenzo Santinelli (ilustração do sistema planetário em torno de Proxima Centauri)

Novas observações de Proxima Centauri tornaram possível revelar a presença do que está sendo descrito como um planeta candidato de baixa massa (pelo menos 5,8 vezes a massa da Terra), aproximadamente com metade do tamanho de Netuno, em órbita da estrela. Poderá ser uma super-Terra rochosa ou um "mini-Netuno" gasoso. Com uma órbita de 5,2 anos, provavelmente tem temperaturas na ordem dos -230 ºC, sendo demasiado frio para ser habitável.

A descoberta foi realizada por uma equipe internacional de pesquisadores da Universidade de Hertfordshire, Inglaterra, do INAF-Observatório Astrofísico de Turim, Itália, da Universidade de Creta e do Instituto de Astrofísica FORTH, Grécia.

A Proxima Centauri é uma estrela anã vermelha cerca de 8 vezes menor que o Sol. É a estrela mais próxima do Sistema Solar, a uma distância de 4,2 anos-luz. Os cientistas esperam que a descoberta possa eventualmente ajudar a nossa compreensão da composição de diferentes planetas e de como o Universo funciona.

Hugh Jones, professor de astrofísica na Universidade de Hertfordshire, comenta: "Graças à proximidade do planeta e à sua órbita a uma distância relativamente grande da sua estrela (1,5 UA), esta é uma das melhores chances possíveis de observação direta que permitirá a compreensão detalhada de outro exoplaneta. No futuro, Proxima c poderá tornar-se um possível alvo para um estudo mais direto do projeto Breakthrough StarShot, que será a primeira tentativa da humanidade de viajar para outro sistema estelar." O professor Jones, juntamente com Paul Bulter, da Instituição Carnegie para Ciência, foram responsáveis por produzir o conjunto de dados mais precisos para o projeto usando dados do espectrógrafo UVES acoplado ao Very Large Telescope (VLT) do ESO.

O professor Jones, que também fez parte da descoberta do planeta "tipo-Terra", Proxima b, explicou o processo: "Primeiro submetemos um artigo sobre a existência de Proxima b em fevereiro de 2013, embora só tenhamos obtido evidências suficientes para apoiar conclusivamente uma descoberta tão importante em 2016. As nossas observações contínuas e um melhor processamento de dados permitiram-nos discernir o sinal de Proxima c. Esperamos ansiosamente confirmar o sinal com novas instalações e descobrir quão semelhante ou diferente dos planetas do nosso Sistema Solar Proxima c realmente é."

A descoberta segue os recentes anúncios de um "Netuno frio" e de dois planetas potencialmente habitáveis encontrados em órbita de estrelas próximas, publicados na revista The Astrophysical Journal. A mesma técnica de espectrografia com o UVES também foi usada neste projeto.

A descoberta foi publicada na revista Science Advances.

Fonte: University of Hertfordshire

Descoberto gás escaldante no halo da Via Láctea

Foi descoberto que o gás escondido no halo da Via Láctea atinge temperaturas muito mais quentes do que se pensava anteriormente e que tem uma composição química diferente da prevista, desafiando a nossa compreensão do nosso lar galáctico.


© ESA (ilustração do halo com elementos e suas abundâncias relativas)

Esta animação mostra a via Láctea (a pequena galáxia no centro da imagem) e o seu halo (a região gasosa estendida). Ilustra o halo em três tons diferentes: esmeralda, amarelo e verde. Todos estes se misturam ao longo do halo, e cada um representa gás de uma temperatura diferente. Aparecem pontos por todo o halo; estes representam elementos e a suas abundâncias relativas, conforme detectado pelo observatório de raios X XMM-Newton da ESA: nitrogênio (preto, 41 pontos), neônio (laranja/amarelo, 39 pontos), oxigênio (azul claro, 7 pontos) e ferro (vermelho, 1 ponto).

Um halo é uma vasta região de gás, estrelas e matéria escura invisível ao redor de uma galáxia. É um componente fundamental de uma galáxia, ligando-a a um espaço intergaláctico mais amplo e, portanto, pensa-se que desempenhe um papel importante na evolução galáctica.

Até agora, pensava-se que o halo de uma galáxia contivesse gás quente com a temperatura exata deste gás dependente da massa da galáxia.

No entanto, um novo estudo usando o observatório espacial de raios X XMM-Newton mostra agora que o halo da Via Láctea contém não apenas um, mas três componentes diferentes de gás quente, o mais quente destes sendo dez vezes mais quente do que se pensava anteriormente. É a primeira vez que múltiplos componentes de gás, estruturados desta maneira, são descobertos não apenas na Via Láctea, mas em qualquer galáxia.

"Pensávamos que as temperaturas do gás nos halos galácticos variavam entre dez mil e um milhão de graus, mas parece que parte do gás no halo da Via Láctea pode atingir 10 milhões de graus," disse Sanskriti Das, estudante na Universidade Estatal do Ohio, EUA, autor principal do novo estudo.

"Embora pensemos que o gás é aquecido a cerca de um milhão de graus quando uma galáxia se forma inicialmente, não temos a certeza de como este componente ficou tão quente. Pode ser devido aos ventos que emanam do disco de estrelas da Via Láctea."

O estudo usou uma combinação de dois instrumentos a bordo do XMM-Newton: o RGS (Reflection Grating Spectrometer) e o EPIC (European Photon Imaging Camera). O EPIC foi usado para estudar a luz emitida pelo halo e o RGS para estudar como o halo afeta e absorve luz que passa por ele.

Para estudar o halo da Via Láctea no que toca à sua absorção, Sanskriti e colegas observaram um objeto conhecido como blazar: o núcleo energético e muito ativo de uma galáxia distante que emite feixes intensos de luz. Tendo viajado quase cinco bilhões de anos-luz através do cosmos, a luz de raios X deste blazar também passou pelo halo da nossa Galáxia antes de atingir os detectores do XMM-Newton e, portanto, contém pistas sobre as propriedades desta região gasosa.

Ao contrário dos estudos anteriores do halo da Via Láctea em raios X, que normalmente duram um ou dois dias, a equipe realizou observações durante um período de três semanas, permitindo a detecção de sinais que geralmente são demasiado fracos para serem vistos.

O halo quente da Via Láctea também tem quantidades significativas de elementos mais pesados que o hélio, que geralmente são produzidos nas fases posteriores da vida de uma estrela. Isto indica que o halo recebeu material fabricado por certas estrelas durante as suas vidas e estágios finais, e que foi lançado para o espaço quando morreram.

"Até agora, os cientistas procuravam principalmente oxigênio, pois é abundante e, portanto, mais fácil de encontrar do que outros elementos," acrescentou Sanskriti. "O nosso estudo foi mais detalhado: analisamos não apenas o oxigênio, mas também o nitrogênio, o neônio e o ferro, e encontramos alguns resultados extremamente interessantes."

Os cientistas esperam que o halo contenha elementos em proporções semelhantes às vistas no Sol. No entanto, Sanskriti e colegas notaram menos ferro no halo do que o esperado, indicando que o halo foi enriquecido por estrelas moribundas massivas, e também menos oxigênio, provavelmente devido a este elemento ser absorvido por partículas poeirentas no halo.

O recém-descoberto componente de gás quente também tem implicações mais amplas que afetam a nossa compreensão geral do cosmos. A nossa Galáxia contém muito menos massa do que esperávamos: isto é conhecido como o "problema da matéria em falta", pois o que observamos não corresponde às previsões teóricas.

A partir do mapeamento a longo prazo do cosmos, a sonda Planck da ESA previu que pouco menos de 5% da massa do Universo deveria existir na forma de matéria ordinária, o tipo que compõe estrelas, galáxias, planetas e assim por diante. "No entanto, quando somamos tudo o que vemos, o nosso valor não chega nem perto desta previsão," salientou Fabrizio Nicastro, do Observatório Astronômico de Roma - INAF, Itália, e do Centro Harvard-Smithsonian para Astrofísica, EUA. "Então, onde está o resto? Há quem sugira que pode estar escondido nos halos extensos e massivos que rodeiam as galáxias, tornando a nossa descoberta realmente excitante."

Dado que este componente quente do halo da Via Láctea nunca tinha sido visto antes, pode ter sido negligenciado em análises anteriores; e, portanto, pode conter uma grande quantidade desta matéria "em falta".

"Estas observações fornecem novas ideias sobre a história térmica e química da Via Láctea e do seu halo e desafiam o nosso conhecimento de como as galáxias se formam e evoluem," disse Norbert Schartel, cientista do projeto XMM da ESA.

"O estudo analisou o halo ao longo de uma linha de visão, aquela em direção ao blazar, de modo que será extremamente empolgante ver pesquisas futuras expandirem esta descoberta."

Fonte: ESA

segunda-feira, 20 de janeiro de 2020

Influência supermassiva

Esta galáxia peculiar, lindamente listrada com elos de poeira avermelhada, foi captada aqui em detalhes maravilhosos pelo telescópio espacial Hubble.


© Hubble (NGC 1022)

A galáxia é conhecida como NGC 1022 e é oficialmente classificada como uma galáxia espiral barrada. Você pode ver a barra de estrelas no centro da galáxia nesta imagem, com braços em movimento emergindo de suas extremidades. Esta barra é muito menos proeminente do que em algumas das primas barradas, e fornece à galáxia uma aparência bastante achatada; mas as faixas de poeira que rodopiam por todo o disco garantem que não seja menos bonita.

O telescópio espacial Hubble observou esta imagem como parte de um estudo sobre um dos residentes mais notórios do Universo: os buracos negros. Estes são componentes fundamentais das galáxias, e acredita-se que espreitem os núcleos de muitas, se não todas, as galáxias espirais. 

De fato, elas podem ter uma influência bastante grande sobre seus lares cósmicos. Estudos sugerem que a massa do buraco negro no centro de uma galáxia está ligada às propriedades de maior escala da própria galáxia. No entanto, para aprender mais, precisamos de dados observacionais de uma gama mais ampla e diversificada de galáxias, algo que o estudo do telescópio espacial Hubble pretende fornecer.

Fonte: ESA

Estrelas K são os melhores lugares para procurar vida

Na busca por vida para além da Terra, os astrônomos procuram planetas na "zona habitável" de uma estrela onde as temperaturas são ideais para que a água líquida exista à superfície de um planeta.


© NASA/ESA/Z. Levy (gráfico compara as características de três classes de estrelas)

Este gráfico compara as características de três classes de estrelas na nossa Galáxia: as estrelas tipo-Sol são estrelas G; as estrelas menos massivas e mais frias do que o nosso Sol são as anãs K; estrelas ainda mais fracas e frias são as avermelhadas anãs M. O gráfico compara as estrelas em termos de algumas importantes variáveis. As zonas habitáveis, potencialmente capazes de hospedar planetas propícios à vida, são maiores para estrelas mais quentes. A longevidade das anãs vermelhas M podem exceder os 100 bilhões de anos. As anãs K podem viver entre 15 e 45 bilhões de anos. O nosso Sol só dura 10 bilhões de anos. A quantidade relativa de radiação nociva (para a vida como a conhecemos) que as estrelas emitem podem ser 80 a 500 vezes mais intensa para as anãs M em comparação com o nosso Sol, mas apenas 5 a 25 vezes mais intensa para as anãs alaranjadas K. As anãs vermelhas representam a maior parte da população estelar da Via Láctea, cerca de 73%. Só 6% desta população são estrelas parecidas com o Sol, e as anãs K representam 13%. Quando estas quatro variáveis são comparadas, as estrelas mais adequadas para hospedar formas de vida avançada são as anãs K.

Uma ideia emergente, reforçada por levantamentos estelares ao longo de três décadas, é a de que existem estrelas nem muito quentes, nem muito frias e, acima de tudo, não muito violentas para hospedar planetas propícios à vida.

Dado que o nosso Sol alimenta a vida na Terra há já quase 4 bilhões de anos, a sabedoria convencional sugere que estrelas do gênero são candidatas principais na busca por outros mundos potencialmente habitáveis. Na realidade, estrelas ligeiramente mais frias e menos luminosas do que o nosso Sol, classificadas como anãs K, são as verdadeiras estrelas "de ouro", disse Edward Guinan, da Universidade de Villanova, no estado norte-americano da Pensilvânia. "As anãs K estão no 'ponto ideal', com propriedades intermediárias entre as estrelas do tipo solar, mais raras e luminosas, de vida mais curta (estrelas G), e as mais numerosas anãs vermelhas (estrelas M). As estrelas K, especialmente as mais quentes, são as melhores. Se estivermos à procura de planetas habitáveis, a abundância de estrelas K melhora as chances de encontrar vida."

Para começar, existem três vezes mais anãs K na Via Láctea do que estrelas como o Sol. Aproximadamente 1.000 estrelas K estão a menos de 100 anos-luz do nosso Sol, candidatas principais à exploração. Estas anãs alaranjadas vivem entre 15 e 45 bilhões de anos. Em contraste, o nosso Sol, agora na metade da sua vida, dura apenas 10 bilhões de anos. O seu ritmo comparativamente rápido de evolução estelar deixará a Terra praticamente inabitável daqui a apenas 1 ou 2 bilhões de anos. "As estrelas do tipo solar limitam quanto tempo a atmosfera de um planeta pode permanecer estável," disse Guinan. Isto porque daqui a aproximadamente um bilhão de anos, a Terra orbitará dentro da orla mais quente da zona habitável do Sol, que se move para fora à medida que o Sol se torna mais quente e mais brilhante. Como resultado, a Terra será dessecada, pois perderá a sua atmosfera e oceanos. Quando o Sol tiver 9 bilhões de anos, terá crescido para se tornar numa gigante vermelha que pode engolir a Terra.

Apesar do seu pequeno tamanho, as estrelas anãs vermelhas ainda mais abundantes, também conhecidas como anãs M, têm vidas ainda mais longas e parecem hostis à vida como a conhecemos. Os planetas localizados na zona habitável relativamente estreita de uma anã vermelha, muito próxima da estrela, são expostos a níveis extremos de raios X e raios UV (ultravioleta), que podem ser centenas de milhares de vezes mais intensos do que os níveis que a Terra recebe do Sol. Um incansável fogo-de-artifício de proeminências e ejeções de massa coronal bombardeiam os planetas com um sopro escaldante de plasma e chuvas de partículas penetrantes e altamente energéticas. Os planetas na zona habitável das anãs vermelhas podem ser torriscados e ter as suas atmosferas despojadas muito cedo nas suas vidas. Isto pode provavelmente proibir a evolução planetária para algo mais hospitaleiro, alguns bilhões de anos após a diminuição da atividade estelar.

Com base nas pesquisas de Guinan, as anãs K não possuem campos magnéticos intensamente ativos que alimentam fortes emissões de raios X ou UV e explosões energéticas e, portanto, expelem proeminências com muito menos frequência. Os planetas acompanhantes receberiam cerca de 1/100 da radiação de raios X do que aqueles que orbitam as zonas habitáveis íntimas das estrelas M magneticamente ativas.

Num programa chamado Projeto "GoldiloKs", os pesquisadores pretendem medir a idade, rotação e radiação de raios X e UV distante numa amostra de estrelas majoritariamente frias G e K. Estão usando o telescópio espacial Hubble, o observatório de raios X Chandra e o satélite XMM-Newton da ESA para as suas observações. As observações do Hubble, sensíveis à radiação UV do hidrogênio, foram usadas para avaliar a radiação de uma amostra de aproximadamente 20 anãs alaranjadas. O Hubble é o único telescópio que pode fazer este tipo de observação.

Os astrônomos descobriram que os níveis de radiação eram muito mais benignos para estes planetas do que os que orbitam anãs vermelhas. As estrelas K também têm uma vida útil mais longa e, portanto, uma migração mais lenta da zona habitável. Assim sendo, as anãs K parecem ser o lugar ideal para procurar vida e estas estrelas dariam tempo para que uma vida altamente evoluída se desenvolvesse nos planetas. Durante toda a vida útil do Sol, as estrelas K apenas aumentariam o seu brilho cerca de 10 a 15%, dando à evolução biológica um período de tempo muito maior para o desenvolvimento de formas de vida avançadas do que na Terra.

Os pesquisadores analisaram algumas das estrelas K mais interessantes que abrigam planetas, incluindo Kepler-442, Tau Ceti e Epsilon Eridani (estas últimas duas foram alvos iniciais do Projeto Ozma na década de 1950, a primeira tentativa de detectar transmissões rádio de civilizações extraterrestres).

A Kepler-442 é digna de nota porque esta estrela (classificação espectral, K5) hospeda o que é considerado um dos melhores planetas na zona habitável, Kepler-442b, um planeta rochoso com pouco mais que o dobro da massa da Terra.

Ao longo dos últimos 30 anos, os pesquisadores estudaram uma variedade de tipos estelares. Com base nos seus estudos, eles determinaram relações entre a idade estelar, a rotação, emissões de raios X e UV e a atividade estelar. Estes dados foram utilizados para analisar os efeitos da radiação altamente energética nas atmosferas planetárias e na possível vida.

Os resultados foram apresentados na 235.ª reunião da Sociedade Astronômica Americana em Honolulu, Havaí.

Fonte: Space Telescope Science Institute

sexta-feira, 17 de janeiro de 2020

Descoberto objetos exóticos perto do buraco negro da Via Láctea

Astrônomos do Galactic Center Orbits Initiative da UCLA (Universidade da Califórnia em Los Angeles) descobriram uma nova classe de objetos bizarros no centro da Via Láctea, não muito longe do buraco negro supermassivo chamado Sagitário A*.


© UCLA/Anna Ciurlo (ilustração de objetos G)

Estes objetos parecem-se com gás e comportam-se como estrelas. Eles parecem compactos na maioria das vezes e estendem-se quando as suas órbitas os aproximam do buraco negro. As suas órbitas variam entre 100 a 1.000 anos.

O pesquisadores identificaram um objeto incomum no centro da Via Látea em 2005, mais tarde apelidado G1. Em 2012, astrônomos na Alemanha fizeram uma descoberta intrigante de um objeto bizarro chamado G2, no centro da Via Láctea, que fez uma passagem íntima pelo buraco negro supermassivo em 2014. Pensa-se que o objeto G2 é provavelmente duas estrelas que têm vindo a orbitar o buraco negro em conjunto e que se fundiram numa estrela extremamente grande, envolta em gás e poeira espessos.

No momento da maior aproximação, G2 tinha uma assinatura realmente estranha, mas não parecia muito peculiar até chegar perto do buraco negro e ficar alongado, e muito do seu gás foi destruído. Deixou de ser um objeto bastante inócuo quando estava longe do buraco negro, para um realmente esticado e distorcido na sua maior aproximação, que perdeu o seu invólucro exterior e que agora está novamente ficando mais compacto.

Mas será que G2 e G1 são parte de uma classe maior de objetos? Em resposta a essa questão, o grupo de pesquisa divulgou a existência de mais quatro objetos que são denominados G3, G4, G5 e G6. Os pesquisadores determinaram cada uma das suas órbitas. Enquanto G1 e G2 têm órbitas semelhantes, os quatro novos objetos têm órbitas muito diferentes.

É possível que todos os seis objetos eram estrelas binárias, que se fundiram devido à forte força gravitacional do buraco negro supermassivo. A fusão de duas estrelas leva mais de um milhão de anos a ser concluída.

Notou-se que, embora o gás do invólucro exterior de G2 tenha sido esticado dramaticamente, a sua poeira dentro do gás não foi muito esticada. Algo deve ter mantido o tamanho compacto e permitido a sua sobrevivência ao encontro com o buraco negro. Isto é evidência de um objeto estelar dentro de G2.

Os cientistas fizeram observações com o Observatório W. M. Keck, no Havaí, e usaram a técnica de óptica adaptativa que corrige os efeitos de distorção da atmosfera da Terra em tempo real. Eles realizaram uma nova análise de 13 anos de dados do Galactic Center Orbits Initiative.

Em setembro de 2019, a equipe informou que o buraco negro estava ficando mais faminto e que não sabia exatamente porquê. O alongamento de G2 em 2014 pareceu retirar gás que pode ter sido engolido recentemente pelo buraco negro. As fusões de estrelas podem alimentar o buraco negro. 
A Terra está nos subúrbios em comparação com o Centro Galáctico, que fica a cerca de 26.000 anos-luz de distância. O centro da Via Láctea tem uma densidade estelar bilhões de vezes maior que a nossa parte da Galáxia. A atração gravitacional é muito mais forte e os campos magnéticos são mais extremos.

A equipe já identificou alguns outros candidatos que podem fazer parte desta nova classe de objetos e vai continuar a analisá-los.

A pesquisa foi publicada na revista Nature.

Fonte: University of California

WASP-12b está numa "espiral da morte"

A Terra está condenada, mas só daqui a 5 bilhões de anos.


© NASA/JPL-Caltech (ilustração do escaldante gigante gasoso WASP-12b e da sua estrela)

O nosso planeta será torrado à medida que o Sol se expande e se torna numa gigante vermelha, mas o exoplaneta WASP-12b, localizado a 600 anos-luz de distância na direção da constelação de Cocheiro, tem menos de um milésimo deste tempo: uns comparativamente insignificantes 3 milhões de anos.

Uma equipe de astrofísicos mostrou que WASP-12b está espiralando em direção à sua estrela hospedeira, rumo à sua destruição.

O WASP-12b é conhecido por ser um "Júpiter quente", um gigante gasoso como o nosso vizinho Júpiter, mas que está muito próximo da sua estrela progenitora, completando uma órbita em apenas 26 horas (em contraste, a Terra demora 365 dias; até Mercúrio, o planeta mais interior do Sistema Solar, demora 88 dias).

O problema é que à medida que WASP-12b orbita a sua estrela, os dois corpos exercem força gravitacional um sobre o outro gerando marés.

Dentro da estrela, estas ondas fazem com que se torne ligeiramente distorcida e oscile. Devido ao atrito, estas ondas colidem e as oscilações diminuem, um processo que gradualmente converte a energia orbital do planeta em calor dentro da estrela.

O atrito associado às marés também exerce um torque gravitacional no planeta, fazendo com que o planeta espirale para dentro. A medição da rapidez com que a órbita do planeta está encolhendo revela a rapidez com que a estrela está dissipando a energia orbital, o que fornece aos astrofísicos pistas sobre o interior das estrelas.

Quando os Júpiteres quentes atingem o limite de Roche, o limite de perturbação das marés de um objeto numa órbita circular, os seus invólucros podem ser despojados, revelando um núcleo rochoso parecido com uma super-Terra (ou talvez um mini-Netuno, caso possam reter um pouco da sua camada de gás)."

O WASP-12b foi descoberto em 2008 pelo método de trânsito, no qual é observado uma pequena queda no brilho de uma estrela quando um planeta passa à sua frente, de cada vez que completa uma órbita. Desde a sua descoberta, o intervalo entre quedas sucessivas diminuiu 29 milissegundos por ano.

Esta ligeira diminuição pode sugerir que a órbita do planeta está encolhendo, mas existem outras explicações possíveis: se a órbita de WASP-12b for mais oval do que circular, por exemplo, as mudanças aparentes no período orbital podem ser provocadas pela mudança de orientação da órbita.

A maneira de ter a certeza de que a órbita está realmente diminuindo é observar o planeta desaparecendo por trás da sua estrela, um evento conhecido como ocultação. Se a órbita está apenas mudando de direção, o período orbital real não muda, de modo que se os trânsitos ocorrem mais depressa do que o esperado, as ocultações deverão ocorrer mais lentamente. Mas se a órbita estiver realmente decaindo, o tempo dos trânsitos e das ocultações deve mudar na mesma direção.

Nos últimos dois anos, os pesquisadores recolheram mais dados, incluindo novas observações de ocultações feitas com o telescópio espacial Spitzer.

Esta descoberta vai ajudar os teóricos a entender o funcionamento interno das estrelas e a interpretar outros dados relacionados com as interações das marés.

O artigo científico foi publicado na revista The Astrophysical Journal Letters.

Fonte: Princeton University

Colisão iminente da Via Láctea já está produzindo novas estrelas

Os arredores da Via Láctea abrigam as estrelas mais antigas da Galáxia. Mas os astrônomos descobriram algo inesperado: um bando de estrelas jovens.


© NASA/D. Nidever (aglomerado Price-Whelan 1)

Ainda mais surpreendente, a análise espectral sugere que as estrelas jovens têm uma origem extragalática. As estrelas aparentemente formaram-se não a partir de material da Via Láctea, mas de duas galáxias anãs próximas conhecidas como Nuvens de Magalhães. Essas galáxias estão numa rota de colisão com a nossa. A descoberta sugere que um fluxo de gás que se estende a partir das galáxias está a cerca de metade da distância que se pensava ser necessária para colidir com a Via Láctea.

"É um grupo insignificante de estrelas, sendo inferior a alguns milhares de estrelas, mas tem grandes implicações além da área local da Via Láctea," diz o pesquisador principal Adrian Price-Whelan, cientista do Centro de Astrofísica Computacional do Instituto Flatiron em New York. O aglomerado também tem o seu nome: Price-Whelan 1.

As estrelas recém-descobertas podem revelar novas informações sobre a história da Via Láctea; podem, por exemplo, dizer se as Nuvens de Magalhães colidiram com a nossa Galáxia no passado.

Price-Whelan e colegas já tinham relatado anteriormente a descoberta de Price-Whelan 1 no dia 5 de dezembro de 2019 na revista The Astrophysical Journal e a sua subsequente análise espectroscópica das estrelas no dia 16 de dezembro, também na revista The Astrophysical Journal.

A identificação de aglomerados estelares é complicada porque a nossa Galáxia está repleta de objetos deste tipo. Algumas estrelas podem parecer próximas umas das outras no céu, mas na verdade ficam a distâncias drasticamente diferentes da Terra. Outras podem aproximar-se temporariamente, mas seguir em direções opostas. A determinação de quais as estrelas realmente agrupadas requer muitas medições precisas ao longo do tempo.

Price-Whelan começou com os dados mais recentes recolhidos pelo observatório espacial Gaia, que mediu e catalogou as distâncias e movimentos de 1,7 bilhões de estrelas. Ele analisou o conjunto de dados do Gaia em busca de estrelas muito azuis, raras no Universo, e identificou grupos estelares que se movem ao seu lado. Após a correspondência cruzada e a eliminação de aglomerados conhecidos, permaneceu apenas um.

O aglomerado recém-descoberto é relativamente jovem, com 117 milhões de anos, e fica nos arredores longínquos da Via Láctea.

O aglomerado habita uma região próxima de um "rio" de gás, denominado Corrente de Magalhães, que forma a extremidade mais distante da Grande e da Pequena Nuvem de Magalhães e alcança a Via Láctea. O gás neste fluxo não contém muitos metais, ao contrário dos gases nos confins da Via Láctea. Foi efetuada uma análise do conteúdo metálico das 27 estrelas mais brilhantes do aglomerado. Assim como a Corrente de Magalhães, as estrelas contêm níveis escassos de metais.

Os pesquisadores propõem que o aglomerado se formou à medida que o gás da Corrente de Magalhães passava pelos gases em torno da Via Láctea. Este cruzamento criou uma força de arrasto que comprimiu o gás da Corrente de Magalhães. Este arrasto, juntamente com as forças de maré do reboque gravitacional da Via Láctea, condensou o gás o suficiente para desencadear a formação estelar. Com o tempo, as estrelas aproximaram-se do gás circundante e juntaram-se à Via Láctea.

A presença das estrelas fornece uma oportunidade única. A medição da distância do gás à Terra é complexa e imprecisa, de modo que os astrônomos não tinham certeza de quão longe a Corrente de Magalhães estava de alcançar a Via Láctea. A distância das estrelas, por outro lado, é comparativamente trivial. Usando as posições e movimentos atuais das estrelas no aglomerado, os cientistas preveem que a orla da Corrente de Magalhães está a 90.000 anos-luz da Via Láctea. Este valor é aproximadamente metade da distância prevista anteriormente.

Se a Corrente de Magalhães estiver mais próxima, especialmente o braço principal mais próximo da nossa Galáxia, então é provável que seja incorporada à Via Láctea antes do previsto pelo modelo atual. Eventualmente, este gás se transformará em novas estrelas no disco da Via Láctea. De momento, a nossa Galáxia está consumindo gás mais depressa do que está sendo reabastecido. Este gás extra que está entrando ajudará a reabastecer este reservatório e a garantir que a Via Láctea continua prosperando e formando novas estrelas.

A distância atualizada da Corrente de Magalhães melhorará os modelos de onde as Nuvens de Magalhães estiveram e para onde estão indo. Os números aprimorados podem até resolver um debate sobre se as Nuvens de Magalhães já atravessaram antes a Via Láctea. Isto propiciará uma melhor compreensão da história e das propriedades da nossa Galáxia.

Fonte: Simons Foundation

quarta-feira, 15 de janeiro de 2020

Revelada linha interestelar de um dos blocos de construção da vida

O fósforo, presente no nosso DNA e nas membranas celulares, é um elemento essencial à vida tal como a conhecemos. No entanto, o modo como este elemento chegou à Terra primordial ainda é um mistério.


© ESA/ESO (moléculas que contêm fósforo na formação estelar e no cometa 67P)

Com o auxílio do poder combinado do ALMA e da sonda Rosetta, da Agência Espacial Europeia (ESA), os astrônomos traçaram agora a jornada do fósforo, das regiões de formação estelar até os cometas. Este trabalho de pesquisa mostra, pela primeira vez, onde as moléculas que contêm fósforo se formam, como esse elemento é transportado em cometas e como uma molécula em particular pode ter desempenhado um papel crucial no início da vida em nosso planeta.

Os novos resultados do Atacama Large Millimeter/submillimeter Array (ALMA), do qual o Observatório Europeu do Sul (ESO) é parceiro, e do instrumento ROSINA a bordo da sonda espacial Rosetta da ESA, mostram que o monóxido de fósforo é uma peça chave no quebra-cabeça da origem da vida.

Com o auxílio do ALMA, que permitiu uma análise detalhada da região de formação estelar AFGL 5142, os astrônomos conseguiram localizar onde moléculas com fósforo, como o monóxido de fósforo, se formam.

Novas estrelas e sistemas planetários surgem em regiões semelhantes a nuvens de gás e poeira entre as estrelas, tornando essas nuvens interestelares os locais ideais para iniciar a busca pelos elementos essenciais da vida.

As observações do ALMA mostraram que moléculas que contêm fósforo são criadas quando estrelas massivas se formam. Correntes de gás emitidas pelas jovens estrelas massivas abrem cavidades nas nuvens interestelares e moléculas que contêm fósforo se formam nas paredes destas cavidades, através da ação combinada de choques e radiação da estrela bebê. Os astrônomos também mostraram que o monóxido de fósforo é a molécula portadora de fósforo mais abundante nas paredes das cavidades.

Depois de procurar com o ALMA esta molécula nas regiões de formação estelar, a equipe europeia passou a se concentrar em um objeto do Sistema Solar: o famoso cometa 67P/Churyumov-Gerasimenko. A ideia era seguir a trilha destes compostos contendo fósforo. Se as paredes da cavidade colapsarem para formar uma estrela, particularmente uma menos massiva como o Sol, o monóxido de fósforo pode congelar e ficar preso nos grãos de poeira gelados que permanecem em torno da nova estrela. Mesmo antes da estrela estar totalmente formada, estes grãos de poeira se juntam para formar seixos, rochas e, eventualmente, cometas, que se tornam transportadores de monóxido de fósforo.

A ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) colectou dados do 67P durante os dois anos em que Rosetta orbitou este cometa. Os astrônomos já tinham descoberto anteriormente traços de fósforo nos dados de ROSINA, mas não sabiam que molécula é que o teria transportado até lá.

Esta primeira observação de monóxido de fósforo num cometa ajuda os astrônomos a estabelecerem uma ligação entre as regiões de formação estelar, onde a molécula é criada, e a Terra.

Como muito provavelmente os cometas transportaram enormes quantidades de compostos orgânicos para a Terra, o monóxido de fósforo encontrado no cometa 67P poderá fortalecer a ligação entre cometas e a vida na Terra.

Leonardo Testi, astrônomo do ESO e gerente de operações do ALMA na Europa, conclui: “Compreender as nossas origens cósmicas, incluindo o quão comuns são as condições químicas favoráveis ao aparecimento de vida, é um tópico principal da astrofísica moderna. Enquanto o ESO e o ALMA se concentram nas observações de moléculas em sistemas planetários jovens distantes, a exploração direta do inventário químico dentro do nosso Sistema Solar se torna possível graças a missões da ESA, como Rosetta. A sinergia entre as principais instalações terrestres e espaciais do mundo, através da colaboração entre o ESO e a ESA, é um ativo poderoso para pesquisadores europeus e permite descobertas verdadeiramente transformadoras como a relatada neste artigo.”

Esta pesquisa foi apresentada em um artigo publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: ESO