As viagens espaciais são difíceis e caras, custaria milhares de dólares enviar uma garrafa de água para a Lua.
© NASA/GSFC/Arizona State University (Cratera Hayn)
A imagem acima captada pela sonda LRO mostra a Cratera Hayn, localizada ao nordeste de Mare Humboldtianum, dramaticamente iluminada pelo Sol próximo do horizonte, que provoca grandes sombras no chão da cratera.
A descoberta recente na Lua de moléculas contendo hidrogênio, possivelmente incluindo água, anima os exploradores porque estes depósitos podem ser minados caso sejam suficientemente abundantes, poupando o considerável custo de levar água da Terra. A água lunar poderia ser usada para beber ou os seus componentes - hidrogênio e oxigênio - poderiam ser usados para fabricar produtos importantes à superfície que os futuros visitantes lunares precisassem, como combustível e ar respirável.
Observações recentes pela sonda LRO (Lunar Reconnaissance Orbiter) da NASA indicam que estes depósitos podem ser um pouco mais abundantes em encostas de crateras no hemisfério sul viradas para o polo sul lunar. "Existem em média cerca de 23 partes por milhão mais hidrogênio nas encostas viradas para o polo do que nas encostas viradas para o equador," afirma Timothy McClanahan do Centro de Voo Espacial Goddard da NASA em Greenbelt, no estado americano de Maryland.
Esta é a primeira vez que se detecta uma diferença geoquímica generalizada na abundância de hidrogênio entre encostas lunares viradas para o polo e encostas viradas para o equador. É igual a uma diferença de 1% no sinal de nêutrons detetacdos pelo instrumento LEND (Lunar Exploration Neutron Detector) da LRO.
O material que contém hidrogênio é volátil e pode estar na forma de moléculas de água ou moléculas de hidroxila, frouxamente ligados à superfície lunar. De acordo com McClanahan, a causa da discrepância entre as crateras com encostas viradas para o polo e as encostas viradas para o equador pode ser semelhante à forma como o Sol mobiliza ou redistribui água gelada de locais mais quentes para locais mais frios na superfície da Terra.
"Aqui no hemisfério norte, se sairmos à rua num dia ensolarado depois da queda de neve, notamos que existe mais neve em encostas viradas para norte porque perdem água a taxas menores do que as encostas mais iluminadas viradas para sul," explica McClanahan. "Nós pensamos que ocorre um fenômeno parecido com os voláteis na Lua, as encostas viradas para o polo não recebem tanta luz solar como as encostas viradas para o equador, por isso este material facilmente vaporizado permanece mais tempo e, eventualmente, acumula-se em maior quantidade nas crateras com encostas viradas na direção do polo."
A equipe observou a maior abundância de hidrogênio, nas encostas viradas para o polo, na topografia do hemisfério sul da Lua, com início entre os 50 e 60 graus de latitude sul. As encostas mais perto do polo sul mostram uma maior diferença na concentração de hidrogênio. Além disso, o hidrogênio foi detetacdo em maiores concentrações nas maiores encostas viradas para o polo, cerca de 45 partes por milhão perto de ambos os polos. Encostas mais amplas fornecem sinais mais detectáveis do que encostas mais pequenas. O resultado indica que estas têm maiores concentrações de hidrogênio do que as regiões vizinhas. Por outro lado, segundo McClanahan, as medições do LEND, nas maiores encostas viradas para o equador, não contrastam com as suas regiões vizinhas, o que indica que têm concentrações iguais de hidrogênio. A equipe pensa que também poderá ser encontrado mais hidrogênio nas crateras com encostas viradas para o polo no hemisfério norte, mas estão ainda recolhendo e analisando dados do LEND para esta região.
Existem várias fontes possíveis para o hidrogênio na Lua. Os cometas e alguns asteroides contêm grandes quantidades de água e os impactos destes objetos podem transportar hidrogênio para a Lua. As moléculas que contêm hidrogênio também podem ser criadas na superfície lunar pela interação com o vento solar. O vento solar é uma fina corrente de gás constantemente soprada pelo Sol. A maior parte é hidrogênio que pode interagir com o oxigênio em rochas de silicato e na poeira lunar para formar hidroxila e possivelmente moléculas de água. Depois de chegarem à Lua, pensa-se que fiquem energizadas pela luz solar e, em seguida, ressaltem sobre a superfície; e ficam presas, pelo menos temporariamente, em áreas mais frias e à sombra.
Desde a década de 1960 que os cientistas pensam que somente as áreas permanentemente à sombra em crateras perto dos polos são frias o suficiente para acumular este material volátil, mas observações recentes por várias sondas espaciais, incluindo a LRO, sugerem que o hidrogênio na Lua está mais difundido.
Ainda não sabemos se o hidrogênio é abundante o suficiente para uma mineração economicamente viável. "As quantidades que estamos detectando são ainda menores que o deserto mais seco da Terra," comenta McClanahan. No entanto, a resolução do instrumento LEND é maior que o tamanho das maiores encostas viradas para o polo, por isso em encostas mais pequenas, talvez com vários metros, esta concentração poderá ser significativamente maior. McClanahan diz que tudo indica que as maiores concentrações de hidrogênio estão em regiões permanentemente à sombra.
A equipe fez as observações com o instrumento LEND da LRO, que detecta hidrogênio através da contagem do número de nêutrons, libertadas da superfície lunar. Os nêutrons são produzidos quando a superfície da Lua é bombardeada por raios cósmicos. O espaço é permeado por raios cósmicos, partículas de alta velocidade produzidas por eventos poderosos como erupções no Sol ou explosões de estrelas no espaço profundo. Os raios cósmicos quebram os átomos do material perto da superfície lunar, criando nêutrons que saltam de átomo para átomo como uma bola de bilhar. Alguns nêutrons conseguem saltar de volta para o espaço onde podem ser contados pelos detectores de nêutrons.
Os nêutrons das colisões de raios cósmicos têm uma gama ampla de velocidades e os átomos de hidrogênio são os mais eficientes a parar os nêutrons na sua faixa média de velocidades, os chamados nêutrons epitermais. As colisões com os átomos de hidrogênio no regolito lunar reduzem o número de nêutrons epitermais que voam para o espaço. Quanto maior a quantidade de hidrogênio, menos nêutrons epitermais o detector LEND vai contar.
A equipe percebeu uma diminuição generalizada no número de nêutrons epitermais detectados pelo LEND como sinal da presença de hidrogênio em crateras com encostas viradas para o polo. Combinaram dados do LEND com a topografia lunar e mapas de iluminação derivados do instrumento LOLA (Lunar Orbiter Laser Altimeter) e mapas de temperatura do instrumento Diviner (Diviner Lunar Radiometer Experiment), ambos a bordo da sonda LRO, para descobrir a maior abundância de hidrogênio e as condições associadas à superfície nas encostas viradas para o polo.
Além de ver se o mesmo padrão existe no hemisfério norte da Lua, a equipe quer ver se a abundância de hidrogênio muda com a transição do dia para a noite. Se assim for, dará mais força a elementos de prova de uma produção muito ativa e de um ciclo de hidrogênio na superfície lunar.
Um artigo sobre a pesquisa foi publicado na revista Icarus.
Fonte: NASA