sábado, 9 de setembro de 2023

A passagem do cometa Nishimura

O cometa Nishimura está contornando o Sol com velocidade de 70 Km/s.


© Peter Kennett (cometa Nishimura)

O astrônomo amador japonês Hideo Nishimura fez uma descoberta, no dia 11 de agosto deste ano, ao detectar um objeto brilhante nas proximidades do Sol.

Este objeto, anteriormente invisível devido ao brilho do Sol, revelou-se como um cometa completamente novo e brilhante. Em 15 de agosto, o Minor Planet Center confirmou oficialmente a descoberta e nomeou o cometa como C/2023 P1 (Nishimura). 

O cometa Nishimura tem um período orbital estimado em 334 anos, segundo os dados do Jet Propulsion Laboratory (JPL) da NASA. O cometa tem atualmente uma magnitude de 4,5. Ele está se tornando gradualmente mais brilhante. Sua cauda crescente agora tem quase 8 minutos de arco de comprimento. 

O cometa Nishimura está atualmente na constelação de Leão, entre as órbitas de Mercúrio e Vênus, seu nascente ocorre às 6h02 e a 20° do Sol que aparece às 6h20. O cometa aparecerá muito baixo no céu ao amanhecer até o final do mês, visível com binóculos e dependendo das condições até a olho nu

Em 2 de setembro, o astrofotógrafo Gerald Rhemann obteve uma imagem da desconexão de cauda do cometa devido ao vento solar forte, quando uma Ejeção de Massa Coronal atingiu o cometa, provavelmente oriunda da mancha solar ativa AR3413.


© Gerald Rhemann (desconexão de cauda do cometa Nishimura)

Em 13 de setembro, o cometa atingirá a maior aproximação à Terra, a uma distância de 0,85 UA (128 milhões de quilômetros) e magnitude 3,6. Em 17 de setembro, o C/2023 P1 (Nishimura) atingirá seu periélio, o ponto mais próximo do Sol, a uma distância de cerca de 0,2 UA (30 milhões de quilômetros). Neste momento, ele estará a 12º do Sol e atingirá seu brilho máximo, podendo chegar a uma magnitude 2,7.

No entanto, sua proximidade com o Sol no céu pode tornar a observação desafiadora. Em geral, um objeto celeste com uma magnitude aparente menor que aproximadamente 6,0 é considerado visível a olho nu em condições de céu escuro e limpo. Quanto menor o valor da magnitude aparente, mais brilhante o objeto. 

Cálculos recentes sugerem que este cometa pode ser periódico. Cometas que fazem sua primeira passagem pelo Sol têm maior probabilidade estatística de se desintegrar, mas cada passagem subsequente ao periélio torna o núcleo do cometa mais robusto. Assim, o C/2023 P1 tem uma melhor chance de sobreviver às futuras passagens próximas ao Sol. 

Para encontrar o cometa no céu, aplicativos de observação de estrelas como Star Walk 2 e Sky Tonight, ou ainda programas como Stellarium e Cartes du Ciel podem ser úteis. 

O cometa C/2023 P1 (Nishimura) pode estar relacionado à chuva de meteoros Sigma Hydrids, que está ativa de 22 de novembro a 18 de janeiro (com pico por volta de 30 de novembro). 

Fonte: Cosmo Novas

sexta-feira, 8 de setembro de 2023

A detecção mais distante do campo magnético de uma galáxia

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrônomos detectaram o campo magnético de uma galáxia tão distante que a sua luz demorou mais de 11 bilhões de anos a chegar até nós, ou seja, quando o Universo tinha apenas 2,5 bilhões de anos de idade.

© ALMA (galáxia 9io9)

Este resultado forneceu aos astrônomos pistas cruciais sobre como é que se formaram os campos magnéticos de galáxias tais como a nossa Via Láctea. Há imensos objetos no Universo que apresentam campos magnéticos, sejam eles planetas, estrelas ou galáxias.

Na Via Láctea e em outras galáxias entrelaçam-se campos magnéticos com dimensões da ordem das dezenas de milhares de anos-luz. Na realidade, sabemos muito pouco relativamente à formação destes campos magnéticos, apesar de serem fundamentais para compreendermos a evolução galáctica. Não é claro quão cedo na vida do Universo, e quão rápido, é que os campos magnéticos se formaram nas galáxias, isto porque, até agora, os astrônomos apenas mapearam campos magnéticos em galáxias próximo daqui. 

Agora, foi  descoberto um campo magnético completamente formado numa galáxia distante, semelhante em estrutura àqueles observados em galáxias próximas. O campo é cerca de mil vezes mais fraco do que o campo magnético da Terra, mas estende-se ao longo de mais de 16.000 anos-luz. 

A observação de um campo magnético completamente desenvolvido tão cedo na história do Universo indica que os campos magnéticos que englobam galáxias inteiras podem formar-se rapidamente no momento em que as galáxias jovens ainda estão se desenvolvendo. A equipe acredita que a formação estelar intensa no Universo primordial poderá acelerar o desenvolvimento de campos magnéticos. Adicionalmente, estes campos podem, por sua vez, influenciar o modo como se formam as gerações seguintes de estrelas.

Para fazer esta detecção, observou-se a radiação emitida por grãos de poeira de uma galáxia distante, 9io9. As galáxias estão repletas de grãos de poeira e quando um campo magnético se encontra presente, estes grãos tendem a alinhar-se, fazendo com que a radiação que emitem seja polarizada. Isto significa que as ondas de luz oscilam segundo uma direção privilegiada, em vez de aleatória. Quando o ALMA detectou e mapeou um sinal polarizado emitido pela 9io9, confirmou-se pela primeira vez a presença de um campo magnético numa galáxia muito distante.

A esperança é que com esta e outras observações futuras de campos magnéticos distantes, começaremos a desvendar o mistério da formação destas estruturas galácticas fundamentais. 

Este trabalho foi descrito num artigo científico publicado na revista Nature

Fonte: ESO

Descoberta uma vasta bolha de galáxias

Uma equipe liderada pela Universidade do Havaí descobriu uma imensa bolha a 820 milhões de anos-luz da Terra, que se pensa ser um fóssil remanescente do nascimento do Universo.

© Animea Studio (ilustração de Ho'oleilana)

Os astrônomos encontraram inesperadamente a bolha no interior de uma rede de galáxias. A entidade recebeu o nome de Ho'oleilana, um termo retirado do Kumulipo, um cântico de criação havaiano. 

As novas descobertas mencionam que estas estruturas massivas são previstas pela teoria do Big Bang, como resultado de ondulações 3D encontradas no material do Universo primitivo, conhecidas como Oscilações Acústicas de Bárions (OABs). 

Um aumento na densidade das galáxias, é uma caraterística muito mais forte do que o esperado, com diâmetro muito grande de um bilhão de anos-luz está para além das expectativas teóricas. Se a sua formação e evolução estiverem de acordo com a teoria, esta OAB está mais próxima do que o previsto, o que implica um valor elevado para o ritmo de expansão do Universo.

Os astrônomos localizaram a bolha usando dados do Cosmicflows-4, que é, até à data, a maior compilação de distâncias precisas de galáxias. Um catálogo excepcional foi produzido em 2022. Os pesquisadores pensam que esta pode ser a primeira vez que os astrônomos identificaram uma estrutura individual associada a uma OAB. A descoberta poderá ajudar a reforçar o conhecimento dos cientistas sobre os efeitos da evolução das galáxias. 

Na teoria bem estabelecida do Big Bang, durante os primeiros 400.000 anos, o Universo é um caldeirão de plasma quente semelhante ao interior do Sol. No interior de um plasma, os elétrons separaram-se dos núcleos atômicos. Durante este período, as regiões com densidade ligeiramente superior começaram a colapsar sob a ação da gravidade, mesmo quando o intenso banho de radiação tentava separar a matéria. Esta luta entre a gravidade e a radiação fez com que o plasma oscilasse ou ondulasse e se espalhasse para fora. As maiores ondulações no Universo primitivo dependiam da distância que uma onda sonora podia percorrer. Estabelecida pela velocidade do som no plasma, esta distância era de quase 500 milhões de anos-luz e foi fixada quando o Universo arrefeceu e deixou de ser um plasma, deixando vastas ondulações tridimensionais. 

Ao longo das eras, as galáxias formaram-se nos picos de densidade, em enormes estruturas semelhantes a bolhas. Os padrões na distribuição das galáxias, devidamente discernidos, poderiam revelar as propriedades destes antigos mensageiros. A estrutura da concha gigante de Ho'oleilana é composta por elementos que foram identificados no passado como sendo eles próprios algumas das maiores estruturas do Universo. 

Esta mesma equipe de pesquisadores também identificou o Superaglomerado de Laniākea em 2014. Esta estrutura, que inclui a Via Láctea, é pequena em comparação. Estendendo-se a um diâmetro de cerca de 500 milhões de anos-luz, Laniākea prolonga-se até à orla desta bolha muito maior. 

Descobriu-se que Ho'oleilana tinha sido assinalada num trabalho de pesquisa de 2016 como a mais proeminente de várias estruturas semelhantes a conchas observadas no SDSS (Sloan Digital Sky Survey). No entanto, o trabalho anterior não revelou toda a extensão da estrutura e concluiu-se na ocasião que não tinha sido encontrada uma OAB. Usando o catálogo Cosmicflows-4, os pesquisadores foram capazes de ver uma concha esférica completa de galáxias, de identificar o seu centro e de mostrar que há um aumento estatístico na densidade de galáxias em todas as direções a partir deste centro. 

Ho'oleilana engloba muitas estruturas bem conhecidas anteriormente encontradas, como a Grande Muralha de Harvard/Smithsonian que contém o Aglomerado de Coma, o Aglomerado de Hércules e a Grande Muralha Sloan. O Superaglomerado de Boieiro reside no seu centro. O histórico Vazio de Boieiro, uma enorme região esférica vazia, encontra-se no interior de Ho'oleilana. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: University of Hawaiʻi

Reveladas novas estruturas no interior de uma supernova icônica

O telescópio espacial James Webb da NASA iniciou o estudo de uma das mais famosas supernovas, SN 1987A.

© James Webb (SN 1987A)

Localizada a 168.000 anos-luz de distância na Grande Nuvem de Magalhães, SN 1987A tem sido alvo de intensas observações em comprimentos de onda que vão desde os raios gama até ao rádio durante quase 40 anos, desde a sua descoberta em fevereiro de 1987.

Novas observações da câmara NIRCam (Near-Infrared Camera) do Webb fornecem uma pista crucial para a nossa compreensão de como uma supernova se desenvolve ao longo do tempo para formar o seu remanescente. Esta imagem revela uma estrutura central semelhante a um buraco de fechadura. Este centro está cheio de gás e poeira ejetados pela explosão da supernova. A poeira é tão densa que mesmo a luz infravermelha que o Webb detecta não a consegue penetrar, dando forma ao "buraco" escuro da fechadura. Um anel equatorial brilhante rodeia o buraco da fechadura interior, formando uma faixa em volta do cinturão que liga dois braços tênues de anéis exteriores em forma de ampulheta. O anel equatorial, formado por material ejetado dezenas de milhares de anos antes da explosão da supernova, contém pontos quentes brilhantes, que apareceram quando a onda de choque da supernova atingiu o anel. Agora os pontos são encontrados mesmo no exterior do anel, com emissão difusa ao seu redor. Estes são os locais onde os choques da supernova atingiram material mais exterior. 

Embora estas estruturas tenham sido observadas em diferentes graus pelos telescópios espaciais Hubble e Spitzer e pelo observatório de raios X Chandra da NASA, a sensibilidade e a resolução espacial sem paralelo do Webb revelaram uma nova característica neste remanescente de supernova, pequenas estruturas em forma de crescente. Pensa-se que estes crescentes fazem parte das camadas exteriores de gás disparadas pela explosão da supernova. O seu brilho pode ser uma indicação do aumento de brilho do limbo, um fenômeno óptico que resulta da observação do material em expansão em três dimensões. O nosso ângulo de visão faz com que pareça que há mais material nestes dois crescentes do que realmente há. 

A alta resolução destas imagens também é digna de nota. Antes do Webb, o agora reformado telescópio Spitzer observou esta supernova no infravermelho ao longo de toda a sua vida, produzindo dados importantes sobre a evolução das suas emissões com o passar do tempo. No entanto, nunca foi capaz de observar a supernova com tanta clareza e pormenor. 

Apesar das décadas de estudo desde a descoberta inicial da supernova, há vários mistérios que permanecem, particularmente em torno da estrela de nêutrons que se deveria ter formado no rescaldo da explosão da supernova. Tal como o Spitzer, o Webb continuará observando a supernova ao longo do tempo. Os seus instrumentos NIRSpec (Near-Infrared Spectrograph) e MIRI (Mid-Infrared Instrument) oferecerão aos astrônomos a capacidade de captar novos dados infravermelhos de alta fidelidade ao longo do tempo e de obter novos conhecimentos sobre as estruturas crescentes recentemente identificadas. Além disso, o Webb continuará colaborando com o Hubble, o Chandra e outros observatórios para fornecer novos conhecimentos sobre o passado e o futuro desta lendária supernova.

Fonte: Space Telescope Science Institute

Planeta recém-descoberto tem a órbita longa

Dos mais de 5.000 planetas que se sabe existirem fora do nosso Sistema Solar, a maioria orbita as suas estrelas a uma distância surpreendentemente pequena.

© Tedi Vick (ilustração dos dois planetas no sistema TOI-4600)

Mais de 80 por cento dos exoplanetas confirmados têm órbitas inferiores a 50 dias, o que coloca estes mundos tórridos pelo menos duas vezes mais perto da sua estrela do que Mercúrio está do nosso Sol; e alguns, ainda mais perto do que isso. 

Os astrônomos estão começando a ter uma ideia geral da formação, evolução e composição destes planetas. Mas o quadro é muito mais confuso para os planetas com períodos orbitais mais longos. Os mundos longínquos, com órbitas que duram meses ou anos, são mais difíceis de detectar e, por isso, as suas propriedades têm sido mais difíceis de discernir.

Agora, a lista de planetas de longo período ganhou duas entradas. Astrônomos do Massachusetts Institute of Technology (MIT), da Universidade do Novo México (UNM) e de outros locais descobriram um sistema raro que contém dois planetas de longo período em órbita de TOI-4600, uma estrela próxima que fica a 815 anos-luz da Terra. A equipe descobriu que a estrela abriga um planeta interior com uma órbita de 82 dias, semelhante à de Mercúrio, enquanto um segundo planeta exterior completa uma orbita a cada 482 dias, o que o coloca comparativamente entre as órbitas da Terra e de Marte. 

A descoberta foi feita com base em dados do TESS (Transiting Exoplanet Survey Satellite) da NASA, uma missão liderada pelo MIT que monitoriza as estrelas mais próximas em busca de sinais de exoplanetas. O novo planeta, mais distante, tem o período mais longo que o TESS detectou até à data. É também um dos mais frios, com cerca de -83º C, enquanto o planeta interior é mais temperado, com 77º C. Ambos os planetas são provavelmente gigantes gasosos, semelhantes a Júpiter e Saturno, embora a composição do planeta exterior possa ser mais uma mistura de gás e gelo. Os dois planetas fazem a ponte entre os "Júpiteres quentes" - os planetas tórridos e de órbita curta que constituem a maioria das descobertas exoplanetárias - e os gigantes gasosos muito mais frios e de período mais longo do nosso Sistema Solar. 

O TESS monitora as estrelas mais próximas em busca de sinais de exoplanetas, apontando para uma região do céu e medindo continuamente o brilho das estrelas neste setor durante 30 dias, antes de passar para o setor seguinte. Os cientistas utilizam "pipelines", ou seja, pesquisas algorítmicas, para passar filtrar as medições em busca de quedas de brilho que possam ter sido causadas pela passagem de um planeta em frente da sua estrela. Em 2020, um pipeline detectou um possível trânsito numa estrela do hemisfério norte, perto da constelação de Dragão. A estrela foi categorizada como TOI-4600 (TOI significa "TESS Object of Interest"). 

O trânsito inicial foi estudado em pormenor pelo TSTPC WG (TESS Single Transit Planet Candidate Working Group), uma equipe de cientistas do MIT, da UNM e de outros locais que procuram sinais de planetas de período mais longo em eventos de trânsito único. O grupo procurou a estrela em outros setores dos dados do TESS e eventualmente identificou mais três trânsitos, semelhantes ao primeiro. A partir destes quatro eventos, os cientistas foram capazes de determinar que a fonte era um planeta - TOI-4600 b - com uma órbita relativamente longa de 82 dias. A equipe também detectou um quinto trânsito, embora este não estivesse sincronizado com os outros sinais. 

Poderá o trânsito ser de outra estrela que está eclipsando temporariamente a primeira? Ou poderá ser um segundo planeta em órbita? Foi observado um trânsito que apareceu no mesmo ciclo de 82 dias, o que confirmou ainda mais a existência de um planeta com órbita longa; e um segundo trânsito, foi detectado 964 dias depois do trânsito anterior, fora de sincronia. Estes dois últimos trânsitos eram semelhantes em profundidade, ou seja, a quantidade de luz que foi atenuada, sugerindo que ambos foram produzidos por um único objeto que estava orbitando a estrela, quer a cada 964 dias, quer a cada 482 dias. 

Concluiu-se que a estrela abriga de fato dois planetas de longo período: TOI-4600 b, um gigante ameno, semelhante a Júpiter; e TOI-4600 c, um gigante gelado.

Os resultados foram publicados no periódico The Astrophysical Journal Letters

Fonte: Massachusetts Institute of Technology

sábado, 2 de setembro de 2023

Um planeta gigante parece ser fruto de colisões planetárias

Uma equipe internacional de astrônomos descobriu um planeta da dimensão de Netuno, mais denso do que o aço, e pensam que a sua composição pode ser o resultado de um choque planetário gigante.

© Jingyao Dou (simulação do impacto)

A massa de TOI-1853b é quase o dobro da de qualquer outro planeta de dimensão semelhante conhecido e a sua densidade é incrivelmente elevada, o que significa que é constituído por uma fração de rocha maior do que seria de esperar a essa escala. No estudo, os cientistas liderados por Luca Naponiello, da Universidade de Roma Tor Vergata, sugerem que este fato é o resultado de colisões planetárias. 

Estes enormes impactos teriam removido parte da atmosfera mais leve e da água, deixando para trás uma grande quantidade de rocha. Há uma enorme diversidade de planetas em sistemas exoplanetários; muitos não têm análogos no nosso Sistema Solar, mas têm frequentemente massas e composições entre as dos planetas rochosos e as de Netuno e Urano (os gigantes gelados). O estudo modelou impactos gigantes extremos que poderiam, potencialmente, remover a atmosfera mais leve e a água/gelo do planeta maior original, de modo a produzir a densidade extrema medida.

Foi descoberto que o corpo planetário inicial teria provavelmente de ser rico em água e sofrer um impacto gigante extremo a uma velocidade superior a 75 km/s para produzir TOI-1853b tal como é observado. Este planeta fornece novas evidências da prevalência de impactos gigantes na formação de planetas em toda a Galáxia. 

Esta descoberta ajuda a ligar as teorias de formação de planetas baseadas no Sistema Solar à formação de exoplanetas. A descoberta deste planeta extremo fornece novos conhecimentos sobre a formação e evolução dos sistemas planetários. 

Normalmente, espera-se que os planetas que se formam com esta quantidade de rocha se tornem gigantes gasosos como Júpiter, que têm densidades semelhantes à da água. O exoplaneta TOI-1853b é do tamanho de Netuno, mas tem uma densidade superior à do aço. Este trabalho mostra que isto pode acontecer se o planeta tiver sofrido colisões planeta-planeta extremamente energéticas durante a sua formação. Estas colisões retiraram parte da atmosfera mais leve e da água, deixando um planeta substancialmente rico em rocha e de alta densidade.

Um artigo foi publicado na revista Nature

Fonte: University of Bristol

sexta-feira, 1 de setembro de 2023

Desvendando detalhes dos pulsares

Por meio de uma campanha de observação que envolveu 12 telescópios no solo e no espaço, incluindo três infraestruturas do Observatório Europeu do Sul (ESO), os astrônomos investigaram o estranho comportamento de um pulsar, uma estrela morta com rotação extremamente rápida.

© ESO (ilustração de um pulsar)

Este objeto misterioso é conhecido por alternar entre dois modos de brilho quase constantemente, algo que até à data tem sido um enigma. Os astrônomos descobriram agora que as súbitas ejeções de matéria, lançadas pelo pulsar em períodos muito curtos, são responsáveis por estas mudanças peculiares. 

Um pulsar, ou estrela de nêutrons, trata-se de uma estrela morta, magnética e de rotação rápida, que emite um feixe de radiação eletromagnética para o espaço. À medida que gira, este feixe varre o cosmos, tal como um farol que varre o seu espaço circundante, e é detectado pelos astrônomos quando intercepta a linha de visão da Terra. Este efeito faz com que a estrela pareça pulsar em brilho quando observada a partir do nosso planeta. 

O objeto PSR J1023+0038 (ou J1023 para abreviar) é um tipo especial de pulsar que apresenta um comportamento estranho. Localizado a cerca de 4.500 anos-luz de distância da Terra, na constelação do Sextante, orbita próximo de outra estrela. Durante a última década, o pulsar tem estado ativamente retirando matéria desta companheira, matéria esta que se acumula num disco à volta do pulsar e vai caindo lentamente na sua direção. Desde que este processo de acumulação de matéria começou, o feixe de varrimento praticamente que desapareceu e o pulsar começou a alternar incessantemente entre dois modos. 

No modo "alto", o pulsar emite raios X brilhantes, ultravioleta e luz visível, enquanto no modo "baixo" se torna mais fraco para estas frequências mas emite mais nas ondas rádio. O pulsar pode permanecer em cada modo durante vários segundos ou minutos, mudando depois para o outro modo em apenas alguns segundos. Até agora, esta mudança tem intrigado os astrônomos. 

A campanha de observação incluiu o Very Large Telescope (VLT) e o New Technology Telescope (NTT), ambos do ESO, que detectaram radiação visível e infravermelha próxima, bem como o Atacama Large Millimeter/submillimeter Array (ALMA), do qual o ESO é um parceiro. Durante duas noites em Junho de 2021, os astrônomos observaram o sistema efetuando mais de 280 mudanças entre os seus modos alto e baixo.

Foi descoberto que a mudança de modo resulta de uma intrincada interação entre o vento do pulsar - um fluxo de partículas de alta energia que se afasta do pulsar - e a matéria que flui em direção ao pulsar. No modo baixo, a matéria que flui em direção ao pulsar é expelida num jato estreito perpendicular ao disco. Gradualmente, esta matéria acumula-se cada vez mais perto do pulsar e começa a ser atingida pelo vento que sopra da estrela pulsante, o que dá origem ao aquecimento da matéria. O sistema fica então no modo alto, brilhando intensamente em raios X, ultravioleta e luz visível. Eventualmente, bolhas desta matéria quente são removidas pelo pulsar através do jato. Com menos matéria quente no disco, o sistema brilha menos, mudando de novo para o modo baixo. 

Apesar desta descoberta ter desvendado o mistério do estranho comportamento de J1023, os astrônomos ainda têm muito a aprender com o estudo deste sistema único. O Extremely Large Telescope (ELT) do ESO, atualmente em construção no Chile, oferecerá uma visão sem precedentes dos mecanismos de comutação do J1023. O ELT permitirá obter informações essenciais sobre a forma como a abundância, a distribuição, a dinâmica e a energia da matéria que flui em torno do pulsar são afetadas pela comutação de modos.

Este trabalho foi publicado no periódico Astronomy & Astrophysics

Fonte: ESO

Discos de acreção: quão grandes são, realmente?

Recorrendo ao telescópio Gemini North, os astrônomos detectaram pela primeira vez evidências da presença de um disco de acreção no núcleo galáctico ativo da galáxia III Zw 002.


© NOIRLab / P. Marenfeld (buraco negro e seu disco de acreção)

Utilizando duas linhas de emissão raras e peculiares no infravermelho próximo, estas observações colocam limites firmes na dimensão do disco de acreção da galáxia e evidencia sua geometria e comportamento. 

As linhas de emissão resultam quando um átomo num estado excitado cai para um nível de energia mais baixo, liberando luz no processo. Uma vez que cada átomo tem um conjunto único de níveis de energia, a luz emitida tem um comprimento de onda discreto que atua como uma impressão digital que identifica a sua origem. As linhas de emissão aparecem normalmente nos espetros como picos finos e nítidos. Mas no vórtice rodopiante de um disco de acreção, onde o gás excitado está sob a influência gravitacional do buraco negro supermassivo e se move a velocidades de milhares de quilômetros por segundo, as linhas de emissão alargam-se em picos mais rasos. A região do disco de acreção onde estas linhas têm origem é designada por região de linhas largas.

À primeira vista, estas estruturas sublimes podem parecer bastante serenas. Mas, na verdade, o centro de muitas galáxias é um ambiente turbulento que contém um buraco negro supermassivo que se alimenta ativamente. Orbitando estes objetos incompreensivelmente densos estão discos de acreção rodopiantes de gás e poeira, que alimentam o buraco negro e emitem quantidades imensas de energia ao longo de todo o espetro eletromagnético, desde raios gama e raios X altamente energéticos, passando pela luz visível, até às ondas infravermelhas e de rádio. 

O estudo dos discos de acreção pode melhorar a compreensão sobre os buracos negros e a evolução das galáxias que os hospedam. A maior parte dos discos de acreção, no entanto, são impossíveis de observar diretamente devido às suas distâncias extremas e tamanhos relativamente pequenos. É extremamente difícil obter imagens diretas dos discos de acreção, tendo apenas sido obtidas imagens de duas fontes graças à capacidade de alta resolução angular do EHT (Event Horizon Telescope). 

Assim, se não houver acesso a uma rede global de radiotelescópios, como é que os astrônomos sabem quando um buraco negro supermassivo tem um disco à sua volta? Acontece que a evidência de um disco de acreção pode ser encontrada num padrão específico de linhas de emissão largas chamado perfil de pico duplo. Dado que o disco está girando, o gás de um lado está se afastando do observador, enquanto o gás do outro lado está se movendo na direção do observador. Estes movimentos relativos esticam e comprimem as linhas de emissão para comprimentos de onda mais longos e mais curtos, respectivamente. O resultado é uma linha alargada com dois picos distintos, cada um originário de cada lado do disco em rápida rotação. Estes perfis de pico duplo são um fenômeno raro, uma vez que a sua ocorrência está limitada a fontes que podem ser observadas quase de face. Nas poucas fontes em que foi observado, o pico duplo foi encontrado nas linhas H-alfa e H-beta, duas linhas de emissão de átomos de hidrogênio que aparecem em comprimentos de onda do visível. Com origem na zona interior da região de linhas largas perto do buraco negro supermassivo, estas linhas não fornecem qualquer evidência sobre a dimensão do disco de acreção na sua totalidade. Mas observações recentes no infravermelho próximo revelaram uma zona da região exterior de linhas largas que nunca tinha sido vista antes. 

A linha Paschen-alfa (hidrogênio) tem origem na zona interior da região de linhas largas e a linha O I (oxigénio neutro) tem origem na periferia da região de linhas largas, uma região que nunca tinha sido observada antes. Estes são os primeiros perfis de duplo pico a serem encontrados no infravermelho próximo e surgiram inesperadamente durante as observações com o GNIRS (Gemini Near-Infrared Spectrograph), que é capaz de observar todo o espetro do infravermelho próximo (800-2500 nanómetros) de uma só vez.

Comparando estas observações com os modelos existentes de disco, a equipe conseguiu extrair parâmetros que fornecem uma imagem mais clara do buraco negro supermassivo de III Zw 002 e da região de linhas largas. O modelo indica que a linha Paschen-alfa tem origem num raio de 16,77 dias-luz, e a linha O I tem origem num raio de 18,86 dias-luz. Também prevê que o raio exterior da região de linhas largas é de 52,43 dias-luz. O modelo também indica que a região de linhas largas de III Zw 002 tem um ângulo de inclinação de 18 graus em relação aos observadores na Terra e que o buraco negro supermassivo no seu centro tem 400 a 900 milhões de vezes a massa do nosso Sol.

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: National Optical-Infrared Astronomy Research Laboratory

domingo, 27 de agosto de 2023

Emissão de raios gama em estrelas jovens semelhantes ao Sol

Uma equipe de cientistas da Argentina e da Espanha apresentou a primeira evidência observacional de que um tipo de estrelas jovens de baixa massa, conhecidas como estrelas T Tauri, são capazes de emitir radiação gama.

© INAF / S. Orlando (ilustração de uma estrela T. Tauri)

A radiação muito energética do céu não pode ser facilmente observada da Terra. A elevada sensibilidade do satélite Fermi ajuda a resolver este problema, observando o Universo em raios gama, a região mais energética do espetro eletromagnético. O satélite Fermi tem observado continuamente o céu desde o seu lançamento em 2008 e, a partir destas observações, sabe-se que cerca de 30% das fontes de raios gama detectadas em todo o céu noturno continuam por identificar; as origens destas detecções de raios gama são desconhecidas. 

Várias das fontes de raios gama parecem ter origem em regiões de formação estelar, mas a equipe não tinha qualquer explicação para o fato. O estudo centra-se na região de formação estelar NGC 2071, que se situa na parte norte da nuvem molecular Órion B. Para tentar identificar a causa destas misteriosas explosões de raios gama, a equipe decidiu olhar para objetos conhecidos como estrelas T Tauri, que são estrelas de baixa massa em formação. 

As estrelas T Tauri são constituídas por uma estrela central e um disco de gás e poeira que orbita à sua volta, onde se podem formar planetas. As estrelas T Tauri são conhecidas pelo seu brilho flutuante e encontram-se tipicamente perto de regiões de formação estelar ativa. 

A equipe notou que três fontes gama não identificadas, observadas em diferentes intervalos de tempo, provinham da parte do céu onde se situa a jovem região de formação estelar NGC 2071. Sabe-se que pelo menos 58 estrelas classificadas como estrelas T Tauri estão se formando aqui. Não existem outros objetos nesta região que possam ser uma fonte de emissão de raios gama. 

Uma explicação possível é que a radiação esporádica de raios gama é produzida por estrelas T Tauri durante poderosos episódios eruptivos, em que as explosões eletromagnéticas são produzidas pela energia magnética armazenada nas atmosferas das estrelas. Estas megatempestades podem estender-se a vários raios estelares e durar algumas horas. Embora exista atualmente atividade no Sol, não é da mesma escala que uma megatempestade. Estas são muito mais poderosas e, se ocorressem no Sol, seriam prejudiciais para a vida no planeta Terra. Isto pode explicar a origem de múltiplas fontes de raios gama anteriormente desconhecidas. A compreensão dos processos físicos nas estrelas T Tauri também fornece informações sobre as condições iniciais que levaram à gênese do Sol e do nosso Sistema Solar. 

A descoberta deste fenômeno serve para compreender como se formou e evoluiu não só o Sol, mas também o nosso planeta, a Terra. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

A Nebulosa do Pistache

Esta Nebulosa do Pistache nunca havia sido observada antes.

© B. Falls / C. Hall-Fernandez (Nebulosa do Pistache)

As nebulosas recém-descobertas são geralmente angularmente pequenas e encontradas por profissionais que utilizam grandes telescópios. Em contraste, a Nebulosa do Pistache foi descoberta por amadores dedicados e, embora tênue, tem quase o tamanho da Lua cheia.

Nos tempos modernos, mesmo os amadores, mesmo com telescópios pequenos, podem criar longas exposições sobre áreas do céu muito maiores do que a maioria dos telescópios profissionais consegue ver. Eles podem, portanto, descobrir tanto áreas anteriormente desconhecidas de emissão estendida em torno de objetos conhecidos, como também objetos totalmente desconhecidos, como nebulosas. 

A Nebulosa do Pistache retratada é mostrada com emissão de oxigênio (azul) e emissão de hidrogênio (vermelho). A natureza da estrela central quente é atualmente desconhecida, e a nebulosa pode ser rotulada como uma nebulosa planetária se for uma estrela anã branca. 

A imagem apresentada é uma composição de mais de 70 horas de exposição tirada no início de junho sob o céu escuro da Namíbia. 

A Nebulosa do Pistache está localizada a cerca de 50 mil anos-luz da Terra.

Fonte: NASA

Um buraco negro gigante destrói uma estrela massiva

Os astrônomos fizeram um estudo forense minucioso de uma estrela que foi dilacerada quando se aventurou demasiado perto de um buraco negro gigante e depois teve as suas entranhas atiradas para o espaço.

© NASA / M. Weiss (ilustração do rescaldo do evento de perturbação de marés)

O observatório de raios X Chandra da NASA e o XMM-Newton da ESA estudaram a quantidade de nitrogênio e de carbono perto de um buraco negro que se sabe ter despedaçado uma estrela. Os astrônomos pensam que estes elementos foram criados no interior da estrela antes desta se ter despedaçado ao aproximar-se do buraco negro.

Nos últimos anos, os astrônomos têm encontrado muitos exemplos de "eventos de perturbação de marés", em que as forças gravitacionais de um buraco negro massivo destroem uma estrela. Isto provoca uma erupção, frequentemente observada no visível, no ultravioleta e em raios X, à medida que os detritos da estrela são aquecidos. 

Este evento, denominado ASASSN-14li, destaca-se por várias razões. No momento da descoberta, em novembro de 2014, foi a perturbação de marés mais próxima da Terra (290 milhões de anos-luz) descoberta numa década. Devido a esta proximidade, ASASSN-14li forneceu um nível extraordinário de pormenores sobre a estrela destruída. 

Os astrônomos aplicaram novos modelos teóricos para fazer melhores estimativas, em comparação com trabalhos anteriores, da quantidade de nitrogênio e carbono em torno do buraco negro. A estrela do evento ASASSN-14li é uma das mais massivas, talvez a mais massiva, que foi vista ser destruída por um buraco negro até hoje. 

No início deste ano, outra equipe de astrônomos relatou o acontecimento "Barbie assustadora", em que estimaram que uma estrela com cerca de 14 vezes a massa do Sol foi destruída por um buraco negro. No entanto, este fenômeno ainda não foi confirmado como uma perturbação de marés, com a estimativa da massa da estrela se baseando principalmente no brilho da erupção e não numa análise detalhada do material em torno do buraco negro, como no caso de ASASSN-14li. 

Outro aspecto interessante do resultado de ASASSN-14li é o que significa para estudos futuros. Os astrônomos observaram estrelas moderadamente massivas como ASASSN-14li no aglomerado estelar que contém o buraco negro supermassivo no centro da nossa Galáxia. Por conseguinte, a capacidade de estimar as massas estelares de estrelas perturbadas pelas marés pode fornecer uma forma de identificar a presença de aglomerados estelares em torno de buracos negros supermassivos em galáxias mais distantes. 

Até este estudo, havia uma forte possibilidade de que os elementos observados em raios X pudessem ser provenientes de gás liberado em erupções anteriores do buraco negro supermassivo. O padrão de elementos aqui analisado, no entanto, parece ter vindo de uma única estrela. Um trabalho anterior, publicado em 2017 por Chenwie Yang, da Universidade de Ciência e Tecnologia de Hefei, na China, utilizou dados ultravioletas do telescópio espacial Hubble para mostrar que há mais nitrogênio do que carbono em ASASSN-14li, mas em menor quantidade do que a encontrada agora utilizando dados de raios X. Esses autores calcularam que a estrela tinha apenas uma massa equivalente a 0,6 sóis. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: Harvard-Smithsonian Center for Astrophysics

O desaparecimento das nuvens de Netuno relaciona-se com o ciclo solar

Os astrônomos descobriram uma ligação entre a abundância variável das nuvens de Netuno e o ciclo solar de 11 anos, em que o aumento e a diminuição dos campos magnéticos emaranhados do Sol impulsionam a atividade solar.

© Hubble (aumento e diminuição da quantidade de nuvens em Netuno)

A ligação entre Netuno e a atividade solar é surpreendente para os cientistas planetários porque Netuno é o planeta gigante mais distante no nosso Sistema Solar e recebe cerca de 0,1% da intensidade solar que a Terra recebe. No entanto, o clima global nublado de Netuno parece ser impulsionado pela atividade solar e não pelas quatro estações do planeta, que duram aproximadamente 40 anos cada uma.

Em 1989, a nave espacial Voyager 2 da NASA forneceu as primeiras imagens de nuvens lineares e brilhantes, reminiscentes de cirros na Terra, vistas no alto da atmosfera de Netuno. Formam-se acima da maior parte do metano da atmosfera de Netuno e refletem todas as cores da luz solar, o que as torna brancas.

Para monitorar a evolução da aparência de Netuno, os astrônomos analisaram imagens do Observatório Keck tiradas de 2002 a 2022, observações de arquivo do telescópio espacial Hubble com início em 1994 e dados do Observatório Lick na Califórnia de 2018 a 2019. Nos últimos anos, as observações do Keck foram complementadas por imagens tiradas como parte do seu programa Twilight Zone e pelo programa OPAL (Outer Planet Atmospheres Legacy) do Hubble.

Atualmente, a cobertura de nuvens observada em Netuno é extremamente baixa, com exceção de algumas nuvens que pairam sobre o polo sul do planeta gigante. Uma equipe de astrônomos liderada pela Universidade da Califórnia descobriu que a abundância de nuvens normalmente observada nas latitudes médias do gigante gelado começou a desaparecer em 2019.

As imagens revelam um padrão intrigante entre as mudanças sazonais na cobertura de nuvens de Netuno e o ciclo solar, tornando-se mais emaranhado como um novelo de lã. Isto é evidente no número crescente de manchas solares e no aumento da atividade das erupções solares. À medida que o ciclo progride, o comportamento tempestuoso do Sol atinge o seu máximo, até que o campo magnético se afunda e inverte a polaridade. Em seguida, o Sol volta a estabilizar-se num mínimo, apenas para iniciar outro ciclo. 

Quando há tempestades no Sol, a radiação ultravioleta (UV) mais intensa inunda o Sistema Solar. A equipe descobriu que dois anos após o pico do ciclo solar, um número crescente de nuvens aparece em Netuno. Foi encontrado ainda uma correlação positiva entre o número de nuvens e o brilho do gigante gelado a partir da luz solar que é nele refletida.

Os cientistas descobriram a ligação entre o ciclo solar e o padrão climático nublado de Netuno ao analisarem 2,5 ciclos de atividade de nuvens registados ao longo dos 29 anos de observações netunianas. Durante este período, a refletividade do planeta aumentou em 2002 e diminuiu em 2007. Netuno voltou a aumentar de brilho em 2015, escurecendo depois em 2020 para o nível mais baixo alguma vez observado, altura em que a maioria das nuvens desapareceu. 

As mudanças no brilho de Netuno provocadas pelo Sol parecem subir e descer relativamente em sincronia com o ir e vir das nuvens no planeta. No entanto, há um desfasamento de dois anos entre o pico do ciclo solar e a abundância de nuvens observadas em Netuno. As alterações químicas são causadas pela fotoquímica, que ocorre no alto da atmosfera superior de Netuno e leva tempo a formar nuvens.

Embora um aumento da luz solar UV possa produzir mais nuvens e neblinas, pode também escurecê-las, reduzindo assim o brilho global de Netuno. As tempestades em Netuno que se erguem da atmosfera profunda afetam a cobertura de nuvens, mas não estão relacionadas com as nuvens produzidas fotoquimicamente, pelo que podem complicar os estudos de correlação com o ciclo solar. Também são necessárias observações contínuas de Netuno para ver quanto tempo durará a atual quase ausência de nuvens.

Um artigo foi publicado no periódico Icarus

Fonte: Space Telescope Science Institute

sexta-feira, 18 de agosto de 2023

Novo tipo de estrela desvenda a origem misteriosa das magnetars

As magnetars são os ímãs mais fortes do Universo.

© ESO / L. Calçada (ilustração de uma futura magnetar)

Estas estrelas mortas super densas com campos magnéticos extremamente fortes podem ser encontradas em toda a parte na nossa Galáxia, mas os astrônomos não sabem exatamente como é que estes objetos celestes se formam.

Agora, usando vários telescópios de todo o mundo, incluindo infraestruturas do Observatório Europeu do Sul (ESO), os pesquisadores descobriram uma estrela viva que provavelmente se transformará numa magnetar. Este resultado marca a descoberta de um novo tipo de objeto astronômico, as estrelas magnéticas massivas de hélio, e ajuda-nos a estudar as origens das magnetars. 

Apesar de já ter sido observada há mais de 100 anos, a natureza enigmática da estrela HD 45166 continua a não ser facilmente explicada por modelos convencionais e pouco se sabe sobre este objeto para além do fato de pertencer a um binário de estrelas, ser rica em hélio e ser algumas vezes mais massiva que o nosso Sol.

Tendo já estudado anteriormente várias estrelas ricas em hélio, os astrônomos tiveram a ideia de que os campos magnéticos poderiam ajudar a explicar o comportamento desta estrela. Realmente, sabe-se que os campos magnéticos influenciam o comportamento das estrelas e por isso talvez pudessem explicar também por que é que os modelos tradicionais falharam na descrição da HD45166, a qual se localiza a cerca de 3.000 anos-luz de distância da Terra, na constelação do Unicórnio.

Foi descoberto que a estrela tem um campo magnético extremamente forte, de 4,3 tesla, o que faz da HD 45166 a estrela massiva mais magnética encontrada até à data. Toda a superfície da estrela de hélio tem um campo magnético quase 100.000 mais forte que o da Terra. Este campo magnético é o mais forte detectado numa estrela que excede o limite de massa de Chandrasekhar, que corresponde ao limite crítico acima do qual as estrelas poderão colapsar em estrelas de nêutrons (as magnetars são um tipo de estrelas de nêutrons). Esta observação marca a descoberta da primeira estrela magnética massiva de hélio. 

Os cálculos da equipe sugerem que esta estrela irá terminar a sua vida como uma magnetar. À medida que for colapsando sob a sua própria gravidade, o seu campo magnético irá fortalecer-se e eventualmente a estrela se tranformará num núcleo muito compacto com um campo magnético de cerca de 10 bilhões de tesla, o tipo de ímã mais poderoso do Universo.

Os pesquisadores descobriram também que a HD 45166 tem uma massa menor do que a registada anteriormente, cerca de duas vezes a massa do Sol, e que a sua companheira orbita a uma distância maior do que o que se supunha antes. E este trabalho indica que a HD 45166 se formou através da fusão de duas estrelas menores ricas em hélio.

Este trabalho foi descrito num artigo científico publicado na revista Science.

Fonte: ESO