domingo, 3 de novembro de 2024

Descoberta uma das estrelas com rotação mais rápida do Universo

A Via Láctea ainda guarda muitos segredos sobre o Universo.

© DALL-E (ilustração de uma anã branca e uma estrela de nêutrons)

Agora, pesquisadores da Danmarks Tekniske Universitet (DTU) conseguiram descobrir mais um deles utilizando um telescópio espacial de raios X montado na Estação Espacial Internacional. Trata-se de um objeto pequeno, mas extremamente massivo e de rotação rápida, uma estrela de nêutrons, que faz parte de um sistema estelar binário de raios X denominado 4U 1820-30. Encontra-se na constelação de Sagitário, perto do centro da Via Láctea. 

Os pesquisadores ao analisar as erupções termonucleares deste sistema encontraram oscilações notáveis, sugerindo que uma estrela de nêutrons girava em torno do seu eixo central a uma velocidade espantosa de 716 vezes por segundo. 

Se observações futuras confirmarem este fato, a estrela de nêutrons 4U 1820-30 será um dos objetos de rotação mais rápida alguma vez observados no Universo, apenas igualado por outra estrela de nêutrons chamada PSR J1748-2446. 

A estrela de nêutrons foi observada utilizando o telescópio de raios X NICER da NASA, equipado com tecnologia de rastreio de estrelas da DTU Space e montado no exterior da Estação Espacial Internacional. O sistema de câmara de rastreio estelar assegura que o instrumento de raios X aponta constantemente na direção certa e aponta corretamente para as pequenas estrelas de nêutrons distantes na Via Láctea. 

Uma estrela de nêutrons consiste do remanescente de uma estrela grande e massiva que explodiu como supernova. Conhecem-se milhares de estrelas de nêutrons e são extremas em muitos aspectos. São os objetos mais densos que podem ser observados no cosmos. A estrela de nêutrons em questão tem apenas 12 km de diâmetro, mas tem uma massa 1,4 vezes superior à do Sol. Está localizada a 26.000 anos-luz de distância da Terra. Em comparação, a distância à estrela mais próxima, a Proxima Centauri, é de cerca de 4,3 anos-luz. 

A estrela de nêutrons faz parte de um sistema estelar binário de raios X. Este sistema é constituído por duas estrelas que se orbitam uma à outra. O que também é peculiar no sistema 4U 1820-30 é o motivo da estrela companheira ser uma anã branca com aproximadamente o mesmo tamanho da Terra. Sabe-se que orbita a estrela de nêutrons a cada 11 minutos, o que faz deste o sistema com o mais curto período orbital conhecido. 

Devido à sua intensa gravidade, a estrela de nêutrons retira material da sua estrela companheira. Quando se acumula material suficiente na sua superfície, ocorre uma violenta explosão termonuclear na estrela de nêutrons, semelhante a uma bomba atômica. Durante estas erupções, a estrela de nêutrons torna-se até 100.000 vezes mais brilhante do que o Sol, liberando uma quantidade imensa de energia. 

Graças a observações efetuadas com o NICER entre 2017 e 2021, os pesquisadores descobriram 15 erupções termonucleares de raios X no sistema 4U 1820-30. Foi uma destas erupções que mostrou uma assinatura conhecida como "oscilações de erupções termonucleares", ocorrendo a uma frequência de 716 Hz.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Technical University of Denmark

Miranda, uma lua de Urano, pode ter um oceano sob a sua superfície

Um novo estudo sugere que a lua Miranda, de Urano, pode abrigar um oceano de água sob a sua superfície, uma descoberta que desafiaria muitas suposições sobre a história e sobre a composição da lua e poderia colocá-la na companhia dos poucos mundos do nosso Sistema Solar com ambientes potencialmente habitáveis.

© Voyager 2 (lua Miranda de Urano)

Entre as luas do Sistema Solar, Miranda destaca-se. As poucas imagens que a Voyager 2 captou em 1986 mostram que o hemisfério sul de Miranda (a única parte que vimos) é um terreno com sulcos, dividido por escarpas ásperas e áreas com crateras, como quadrados numa manta de retalhos. 

A maioria dos pesquisadores suspeita que estas estruturas bizarras são o resultado das forças de maré e do aquecimento no interior da lua. A equipe propôs-se explicar a enigmática geologia de Miranda através de engenharia reversa das características da superfície, trabalhando para trás para descobrir qual deve ter sido a estrutura interior da lua para moldar a sua geologia em resposta à força das marés. Depois de mapear as várias características da superfície, como fissuras, cristas e as coronas trapezoidais únicas de Miranda, foi desenvolvido um modelo de computador para testar várias estruturas possíveis do interior da lua, fazendo corresponder os padrões de tensão previstos à geologia real da superfície. 

A configuração que produziu a melhor correspondência entre os padrões de tensão previstos e as características superficiais observadas exigiu a existência de um vasto oceano sob a superfície gelada de Miranda há cerca de 100 a 500 milhões de anos. Este oceano subsuperficial tinha pelo menos 100 quilômetros de profundidade e estava escondido sob uma crosta gelada com uma espessura não superior a 30 quilômetros. Dado que Miranda tem um raio de apenas 235 quilômetros, o oceano teria preenchido quase metade do corpo da lua. 

O motivo para a criação deste oceano podem ser as forças de maré entre Miranda e as luas vizinhas. Estas atrações gravitacionais regulares podem ser amplificados por ressonâncias orbitais, uma configuração em que o período de cada lua em torno de um planeta é um número inteiro exato dos períodos das outras. As luas de Júpiter, Io e Europa, por exemplo, têm uma ressonância de 2:1: por cada duas órbitas que Io faz em torno de Júpiter, Europa faz exatamente uma, o que leva a forças de maré que são conhecidas por manter um oceano sob a superfície de Europa. Estas configurações orbitais e as forças de maré resultantes deformam as luas como bolas de borracha, levando ao atrito e ao calor que mantém os interiores quentes. Isto também cria tensões que racham a superfície, criando uma rica tapeçaria de características geológicas. 

Simulações numéricas sugeriram que Miranda e as suas luas vizinhas provavelmente tiveram uma ressonância deste tipo no passado, oferecendo um potencial mecanismo que poderia ter aquecido o interior de Miranda para produzir e manter um oceano subsuperficial. Num certo momento, o movimento orbital das luas dessincronizou-se, abrandando o processo de aquecimento, de modo que o interior da lua começou a arrefecer e a solidificar. 

Mas os pesquisadores acham que o interior de Miranda ainda não congelou completamente. Se o oceano tivesse congelado completamente teria se expandido e causado certas fissuras na superfície, que não existem. Isto sugere que Miranda ainda está arrefecendo, e pode ter ainda hoje um oceano sob a sua superfície. 

A lua Encélado de Saturno é agora um alvo principal na procura de vida para além da Terra. Miranda pode ser um caso semelhante. É comparável em tamanho e composição a Encélado e, de acordo com um estudo de 2023, pode estar liberando ativamente material para o espaço. Se tiver (ou tiver tido) um oceano, poderá ser um futuro alvo para estudar a habitabilidade e a vida.

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: Johns Hopkins University

Descobertos discos protoplanetários em torno de anãs marrons

As estrelas recém-nascidas estão rodeadas por discos de gás e poeira, a que se dá o nome de discos protoplanetários, no interior dos quais nascem os planetas.

© Webb / Hubble (imagem no visível e infravermelho na Nebulosa de Órion)

Imagem infravermelha do centro da Nebulosa de Órion (M42) obtida com o instrumento NIRCam (Near Infrared Camera) do telescópio espacial James Webb. As inserções mostram imagens ampliadas de dois discos protoplanetários ionizados tênues do telescópio espacial Hubble em comprimentos de onda ópticos e depois do Webb em comprimentos de onda infravermelhos. Para cada disco protoplanetário ionizado, é detectado em silhueta na imagem óptica um pequeno disco protoplanetário, que está rodeado por uma frente de ionização brilhante que é produzida pela intensa radiação ultravioleta (UV) das estrelas mais massivas. A anã castanha no centro de cada disco é detectada na imagem infravermelha do Webb. A espetroscopia do instrumento NIRSpec (Near-Infrared Spectrograph) do Webb confirmou que estes objetos são anãs marrons com base nas suas temperaturas frias. 

Na M42, as estrelas mais brilhantes e massivas emitem intensa radiação ultravioleta que ilumina os discos protoplanetários, permitindo que sejam fotografados com um raro detalhe. As imagens impressionantes destes discos protoplanetários iluminados pela radiação UV, ou seja, os discos protoplanetários ionizados, foram uma das primeiras grandes descobertas do telescópio espacial Hubble, há décadas atrás. 

Um novo estudo utilizou o telescópio espacial James Webb para revelar que alguns dos discos protoplanetários ionizados originalmente detectados pelo Hubble rodeiam anãs marrons, que são objetos semelhantes a estrelas, mas demasiado pequenos e frios para fundir hidrogênio. Os novos resultados do Webb vão ajudar os astrônomos a compreender melhor como as anãs marrons se formam, a sua relação com as estrelas e os planetas e se podem até abrigar planetas. 

As estrelas nascem no interior de enormes nuvens de gás e poeira no espaço, que podem ter anos-luz de diâmetro, as chamadas nebulosas. Durante décadas, suspeitava-se que, pouco depois de uma estrela coalescer dentro de uma nebulosa, os planetas nascem dentro de um disco de gás e poeira que rodeia a estrela recém-nascida, conhecido como disco protoplanetário. 

Pouco depois do seu lançamento em 1990, o Hubble revelou algumas das fotografias diretas mais nítidas de discos protoplanetários através de observações da Nebulosa de Órion. A M42 contém cerca de 2.000 estrelas recém-nascidas e é uma das nebulosas de formação estelar mais próximas do nosso Sistema Solar, localizada a 1.300 anos-luz de distância.

Pouco depois das anãs marrons terem sido descobertas, em meados da década de 1990, os astrônomos começaram a perguntar-se se elas também poderiam abrigar discos protoplanetários. Alguns dos discos protoplanetários ionizados detectados pelo Hubble na década de 1990 pareciam rodear objetos suficientemente tênues para serem anãs marrons, mas os cientistas não possuíam as medições necessárias para confirmar que tinham as temperaturas frias das anãs marrons. Era necessário um telescópio infravermelho mais sensível para efetuar essas medições. Lançado em dezembro de 2021, o Webb é o telescópio infravermelho mais potente até à data, o que o torna perfeitamente adequado para medir as temperaturas de objetos tênues na M42 que possam ser anãs marrons, incluindo os mais tênues discos protoplanetários ionizados que foram fotografados pelo Hubble há 30 anos. 

Os astrônomos efetuaram medições espectroscópicas infravermelhas numa pequena amostra de candidatas a anã marrom na M42 utilizando o NIRSpec (Near-Infrared Spectrograph) do Webb. Estes dados confirmaram que 20 objetos são suficientemente frios para serem anãs marrons, os menores dos quais podem ter massas equivalentes a apenas 0,5% da do Sol, ou cinco massas de Júpiter. Dois outros objetos estão perto da massa mínima para a fusão, 7,5% da massa do Sol, pelo que não é claro se são pequenas estrelas ou anãs marrons grandes. 

Esta pesquisa ajudará o nosso conhecimento sobre a formação das anãs marrons e da sua relação com as estrelas e planetas. 

O artigo científico que descreve as observações foi aceito para publicação no periódico The Astrophysical Journal

Fonte: Pennsylvania State University

quinta-feira, 31 de outubro de 2024

Supernova em forma de dente-de-leão e uma estrela zumbi

Uma supernova histórica, documentada por astrônomos chineses e japoneses em 1181, esteve perdida durante séculos, até muito recentemente.

© Adam Makarenko (ilustração do remanescente de supernova Pa 30)

No entanto, o remanescente recentemente encontrado apresenta algumas características impressionantes. Agora, revela os seus segredos. 

Uma equipe liderada por Tim Cunningham, do Centro de Astrofísica do Harvard & Smithsonian, e por Ilaria Caiazzo, professora assistente do ISTA (Institute of Science and Technology Austria), fornece o primeiro estudo detalhado da estrutura da supernova e da sua velocidade de expansão em 3D. 

Em 1181, uma nova estrela brilhou perto da constelação de Cassiopeia durante seis meses antes de desaparecer. Este acontecimento, registado como uma "estrela convidada" por observadores chineses e japoneses há quase um milênio, intrigou os astrônomos durante séculos. É uma das poucas supernovas que foram documentadas antes da invenção dos telescópios. Além disso, foi a que permaneceu mais tempo "órfã", o que significa que nenhum dos objetos celestes hoje visíveis lhe podia ser atribuído. 

Atualmente conhecida como supernova SN 1181, o seu remanescente só foi localizado em 2021 na nebulosa Pa 30, descoberta em 2013 pelo astrônomo amador Dana Patchick enquanto examinava um arquivo de imagens do telescópio WISE no âmbito de um projeto de ciência cidadã. Mas esta nebulosa não é um típico remanescente de supernova. O intrigante é a presença de uma "estrela zumbi" sobrevivente no seu centro, um remanescente dentro do remanescente.

Pensa-se que SN 1181 tenha ocorrido quando uma explosão termonuclear foi desencadeada numa estrela densa e morta chamada anã branca. Normalmente, a anã branca seria completamente destruída neste tipo de explosão, mas neste caso, parte da estrela sobreviveu, deixando para trás um cadáver estelar. A este tipo de explosão parcial chama-se uma supernova do Tipo Iax. Mais intrigante ainda é o fato de desta estrela zumbi saírem estranhos filamentos, semelhantes às pétalas de uma flor de dente-de-leão. 

Agora, os pesquisadores obtiveram uma visão detalhada e sem precedentes destes estranhos filamentos. Foi possível estudar em pormenor este estranho remanescente de supernova graças ao KCWI (Keck Cosmic Web Imager) do Caltech. O KCWI é um espectrógrafo situado a 4.000 metros de altitude no Observatório W. M. Keck, no Havaí, perto do cume do vulcão Mauna Kea, o pico mais alto da ilha. Como o seu nome indica, o KCWI foi concebido para detectar algumas das fontes de luz mais tênues e escuras do Universo, coletivamente designadas por "teia cósmica". Além disso, o KCWI é tão sensível e inteligentemente concebido que consegue captar informação espectral para cada pixel de uma imagem. Pode também medir o movimento da matéria numa explosão estelar, criando algo como um filme 3D de uma supernova. O KCWI examina a forma como a luz se desloca quando se aproxima ou se afasta de nós, um processo físico semelhante ao conhecido efeito Doppler que conhecemos das sirenes que mudam de tom quando uma ambulância passa por nós. 

Assim, em vez de verem apenas a típica imagem estática de um espetáculo de fogo de artifício comum às observações de supernovas, foi criado um mapa 3D detalhado da nebulosa e dos seus estranhos filamentos. Além disso, foi mostrado que o material nos filamentos viajava balisticamente a cerca de 1.000 quilómetros por segundo.

Para além dos filamentos em forma de dente-de-leão e da sua expansão balística, a forma geral da supernova é muito incomum. A equipe conseguiu demonstrar que o material dentro dos filamentos que é ejetado para longe do local da explosão é incomumente assimétrica. Isto sugere que a assimetria tem origem na própria explosão inicial. Além disso, os filamentos parecem ter uma orla interna aguçada, mostrando uma "lacuna" interna em torno da estrela zumbi.

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: Harvard–Smithsonian Center for Astrophysics

domingo, 27 de outubro de 2024

Encontradas as primeiras candidatas a anãs marrons fora da Via Láctea

Astrônomos utilizaram o telescópio espacial James Webb para detectar a primeira população de candidatas a anãs marrons fora da Via Láctea, no aglomerado estelar NGC 602.

© Webb (NGC 602)

Perto da periferia da Pequena Nuvem de Magalhães, uma galáxia satélite a cerca de 200.000 anos-luz da Terra, encontra-se o jovem aglomerado estelar NGC 602. O ambiente local deste aglomerado é um análogo próximo do que existia no Universo primitivo, com abundâncias muito baixas de elementos mais pesados do que o hidrogênio e o hélio. 

A existência de nuvens escuras de poeira densa e o fato de o aglomerado ser rico em gás ionizado também sugerem a presença de processos de formação estelar em curso. Juntamente com a sua região HII associada N90, que contém nuvens de hidrogênio atômico ionizado, este aglomerado constitui uma oportunidade valiosa para examinar cenários de formação estelar em condições dramaticamente diferentes das da vizinhança solar.

As anãs marrons são as primas mais massivas dos planetas gigantes gasosos (tipicamente variam entre 13 e 75 massas de Júpiter, por vezes menos). Flutuam livremente, o que significa que não estão gravitacionalmente ligadas a uma estrela como os exoplanetas. No entanto, algumas delas partilham características com os exoplanetas, como a sua composição atmosférica e padrões de tempestade.

Até agora, conhecíamos cerca de 3.000 anãs marrons, mas todas elas vivem dentro da nossa própria Galáxia. Esta descoberta realça o poder de usar tanto o Hubble como o Webb para estudar aglomerados estelares jovens. O Hubble mostrou que NGC 602 abriga estrelas muito jovens de baixa massa, mas só com o Webb é possível finalmente ver a extensão e o significado da formação de massa subestelar neste aglomerado. 

Os dados incluem uma nova imagem de NGC 602 obtida pelo instrumento NIRCam (Near-InfraRed Camera) do Webb, que destaca as estrelas do aglomerado, os jovens objetos estelares e as cristas de gás e poeira circundantes, bem como o próprio gás e poeira, ao mesmo tempo que mostra a contaminação significativa por galáxias de fundo e outras estrelas na Pequena Nuvem de Magalhães. Estas observações foram efetuadas em abril de 2023. 

Ao estudar as jovens anãs marrons pobres em metal recentemente descobertas em NGC 602, estamos mais perto de desvendar os segredos de como as estrelas e os planetas se formaram nas duras condições do Universo primitivo. Estes são os primeiros objetos subestelares fora da Via Láctea.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: ESA

sábado, 26 de outubro de 2024

Descoberto o primeiro buraco negro num sistema triplo

Muitos dos buracos negros detectados até o momento parecem fazer parte de um par.

© Jorge Lugo (estrela distante e buraco negro consumindo estrela próxima)

Estes sistemas binários são constituídos por um buraco negro e um objeto secundário, como uma estrela, uma muito mais densa estrela de nêutrons ou outro buraco negro, que giram em volta um do outro, atraídos pela gravidade do buraco negro para formar um par orbital íntimo.

Agora, uma descoberta surpreendente está expandindo a nossa imagem dos buracos negros, dos objetos que podem abrigar e da maneira como se formam. Num estudo, físicos do MIT (Massachusetts Institute of Technology) e do Caltech (California Institute of Technology) afirmam ter observado pela primeira vez um sistema triplo que conta com a presença de um buraco negro. O novo sistema contém um buraco negro central que está consumindo uma pequena estrela e que completa uma órbita a cada 6,5 dias, uma configuração semelhante à maioria dos sistemas binários. 

Mas, surpreendentemente, uma segunda estrela parece estar também orbitando o buraco negro, embora a uma distância muito maior. Os físicos estimam que esta companheira distante complete uma órbita em torno do buraco negro a cada 70.000 anos. O fato de o buraco negro parecer ter influência gravitacional sobre um objeto tão distante está levantando questões sobre as origens do próprio buraco negro. 

Pensa-se que os buracos negros se formam a partir da explosão violenta de uma estrela moribunda, um processo conhecido como supernova, através do qual uma estrela libera uma enorme quantidade de energia e luz numa explosão final antes de colapsar para formar um buraco negro invisível. No entanto, a descoberta da equipe sugere que, se o buraco negro recém-observado resultasse de uma supernova típica, a energia que teria liberado antes de entrar em colapso teria ejetado quaisquer objetos fracamente ligados na sua periferia.

A segunda estrela, a mais externa, não deveria, portanto, estar ainda por perto. Ao invés, suspeita-se que o buraco negro se formou através de um processo mais gentil de "colapso direto", no qual uma estrela simplesmente colapsa sobre si própria, formando um buraco negro sem um último dramático fulgor. 

Uma origem tão gentil dificilmente perturbaria quaisquer objetos distantes e fracamente ligados pela gravidade. Como o novo sistema triplo inclui uma estrela muito distante, isto sugere que o buraco negro do sistema nasceu através de um colapso mais gentil e direto. E embora os astrônomos já observem há séculos supernovas mais violentas, a equipe afirma que o novo sistema triplo pode ser a primeira evidência de um buraco negro que se formou a partir deste processo mais moderado. 

Este sistema é muito interessante para a evolução dos buracos negros e também levanta a questão de saber se existem mais triplos por aí. A descoberta do buraco negro neste sistema triplo surgiu quase por acaso. Os físicos descobriram-no enquanto pesquisavam no Aladin Lite, um repositório de observações astronômicas, agregadas a partir de telescópios no espaço e em todo o mundo. Os astrônomos podem utilizar a ferramenta online para procurar imagens da mesma parte do céu, tiradas por diferentes telescópios que estão sintonizados para vários comprimentos de onda de energia e luz. 

A equipe tem vindo a procurar sinais de novos buracos negros na Via Láctea. Por curiosidade, foi analisada uma imagem de V404 Cygni, um buraco negro a cerca de 8.000 anos-luz da Terra que foi um dos primeiros objetos a ser confirmado como buraco negro, em 1992. Desde então, V404 Cygni tornou-se um dos buracos negros mais estudados, tendo sido documentado em mais de 1.300 artigos científicos. 

Ao olhar para as imagens ópticas de V404 Cygni, astrônomos viram o que pareciam ser duas manchas de luz, surpreendentemente próximas uma da outra. A primeira mancha era o que outros determinaram ser o buraco negro e uma estrela interior, que orbitava muito perto. A estrela está tão próxima que está derramando algum do seu material sobre o buraco negro, emitindo a luz que pode ser observada. A segunda mancha de luz, no entanto, foi algo que os cientistas não investigaram rigorosamente, até agora. 

A estrela exterior está a 3.500 UA do buraco negro (1 UA, ou unidade astronômica, é a distância entre a Terra e o Sol, cerca de 150 milhões de quilômetros), que é também igual a 100 vezes a distância entre Plutão e o Sol. 

A questão que se colocou então foi a de saber se a estrela exterior estaria ligada ao buraco negro e à sua estrela interior. Para responder a esta questão, os pesquisadores recorreram ao Gaia, um satélite que, desde 2014, tem seguido com precisão os movimentos de muitas estrelas da nossa Galáxia. A equipe analisou os movimentos da estrela interior e da exterior ao longo dos últimos 10 anos de dados do Gaia e descobriu que as estrelas se moviam exatamente em conjunto, em comparação com outras estrelas vizinhas. Foi calculado que a probabilidade deste tipo de movimento em conjunto é de cerca de uma em 10 milhões.

Como é que o sistema foi formado? Se o buraco negro tivesse surgido de uma supernova típica, a explosão violenta teria ejetado a estrela exterior há muito tempo. Para realmente testar esta ideia, foram efetuadas simulações para ver como um tal sistema triplo poderia ter evoluído e retido a estrela exterior. No início de cada simulação, introduziu três estrelas (sendo a terceira o buraco negro, antes de se tornar um buraco negro). Em seguida, executou milhares de simulações, cada uma com um cenário ligeiramente diferente de como a terceira estrela poderia ter-se tornado um buraco negro, afetando subsequentemente os movimentos das outras duas estrelas.

Por exemplo, simulou uma supernova, variando a quantidade e a direção da energia que liberava. Simulou também cenários de colapso direto, em que a terceira estrela simplesmente colapsava sobre si própria para formar um buraco negro, sem emitir qualquer energia.

Para além de dar pistas sobre as origens do buraco negro, a estrela exterior também revelou a idade do sistema. Os físicos observaram que a estrela exterior está no processo de se tornar uma gigante vermelha, uma fase que ocorre no fim da vida de uma estrela. Com base nesta transição estelar, determinou-se que a estrela exterior tem cerca de 4 bilhões de anos. Dado que as estrelas vizinhas nascem mais ou menos no mesmo momento, conclui-se que o sistema triplo tem também 4 bilhões de anos.

Um artigo foi publicado na revista Nature.

Fonte: Massachusetts Institute of Technology

A brilhante estrela Betelgeuse tem provavelmente uma companheira

A décima estrela mais brilhante do céu noturno, Betelgeuse, pode afinal não estar à beira de explodir como uma supernova, de acordo com um novo estudo sobre o seu aumento e diminuição de brilho.

© Simons Fundation (Betelgeuse e da sua provável companheira Betelbuddy)

Ao invés, uma pesquisa recente mostra que a pulsação observada da luz estelar é provavelmente causada por uma estrela companheira que orbita Betelgeuse. Formalmente designada por Alpha Ori B, "Betelbuddy" (como lhe chama o astrofísico Jared Goldberg) que empurra para fora do caminho poeiras que bloqueiam a luz e fazendo com que Betelgeuse pareça temporariamente mais brilhante. 

Betelgeuse é uma estrela gigante vermelha com cerca de 100.000 vezes o brilho do nosso Sol e mais de 400 milhões de vezes o seu volume. A estrela está se aproximando do final da sua vida e, quando morrer, a explosão resultante será suficientemente brilhante para ser vista durante o dia e durante semanas. 

Os astrônomos podem prever quando Betelgeuse vai morrer, "verificando o seu pulso". É uma estrela variável, o que significa que fica mais brilhante e mais fraca, pulsando como um batimento cardíaco. No caso de Betelgeuse, há dois batimentos: um que pulsa numa escala de tempo um pouco superior a um ano e outro que pulsa numa escala de tempo de cerca de seis anos. Um destes batimentos é o modo fundamental de Betelgeuse, um padrão de aumento e diminuição de brilho que é intrínseco à própria estrela. Se o modo fundamental da estrela for o seu batimento de longa escala, então Betelgeuse pode estar pronta para explodir mais cedo do que o esperado.

No entanto, se o seu modo fundamental for o seu batimento de curta escala, como sugerem vários estudos, então o seu batimento mais longo é um fenômeno chamado período secundário longo. Nesse caso, este mais longo aumento e diminuição de brilho seria provocado por algo externo à estrela. 

Os cientistas ainda não sabem ao certo o que causa os longos períodos secundários, mas uma das principais teorias é que surgem quando uma estrela tem uma companheira que a rodeia e atravessa a poeira cósmica que é produzida e expelida pela estrela. A poeira deslocada altera a quantidade de luz estelar que chega à Terra, mudando o brilho aparente da estrela. 

Os pesquisadores exploraram a possibilidade de outros processos causarem o longo período secundário, tais como a agitação no interior da estrela ou alterações periódicas no seu poderoso campo magnético. Depois de combinarem dados de observações diretas de Betelgeuse com modelos computacionais avançados que simulam a atividade da estrela, a equipe concluiu que Betelbuddy é de longe a explicação mais provável. Ainda não foi possível determinar exatamente a natureza de Betelbuddy, mas presume que seja uma estrela com o dobro da massa do Sol. 

Uma hipótese mais exótica é que a companheira seja uma estrela de nêutrons, ou seja, o núcleo de uma estrela que já se tornou supernova. No entanto, nesse caso, seria de esperar ver evidências disso através de observações em raios X, o que não aconteceu. 

A seguir, a equipe irá captar imagens de Betelbuddy com telescópios, uma vez que haverá uma potencial janela de visibilidade por volta de 6 de dezembro.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal.

Fonte: University of Wyoming

Determinando a forma da coroa dos buracos negros

Novas descobertas, recorrendo a dados da missão IXPE (Imaging X-ray Polarimetry Explorer) da NASA, fornecem uma perspectiva sem precedentes sobre a forma e a natureza de uma estrutura importante para os buracos negros de nome coroa.

© Robert Hurt (ilustração da coroa de um buraco negro)

A coroa é uma região de plasma em movimento que faz parte do fluxo de matéria de um buraco negro, em que temos apenas uma compreensão teórica. Os novos resultados revelam a forma da coroa pela primeira vez e podem ajudar os cientistas a compreender o seu papel na alimentação e manutenção dos buracos negros. 

Muitos buracos negros, assim designados porque nem a luz consegue escapar à sua gravidade titânica, estão rodeados por discos de acreção, redemoinhos de gás cheios de detritos. Alguns buracos negros também têm jatos relativísticos, explosões ultrapoderosas de matéria lançada para o espaço a alta velocidade por eles que estão alimentado ativamente o material ao seu redor. 

Menos conhecido, talvez, é o fato de os buracos negros comedores, tal como o Sol e outras estrelas, também possuírem uma coroa superaquecida. Ao passo que a coroa do Sol, que é a atmosfera mais externa da estrela, arde a cerca de um milhão de graus Celsius, a temperatura da coroa de um buraco negro está estimada em bilhões de graus. 

Os astrofísicos já tinham identificado coroas em buracos negros de massa estelar - formados pelo colapso de uma estrela - e em buracos negros supermassivos, como o que se encontra no núcleo da Via Láctea.

A forma geométrica da coroa será uma esfera acima e abaixo do buraco negro, ou uma atmosfera gerada pelo disco de acreção, ou talvez plasma localizado na base dos jatos? E é aqui que entra o IXPE, especializado na polarização de raios X, a característica da luz que ajuda a mapear a forma e a estrutura das mais poderosas fontes de energia, iluminando o seu funcionamento interno mesmo quando os objetos são demasiado pequenos, brilhantes ou distantes para serem vistos diretamente. Assim como podemos observar em segurança a coroa do Sol durante um eclipse solar total, o IXPE fornece os meios para estudar claramente a geometria da acreção do buraco negro, ou a forma e estrutura do seu disco de acreção e estruturas relacionadas, incluindo a coroa. 

O IXPE demonstrou, entre todos os buracos negros para os quais as propriedades coronais puderam ser medidas diretamente através da polarização, que a coroa foi estendida na mesma direção que o disco de acreção, fornecendo, pela primeira vez, pistas sobre a forma da coroa e evidências claras da sua relação com o disco de acreção. Os resultados excluem a possibilidade de a coroa ter a forma de um poste de luz pairando sobre o disco.

Os pesquisadores estudaram os dados das observações de 12 buracos negros pelo IXPE, entre os quais Cygnus X-1 e Cygnus X-3, sistemas binários com buracos negros de massa estelar a cerca de 7.000 e 37.000 anos-luz da Terra, respectivamente, e LMC X-1 e LMC X-3, buracos negros de massa estelar na Grande Nuvem de Magalhães, a mais de 165.000 anos-luz de distância. O IXPE também observou vários buracos negros supermassivos, incluindo o que se encontra no centro da Galáxia do Compasso, a 13 milhões de anos-luz da Terra, e os que se encontram nas galáxias Messier 77 e NGC 4151, a 47 milhões de anos-luz e quase 62 milhões de anos-luz, respectivamente. 

Os buracos negros de massa estelar têm normalmente uma massa cerca de 10 a 30 vezes superior à do Sol, enquanto os buracos negros supermassivos podem ter uma massa milhões a dezenas de bilhões de vezes superior. Apesar destas grandes diferenças de escala, os dados do IXPE sugerem que ambos os tipos de buracos negros criam discos de acreção com geometria semelhante. Isso é surpreendente, porque a forma como os dois tipos são alimentados é completamente diferente. Os buracos negros de massa estelar retiram massa das estrelas que os acompanham, enquanto os buracos negros supermassivos devoram tudo em sua volta. Os astrônomos esperam fazer análises adicionais de ambos os tipos.

Os resultados foram publicados no periódico The Astrophysical Journal.

Fonte: NASA