quinta-feira, 15 de dezembro de 2011

Objeto aproxima-se rapidamente de um buraco negro

Ao longo de um programa de 20 anos de duração que utiliza os telescópios do ESO para monitorizar o movimento das estrelas em torno do buraco negro supermassivo situado no centro da nossa galáxia, uma equipe de astrônomos liderada por Reinhard Genzel do Instituto Max-Planck para a Física Extraterrestre (MPE) na Alemanha descobriu um objeto único em aproximação rápida ao buraco negro.

simulação da nuvem de gás se aproximando do buraco negro

© ESO (simulação da nuvem de gás se aproximando do buraco negro)

Nos últimos sete anos, a velocidade deste objeto praticamente duplicou, atingindo mais de 8 milhões de km/hora. Encontra-se numa órbita muito alongada e a meados de 2013 passará a uma distância de apenas 40 bilhões de quilômetros do horizonte de eventos do buraco negro, uma distância de cerca de 36 horas-luz. Trata-se, em termos astronômicos, de um encontro com um buraco negro supermassivo extremamente próximo.

Este objeto é muito mais frio do que as estrelas circundantes (com uma temperatura de apenas cerca de 280ºC) e é essencialmente composto de hidrogênio e hélio. Trata-se de uma nuvem de poeira e gás ionizado com uma massa de cerca de três vezes a da Terra. A nuvem brilha sob a intensa radiação ultravioleta emitida por estrelas quentes, que se encontram em seu redor no coração superlotado da Via Láctea.

A atual densidade da nuvem é muito maior do que o gás quente que rodeia o buraco negro. No entanto, à medida que a nuvem se aproxima do buraco negro, a pressão externa que vai aumentando, irá comprimir a nuvem. Ao mesmo tempo, a grande força gravitacional do buraco negro, o qual tem uma massa quatro milhões de vezes maior que a do Sol, continuará a acelerar o movimento para o interior e a esticar a nuvem ao longo da sua órbita.

“A imagem de um astronauta, próximo de um buraco negro, a ser esticado até ficar tipo espaguete é bastante comum em ficção científica. Mas agora podemos efetivamente ver isso acontecendo à nova nuvem descoberta, que não vai sobreviver à experiência,” explica Stefan Gillesseen (MPE), autor principal do artigo científico que descreve os resultados.

As bordas da nuvem começam já a rasgar-se e espera-se que a nuvem se desfaça completamente em pedaços nos próximos anos. Os astrônomos vêem já sinais claros do aumento da perturbação no período de 2008 a 2011.

Espera-se também que o material se torne muito mais quente à medida que se aproximar do buraco negro em 2013 e comece a emitir em raios-X. Atualmente existe pouco material próximo do buraco negro, por isso a substância recém-chegada será o combustível dominante do buraco negro durante os próximos anos.

Uma explicação para a formação da nuvem é que o material que a compõe possa ter vindo de estrelas jovens de grande massa que se encontram nas proximidades e que perdem massa muito rapidamente devido aos ventos estelares. Estrelas deste tipo sopram literalmente o seu gás para o exterior. A colisão de ventos estelares de uma estrela dupla conhecida que orbita em torno do buraco negro central pode ter levado à formação da nuvem.

“Os próximos dois anos serão muito interessantes e deverão trazer-nos informação extremamente valiosa sobre o comportamento da matéria em torno destes objetos massivos tão extraordinários,” conclui Reinhard Genzel.

Fonte: ESO

quarta-feira, 14 de dezembro de 2011

O aglomerado de galáxias Abell 2052

Como se fosse vinho em uma taça, vastas nuvens de gás quente são sacudidas no Abell 2052, um aglomerado de galáxias localizado à aproximadamente 480 milhões de anos-luz de distância da Terra.

aglomerado de galáxias Abell 2052

© Chandra (aglomerado de galáxias Abell 2052)

Dados obtidos das emissões de raios-X e apresentados em azul pelo observatório de raios-X Chandra da NASA mostram o gás quente em seu sistema dinâmico; dados obtidos da emissão na luz visível e captados pelo VLT (Very Large Telescope) mostram as galáxias. O gás quente que brilha em raios-X tem uma temperatura média de 30 milhões de graus.

Uma grande estrutura em espiral no gás quente, se espalhando por quase um milhão de anos-luz, é vista ao redor da parte de fora da imagem, envolvendo uma gigantesca galáxia elíptica no centro. Essa espiral foi criada quando um pequeno aglomerado de galáxias se chocou com um aglomerado maior que circundava a galáxia elíptica central.

À medida que o aglomerado menor se aproximava, o gás quente denso do aglomerado central foi atraído pela sua gravidade. Após o aglomerado menor ter passado pelo centro do aglomerado, a direção de movimento do aglomerado reverteu e ele começou a viajar de volta rumo ao centro do aglomerado maior. O aglomerado então passou novamente pelo centro do aglomerado maior e sacudiu todo o material ali como se faz com uma taça com vinho. No caso do vinho as paredes da taça empurram o vinho de volta ao centro, onde no aglomerado a força gravitacional da matéria nos aglomerados é puxada de volta. O gás agitado acaba tomando um padrão espiral pelo fato da colisão entre os dois aglomerados não ter sido uma colisão central.

Esse tipo de mecanismo de sacudida no Abell 2052 teve importantes implicações físicas. Primeiro, ele ajudou a empurrar parte do gás mais denso e frio localizado no centro do aglomerado, onde as temperaturas são cerca de 10 milhões de graus, para longe do núcleo. Isso ajudou a prevenir futuro resfriamento desse gás no núcleo e poderia limitar a quantidade de novas estrelas que seriam formadas na galáxia central. Os movimentos de sacudida como esses que aconteceram no Abell 2052, também redistribuíram os elementos pesados, como o ferro e o oxigênio, que são forjados em explosões de supernovas. Esses elementos são usados na futura geração de estrelas e planetas e são necessários para a formação da vida como a conhecemos.

As observações feitas pelo Chandra no Abell 2052, foram relativamente longas, durando mais de uma semana. Essa observação profunda foi necessária para se detectar todos os detalhes que são visíveis nessa imagem. Mesmo assim, um certo processamento foi necessário para revelar a estrutura espiral mais externa.

Em adição ao aspecto espiral de grande escala, as observações profundas feitas pelo Chandra revelaram detalhes surpreendentes no centro do aglomerado relacionados com explosões de um buraco negro supermassivo central. Os dados do Chandra mostram claras bolhas sendo evacuadas pelo material expelido do buraco negro, que são envolvidas por anéis densos, brilhantes e frios. Como acontece com o movimento de agito, essa atividade ajuda a prevenir o resfriamento do gás no núcleo do aglomerado, impondo assim limites para o crescimento da galáxia elíptica gigante e de seu buraco negro supermassivo.

Esses resultados foram publicados no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Uma visão infravermelha do Dragonfish

A imagem a seguir em infravermelho obtida pelo telescópio espacial Spitzer da NASA mostra a nebulosa apelidada de Dragonfish.

nebulosa Dragonfish

© Spitzer (nebulosa Dragonfish)

Essa região turbulenta, cheia de estrelas, é o local de algumas das estrelas mais massivas e luminosas da nossa Via Láctea. Ela está localizada a aproximadamente 30.000 anos-luz de distância na constelação da Crux (Cruzeiro do Sul).

As estrelas massivas têm inflado uma bolha de gás e poeira, cavando uma concha de mais de 100 anos-luz de diâmetro (observe a parte inferior central da imagem). Essa concha forma a boca repleta de dentes do Dragonfish, e as duas estrelas brilhantes marcam a posição do que seriam seus olhos.

A luz infravermelha nessa região vem do gás e da poeira que são aquecidos pelo aglomerado central de estrelas massivas que não é visível na imagem acima. Os pontos brilhantes ao longo da concha que marcam os olho do Dragonfish são possíveis regiões menores de formação de novas estrelas, que têm seu nascimento disparado pela compressão do gás e da poeira pelo vento soprado pelas estrelas massivas centrais.

Fonte: NASA/JPL

terça-feira, 13 de dezembro de 2011

Região central do aglomerado NGC 6642

A natureza compacta dos aglomerados globulares é uma faca de dois gumes. Por um lado, tendo tantas estrelas de idades similares isso fornece aos astrônomos detalhes sobre a química da nossa galáxia no início de sua vida.

aglomerado globular NGC 6642

© Hubble (aglomerado globular NGC 6642)

Mas, ao mesmo tempo, a grande densidade de estrelas no interior dos aglomerados globulares também torna difícil para os astrônomos identificar estrelas de forma individual.

O núcleo do NGC 6642, mostrado na imagem acima feita pelo telescópio espacial Hubble, é particularmente denso, fazendo desse aglomerado um alvo observacional difícil para a grande maioria dos telescópios. Além disso, ele ocupa um posição bem central na nossa galáxia, significando normalmente a obtenção de imagens de várias estrelas que não pertencem a esse aglomerado.

Contudo, usando o poder da Advanced Camera for Surveys (ACS) do Hubble, os astrônomos podem identificar e remover essas estrelas que não pertencem ao aglomerado e assim conseguem fazer uma imagem com incrível detalhe do centro do aglomerado. Usando a câmera ACS do Hubble os astrônomos já haviam feito muitas descobertas interessantes sobre o NGC 6642. Por exemplo, as estrelas errantes azuis (estrelas que aparentemente possuem uma idade diferente das demais estrelas do aglomerado), foram vistas neste aglomerado globular, quee é conhecido por ser carente de estrelas de pequena massa.

Fonte: ESA

A medida da temperatura de estrelas achatadas

A maioria das estrelas, devido à rotação e sua natureza gasosa, mostram um achatamento nos polos.
estrelas com diversos graus de achatamento nos polos
© IAA (estrelas com diversos graus de achatamento nos polos)
Mas algumas giram em velocidades próximas à da ruptura - uma velocidade limite que, se superada, provocaria a ruptura da estrela - fazendo com que seja de forma claramente ovalada (que também pode ocorrer em estrelas binárias devido à atração mútua). Para determinar a temperatura destas estrelas distorcidas é usado teorema de von Zeipel, que apesar de seu uso difundido por quase um século, nunca foi livre de debate. Agora, Antonio Claret, do Instituto de Astrofísica de Andaluzia (IAA-CSIC), mostrou que esse teorema mostra desvios graves e devem ser incluídos em um modelo mais amplo.
Em 1924, o astrofísico Hugo von Edvard Zeipel sueco demonstrou teoricamente que, para estrelas achatadas quentes - com temperaturas superiores a 8.000ºC - a temperatura é proporcional à gravidade local. E introduziu o conceito de "escurecimento por gravidade" que faz com que uma estrela achatada a temperatura nos polos é maior do que no Equador (no Sol, este efeito é dificilmente perceptível, devido à sua baixa taxa de rotatividade).
"O valor que von Zeipel atribuiu para o escurecimento por gravidade tem sido discutido teoricamente e, recentemente, foram publicados trabalhos de observações astronômicas que revelam desvios significativos", disse Claret Antonio. A aplicação de um expoente de escurecimento por gravidade pressupõe um cálculo errôneo da termodinâmica da estrela, que por sua vez envolve a obtenção de valores de massa, luminosidade e idade errados.
Von Zeipel não se equivocou, mas desenvolveu um modelo que deve ser complementado, deve ser também aplicado às estrelas frias, que é resolvido com este novo modelo teórico.
Focando casos de estrelas altamente deformadas e através do uso de equações de transporte de energia mais elaborado, Antonio Claret mostrou as limitações do teorema von Zeipel reconciliando os novos valores teóricos com os observacionais.
Assim, com este novo formalismo, pode ser conhecido o escurecimento por gravidade do interior para a atmosfera das estrelas, e dela derivam uma conclusão importante: o teorema de von Zeipel só se aplica para as regiões mais profundas da estrela e é um caso particular do novo modelo. No entanto, o que os astrofísicos observam são necessariamente as camadas externas, de modo que este novo modelo é a escolha certa para determinar os parâmetros essenciais da estrela com precisão.
Fonte: Instituto de Astrofísica de Andaluzia

segunda-feira, 12 de dezembro de 2011

Gatilho da formação estelar

A imagem composta abaixo combina os dados do observatório de raios-X Chandra e do telescópio espacial Spitzer mostrando a nuvem molecular Cepheus B, localizada na nossa galáxia cerca de 2.400 anos-luz da Terra.

Trigger-Happy Star Formation

© Chandra/Spitzer (Cepheus B)

Uma nuvem molecular é uma região que contém gás interestelar frio e poeira que sobraram da formação da galáxia e contém principalmente hidrogênio molecular.

As observações do Chandra permitiram aos astrônomos captar estrelas jovens dentro e perto da Cepheus B, identificadas por suas emissões fortes de raios-X. Os dados do Spitzer mostram se nas estrelas jovens têm um disco protoplanetário ao redor delas. Esses discos só existem em sistemas muito jovens, onde planetas ainda estão se formando, por isso sua presença é uma indicação da idade de um sistema estelar.
Estes dados fornecem uma excelente oportunidade para testar um modelo de como as estrelas se formam. Um estudo a respeito sugere que a formação de estrelas em Cepheus B é principalmente provocada pela radiação de uma estrela enorme e brilhante, a HD 217086, que está fora da nuvem molecular.

A região de Cepheus B possui estrelas com cerca de um milhão de anos, e 70 a 80% delas têm discos protoplanetários. A região imediatamente ao lado de Cepheus B contêm estrelas com dois a três milhões de anos, e cerca de 60% delas têm discos. Na região mais externa à Cepheus B as estrelas têm aproximadamente de três a cinco milhões de anos, e cerca de 30% delas têm discos. Este aumento da idade enquanto as estrelas estão mais longe de Cepheus B é exatamente o que está previsto no modelo de formação de estrelas.
Diferentes tipos de desenvolvimento estelar são observados em outros ambientes. Por exemplo, a formação do nosso Sistema Solar pode ter sido provocado por uma explosão de supernova.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 11 de dezembro de 2011

Uma supernova antiga é revelada

Aproximadamente a 3.700 anos atrás as pessoas na Terra teriam visto uma estrela nova muito brilhante no céu.

supernova Puppis A

© WISE (supernova Puppis A)

À medida que ela foi se apagando e sumindo de vista, ela foi sendo eventualmente esquecida, até que os astrônomos modernos encontraram o que restou dela, a chamada Puppis A. Vista como uma nuvem empoeirada e vermelha nessa imagem feita pelo WISE (Wide-field Infrared Survey Explorer) da NASA, a Puppis A é a parte remanescente de uma explosão de supernova.

A Puppis A se formou quando uma estrela massiva terminou sua vida em uma explosão extremamente brilhante e poderosa. As ondas de choque que se expandiram dessa explosão estão aquecendo a poeira e as nuvens de gás ao redor da supernova, fazendo com que brilhem e criem a bela nuvem vermelha que nós podemos observar aqui. Muito do material da estrela original foi violentamente expelido para o espaço. Contudo, uma parte desse material permanece em um objeto incrivelmente denso chamado de estrela de nêutrons. Essa estrela de nêutrons, muito apagada para ser vista nessa imagem, está se movendo a uma velocidade extremamente alta, algo superior a 3 milhões de milhas por hora. Os astrônomos estão perplexos com a absurda velocidade do objeto e apelidaram a estrela de “Bala de Canhão Cósmica”.

Uma parte do gás e da poeira de coloração verde que é observado na imagem acima é proveniente de outra antiga supernova, a remanescente de supernova Vela. Essa explosão aconteceu a aproximadamente 12.000 anos atrás e numa região quatro vezes mais próxima da Terra do que a Puppis A. Se nós tivéssemos  uma visão de raios-X, ambas as remanescentes (Puppis A e Vela) seriam os maiores e mais brilhantes objetos que nós veríamos no céu noturno.

Fonte: NASA

sábado, 10 de dezembro de 2011

O maior vulcão do Sistema Solar

O planeta Marte, como a sonda Phoenix nos mostrou não é parecido com a Terra, ele é um mundo continuo, sem mar, sem suturas, assim descreveu Oliver Morton, um dos pesquisadores especialistas em mapear Marte.

Monte Olympus visto pela sonda Phoenix

© Phoenix (Monte Olympus)

Mas se elevando acima das frequentes tempestades de poeira que assolam Marte, está o Monte Olympus, o maior vulcão conhecido e a maior montanha do nosso Sistema Solar.

O edifício central desse vulcão se eleva a fantásticos 27 quilômetros acima da superfície de Marte, algo 3 vezes mais alto que o Monte Everest acima do mar e 2,6 vezes mais alto que o Monte Mauna Kea, medido desde a sua base. Ele tem 550 km de largura, flanqueado por abismos íngremes e tem uma caldeira complexa que tem 85 km de comprimento, 60 km de largura e 3 km de profundidade  com seis aberturas de crateras se sobrepondo. Sua borda externa é definhada por uma escarpa com 6 km de altura, algo único entre os vulcões de escudo conhecidos em Marte.

Em 2004, a sonda Mars Express fez imagens de lavas antigas nos flancos do Monte Olympos. Com base no tamanho da cratera e na contagem de frequência, a superfície dessa escarpa oeste foi datada com 115 milhões de anos, abaixo de uma região que tem somente 2 milhões de anos de existência, algo recente em termos geológicos e que sugere que a montanha ainda pode estar em processo de atividades vulcânicas.

O Monte Mauna Kea, no Havaí é um exemplo de vulcão de escudo similar só que em menor escala. O tamanho do Monte Olympos é extraordinário pois provavelmente não existe movimento de placas tectônicas. Desse modo, a crosta permaneceu imóvel sobre um chamado ponto quente e o vulcão continuou a despejar lava.

A montanha e poucos outros vulcões da região de Marte conhecida como Tharsis, é visível da Terra, e desde o século 19 os astrônomos vêm observando Marte. O astrônomo Patrick Moore aponta que durante as tempestades de poeira, Schiaparelli descobriu que o seu Nodus Gordis e Olympic Snow eram quase as únicas feições que poderiam ser observadas em Marte.

Monte Olympus visto pela sonda Mariner

© Mariner (Monte Olympus)

Mas somente com as sondas Mariner pôde-se confirmar isso com certeza. Depois da sonda Mariner 9 ter fotografado o Monte Olympus de sua órbita em 1972, ficou claro que a sua altura era muito maior que qualquer montanha na Terra, e então seu nome foi alterado definitivamente para Monte Olympus.

Fonte: Daily Galaxy

sexta-feira, 9 de dezembro de 2011

Alinhamento universal: o cosmo têm direção?

O Universo não tem centro, nem aresta, nem regiões especiais inseridas entre galáxias e luz.

galáxia Triangulum

© Konstantin Mironov (galáxia Triangulum)

Não importa onde você olhe, é a mesma coisa. Este princípio cosmológico, um dos fundamentos da compreensão moderna do Universo, entrou em questão recentemente, no momento em que astrônomos encontraram evidências sutis de uma direção especial no espaço. O primeiro e mais bem estabelecido dado vem da radiação cósmica de fundo em micro-ondas (CMB), a chamada luminescência do Big Bang. Como esperado, a luminescência não é perfeitamente estável, como manchas quentes e frias localizadas no céu. Recentemente, porém, os cientistas descobriram que essas manchas não são distribuídas tão aleatoriamente como quando apareceram pela primeira vez. Elas alinham-se em um padrão que aponta para uma direção especial no espaço.

Mais sugestões de uma seta cósmica vêm a partir de estudos de supernovas, cataclismas estelares que por um curto tempo ofuscam galáxias inteiras. Cosmólogos têm utilizado supernovas para mapear a expansão acelerada do Universo. Estudos estatísticos detalhados revelam que as supernovas estão se movendo ainda mais rápido em uma linha, apontando levemente para fora desta direção especial. Similarmente, astrônomos mediram aglomerados contínuos de galáxias, através do espaço, acima de um milhão de quilômetros por hora em direção a uma área no hemisfério sul. O que poderia significar tudo isso? Talvez nada. “Pode ser um golpe de sorte", diz Dragan Huterer, um cosmólogo da Michigan University, em Ann Arbor, ou poderia ser um erro sutil que tem ocorrido nos dados. Ou, diz Huterer, talvez nós estejamos vendo os primeiros sinais de “algo surpreendente”. 
O primeiro ímpeto de expansão do Universo poderia ter durado um pouco mais do que pensávamos, introduzindo a isso uma predisposição para o que ainda hoje persistisse. Outra possibilidade é que, em grande escala, o Universo poderia ser enrolado como um tubo, curvado em uma direção e plano em outras, de acordo com Glenn D. Starkman, um cosmólogo da Case Western Reserve University. Alternativamente, a chamada energia escura – algo incompreensível acelerando a expansão do Universo – pode agir de maneira diferente em diferentes lugares. Por enquanto, os dados permanecem preliminares, são sinais sutis de que algo pode estar errado com a nossa compreensão padrão do Universo. Os cientistas estão aguardando os dados do satélite Planck, que atualmente mede a CMB a partir de um local tranquilo, a 1,5 milhão de quilômetros acima. Isso irá confirmar medições anteriores desta direção peculiar ou mostrar que são efêmeras. Até então, o Universo poderia estar nos apontando para qualquer lugar.

Fonte: Scientific American Brasil

quinta-feira, 8 de dezembro de 2011

Buraco negro devorando uma anã branca

Novos resultados obtidos pelo telescópio espacial de raios-X Chandra da NASA e o telescópio Magellan do Observatório Las Campanas sugerem que um denso remanescente estelar foi rompido por um buraco negro com milhares de vezes a massa do Sol na NGC 1399, uma galáxia elíptica cerca de 65 milhões de anos luz da Terra.

galáxia NGC 1399

© Chandra e Hubble (galáxia NGC 1399)

A imagem em raios-X captada pelo Chandra são mostrados em azul e são sobrepostas em uma imagem óptica do telescópio espacial Hubble.

“Nós pensamos que estas assinaturas incomuns podem ser explicadas por uma anã branca, que se aproximou muito de um buraco negro e foi destruída pelas forças extremas de maré”, disse Joel Bregman da Universidade de Michigan.

As observações do Chandra mostram que esse objeto é uma fonte de raios-X ultraluminosas (ULX). As fontes ULXs emitem mais raios-X que estrelas, porém menos do que quasares. Sua natureza exata permanece um mistério, mas uma sugestão é que algumas ULXs são buracos negros com massas entre cerca de uma centena de vezes e milhares que da massa solar.
Se confirmada, essa descoberta seria uma forte evidência de um buraco negro com massa intermediária, que tem sido um tema muito debatido, e marcaria a primeira ocorrência de um buraco negro rompendo uma estrela distante.
Este ULX está em um aglomerado globular muito velho e cheio de estrelas. Os astrônomos já suspeitavam que os aglomerados globulares podem conter buracos negros de massa intermediária, mas a evidência conclusiva para isso tem sido difícil.

O par de interação NGC 4038 e NGC 4039 (galáxias Antennae) vistas na imagem a seguir têm 14 ULXs, nas regiões de formação estelar.

interação entre as galáxias NGC 4038 e NGC 4039

© Chandra (interação entre as galáxias NGC 4038 e NGC 4039)

“Os astrônomos já observaram estrelas que foram dilaceradas por buracos negros supermassivos nos centros das galáxias, mas esta é a primeira evidência de um evento como esse em um aglomerado globular”, disse Jimmy Irwin, da Universidade do Alabama que liderou o estudo.
Irwin e seus colegas obtiveram espectros ópticos do objeto usando os telescópios Magellan I e II em Las Campanas, no Chile. Estes dados revelam emissões de gás rico em oxigênio e nitrogênio, mas não hidrogênio, um raro conjunto de sinais provenientes de aglomerados globulares. As condições físicas deduzidas dos espectros sugerem que o gás está orbitando um buraco negro de pelo menos 1.000 massas solares. A quantidade abundante de oxigênio e ausência de hidrogênio indicam que a estrela destruída era uma anã branca, a fase final de uma estrela do tipo solar que queimou seu hidrogênio deixando uma alta concentração de oxigênio. O nitrogênio visto no espectro óptico permanece um enigma.
O trabalho teórico sugere que a perturbação induzida por emissão de raios-X poderia ficar brilhante durante mais de um século, mas deve desaparecer com o tempo.

Fonte: Daily Galaxy

Circulando em tesouros lunares

O Mare Crisium é um dos locais mais propícios de se identificar na Lua. Ele é grande e por si só, não é conectado a nenhum outro mar.

Mare Crisium na Lua

© Philippe Tosi (Mare Crisium na Lua)

Ele tem pouco interesse observacional em sua superfície a não ser as crateras Lick e Yerkes no lado mais raso que abraçam a borda ocidental. Mas ao redor do Mare Crisium existem crateras fascinantes para serem observadas, começando com a cratera com parede brilhante Proclus à direita. A Proclus é uma cratera bem jovem gerada por um impacto oblíquo. Na borda esquerda da imagem acima está uma fascinante cratera com desafios severos para os observadores e para aqueles que desejam fotografá-la. Crateras minúsculas com pequenos halos escuros e canais estreitos estão no interior mas são visíveis apenas nas melhores imagens. A melhor oportunidade de se observar a cratera de halo escuro é provavelmente na Lua Cheia quando os halos se tornam mais evidentes.  Na região da extrema direita localiza-se a cratera Taruntius, que apresenta um interior constituído de fraturas concêntricas. Como mostra essa imagem realizada com o Sol no alto, um quarto do seu interior é coberto com material escuro, provavelmente poeira que irrompeu da erupção de magma que ergueu-se do solo.

Fonte: LPOD

Impasto celeste

A pintura cósmica reproduzida abaixo é composta da encantadora mistura de poeira e de nebulosas escuras.
Sh2 239
© Adam Block (Sh2-239)
Catalogada como Sh2-239 e LDN 1551, a região localiza-se perto da porção terminal sul do complexo de nuvens moleculares de Taurus a uma distância de 450 anos-luz da Terra. Se esticando por aproximadamente 3 anos-luz, a aquarela mostra sinais de objetos estelares jovens mergulhados guiando fluxos dinâmicos no meio ao redor. A imagem acima também inclui perto do centro da cena, um jato de choque vermelho compacto de gás hidrogênio que se localiza perto da posição da fonte de infravermelho IRS5, conhecida por ser um sistema de protoestrelas envoltas por discos de poeira. Um pouco abaixo estão as asas mais largas e mais brilhantes do HH 102, um dos muitos objetos Herbig-Haro da região que nada mais são que nebulosidades associadas com estrelas recém nascidas. Estimativas indicam que a região de formação de estrelas LDN 1551 contém uma quantidade total de material equivalente a 50 vezes a massa do Sol.
Fonte: NASA

quarta-feira, 7 de dezembro de 2011

Estrela vampira revela os seus segredos

Astrônomos obtiveram as melhores imagens até o momento de uma estrela que perdeu a maior parte da sua matéria devido a uma companheira “vampira”.

© ESO (estrelas duplas SS Leporis)

Ao combinar a luz captada por quatro telescópios instalados no Observatório do Paranal do ESO, os astrônomos criaram um telescópio virtual de 130 metros de diâmetro, capaz de observar com uma nitidez 50 vezes superior ao Telescópio Espacial Hubble. Surpreendentemente, os novos resultados mostram que a transferência de matéria de uma estrela para a outra neste sistema duplo é mais suave do que o que seria de esperar.

“Podemos agora combinar a radiação captada pelos quatro telescópios VLT e criar imagens extremamente nítidas muito mais depressa do que anteriormente,” diz Nicolas Blind (IPAG, Grenoble, França), o autor principal do artigo científico que apresenta estes resultados. “As imagens são tão nítidas que podemos, não apenas observar as estrelas orbitando em torno uma da outra, mas também medir o tamanho da maior das duas.”

Os astrônomos observaram o sistema incomum SS Leporis na constelação da Lebre, que contém duas estrelas que orbitam uma em torno da outra em 260 dias. As estrelas estão separadas de uma distância apenas um pouco maior do que a distância entre o Sol e a Terra, sendo que a maior e mais fria das duas estrelas se estende até um quarto desta distância - o que corresponde mais ou menos à órbita de Mercúrio. Devido a esta proximidade, a estrela mais quente já canibalizou cerca de metade da massa da estrela maior.

“Sabíamos que esta estrela dupla era incomum e que o material estava fluindo de uma estrela para a outra,” diz o co-autor Henri Boffin, do ESO. “O que descobrimos no entanto, foi que o modo como a transferência de massa se processa é completamente diferente do previsto por modelos anteriores. A “mordida” da estrela vampira é muito mais suave mas altamente eficaz.”

As novas observações são suficientemente nítidas para vermos que a estrela gigante é menor do que o que se pensava anteriormente, o que torna mais difícil explicar como é que a gigante vermelha perdeu massa para a sua companheira. Os astrônomos pensam agora que, em vez de fluir de uma estrela para a outra, a matéria deve ser expelida pela estrela gigante sob a forma de um vento estelar e capturada deste modo pela companheira mais quente.

“Estas observações demonstraram a capacidade do Interferômetro do Very Large Telescope em produzir imagens e abrem o caminho para futuros estudos sobre estrelas duplas em interação,” conclui o co-autor Jean-Philippe Berger.

Fonte: ESO

Encontrado um exoplaneta muito quente

Astrônomos encontraram um planeta não muito maior do que a Terra, mas tão absurdamente quente que a vida como a conhecemos não é possível existir.

ilustração de um exoplaneta e sua estrela

© Miguel Claro (ilustração de um exoplaneta e sua estrela)

O exoplaneta, chamado de Kepler-21b, é apenas 1,6 vezes maior do que o nosso. Mas ele orbita tão próximo de sua estrela principal que a temperatura em sua superfície é estimada em 1.627 graus Celsius, que é o suficiente para derreter ferro.

Ele foi encontrado através do telescópio espacial Kepler, da NASA, que procura exoplanetas usando o método de trânsito – a baixa na luminosidade de uma estrela causada por um planeta que circula em sua frente, bloqueando parcialmente sua luz.

O exoplaneta Kepler-21b foi posteriormente confirmado com a ajuda do telescópio do Observatório Nacional Kitt Peak, no Arizona.

O Kepler-21b está localizado há 352 anos-luz da Terra. Sua massa é 10 vezes maior que a da Terra, mas ele está a apenas seis milhões de quilômetros de sua estrela progenitora, levando 2,8 dias para completar sua órbita. A Terra, em comparação, gira em torno do Sol a uma distância média de 150 milhões de quilômetros.

A estrela onde o Kepler-21b orbita é a HD 129070, 1,3 vezes maior do que o nosso Sol. É também um pouco mais quente e brilhante, e até mais jovem. Os astrônomos calculam que ela tenha 2,84 bilhões de anos, enquanto o Sol tem 4,6 bilhões.

As descobertas do Kepler poderão ultrapassar o dobro do número de planetas extrassolares conhecidos, atualmente perto dos 700. A nossa Via Láctea abriga bilhões de planetas, mas a maioria está tão distante que é muito difícil de ser detectada.

Fonte: LiveScience

terça-feira, 6 de dezembro de 2011

Planck revela o grande arco vermelho

Imagens obtidas pelo observatório espacial Planck da ESA (agência espacial europeia) revelaram as forças que guiam a formação das estrelas e deram aos astrônomos uma maneira de entender a complexa física que molda o gás e a poeira na nossa galáxia.

Laço de Barnard em torno de Órion

© Planck (Laço de Barnard em torno de Órion)

Onde telescópios terrestres ópticos observam somente um espaço escuro, os olhos sensíveis às microondas do Planck revelam uma miríade de estruturas brilhantes de poeira e gás. Os astrônomos usaram essa capacidade do Planck para pesquisar a região de Órion, que é rica em formação de estrelas, localizada a aproximadamente 1.500 anos-luz de distância da Terra.

A imagem cobre uma grande parte da constelação de Órion. A nebulosa é o ponto brilhante abaixo do centro da imagem. O ponto brilhante à direita do centro é a região ao redor da famosa Nebulosa da Cabeça do Cavalo.

O gigantesco arco vermelho do Laço de Barnard é resultante provavelmente da onda de choque de uma estrela que explodiu dentro da região a aproximadamente dois milhões de anos atrás. A bolha criada durante essa explosão tem aproximadamente 300 anos-luz de diâmetro.

Em contraste com a região de Órion, a região de Perseus é menos vigorosa em termos de formação de estrelas, como mostra o Planck na imagem abaixo, mas mesmo assim ainda se pode ver uma quantidade razoável dessas regiões.

região de Perseus

© Planck (região de Perseus)

Ambas as imagens mostram três processos físicos que estão acontecendo no meio interestelar repleto de poeira e gás. O Planck pode nos mostrar cada um desses processos de forma separada. Nas frequências mais baixas, o Planck mapeia as emissões causadas pelos elétrons de alta velocidade interagindo com os campos magnéticos da galáxia. Um componente difuso adicional surge da rotação das partículas de poeira que emitem radiação nessas frequências.

Em comprimentos de onda intermediários, de alguns milímetros, a emissão é causada pelo gás aquecido das jovens estrelas quentes que se formaram.

Ainda nas altas frequências, o Planck mapeia o calor emitido pela poeira extremamente fria. Isso pode revelar os núcleos mais frios nas nuvens, que estão se aproximando do estado final de colapso, antes que eles renasçam em novas estrelas. As estrelas então dispersam as nuvens ao redor.

O delicado equilíbrio entre a nuvem colapsada e a nuvem dispersada regula o número de estrelas que a galáxia gera. O Planck irá avançar nosso entendimento sobre todo o processo, pois pela primeira vez, ele está nos fornecendo dados sobre os maiores mecanismos de emissão que estão em evolução.

Fonte: Daily Galaxy

A Nebulosa Congelada de Leão

Há três mil anos-luz de distância da Terra localiza-se a estranha nebulosa protoplanetária IRAS 09371+1212, apelidada de Nebulosa Congelada de Leão.
Nebulosa Congelada de Leão
© Hubble (Nebulosa Congelada de Leão)
Apesar do seu nome, as nebulosas protoplanetárias nada tem a ver com planetas, elas são formadas de material expelido por uma estrela central velha. A Nebulosa Congelada de Leão adquiriu esse curioso nome à medida que descobriram ricas quantidade de água em forma de grãos de gelo e porque ela se localiza na constelação de Leão.
Essa nebulosa é particularmente notável pois ela se formou longe do plano galáctico, fora das nuvens interestelares que podem bloqueá-la da nossa visão. A sua forma obscura é composta de um halo esférico, um disco ao redor da estrela central, lobos e laços gigantescos. Essa complexa estrutura sugere fortemente que o seu processo de formação foi complexo  e isso sugere que pode existir uma estrela secundária, atualmente não visível, que contribui para dar forma para a nebulosa.
Nebulosas protoplanetárias como a Nebulosa Congelada de Leão possuem uma breve expectativa de vida para os padrões astronômicos e são precursoras da fase nebulosa planetária, onde a radiação da estrela fará com que o gás da nebulosa brilhe intensamente. A raridade desse tipo de objeto  faz com que eles sejam priorizados para serem estudadas pelos astrônomos que buscam entender melhor a evolução das estrelas.
Fonte: ESA

Detectado tipo raro de galáxia ativa

Uma equipe de pesquisadores do Centro de Astrofísica da Universidade do Porto (CAUP), detetaram um tipo raro de galáxias ativas (AGNs), simultaneamente com características de AGNs jovens e de antigas.

AGN na região maxBCG 2596

© CAUP (AGN na região maxBCG 2596)

Julga-se que esta aparente discrepância será devida ao reacendimento da atividade do buraco negro central.

A equipe, composta essencialmente por astrônomas portuguesas, partiu de um catálogo de mais de 13 mil enxames de galáxias na região do rádio, à procura da ligação entre galáxias ativas e os respetivos enxames de galáxias.

“O nosso projeto inicial era estudar rádio galáxias em enxames. Por sorte, encontramos oito fontes de rádio com estruturas extensas (com jatos e lóbulos visíveis na frequência do rádio) que não apareciam na região do visível, o que estranhamos. Decidimos por isso largar o projeto inicial e seguir o rasto destas estranhas rádio galáxias.”, disse Mercedes Filho, astrônoma do CAUP e a principal pesquisadora do projeto,

Para obter mais detalhes sobre as galáxias, estes oito objetos foram observados em comprimentos de onda do infravermelho pelo observatório VLT (Very Large Telescope) do ESO. Isto permitiu detectar as galáxias que deram origem às extensas estruturas observadas no rádio.

Ao comparar os espectros destes objetos com modelos conhecidos de galáxias, a equipe concluiu que estes são objetos muito raros – galáxias com características tanto de AGNs ativas (ainda estão para emitir jatos de matéria) como de AGNs inativas (onde essa emissão já terminou).

Esta aparente discrepância pode ser explicada com uma reativação recente da AGN, devido a uma maior disponibilidade de material para alimentar o buraco negro central.

Em geral, quando um buraco negro está ativo, produz um jato ao longo do eixo de rotação da galáxia. Este jato pode viajar grandes distâncias, produzindo lóbulos visíveis na região do rádio. Quando o buraco negro não está ativo, o jato é desligado, mas os lóbulos podem persistir durante muito tempo.

A emissão original foi interrompida em algum ponto no passado, e o material emitido dissipou-se, dando origem aos lóbulos que emitem na região do rádio. Só que, segundo Mercedes Filho, “os nossos objetos mostram lóbulos no rádio, sinal de um ciclo de atividade no passado, mas o espectro diz-nos que o buraco negro e os jatos foram recentemente reativados.”

Mais recentemente o buraco negro ficou com novo material à sua disposição (por exemplo proveniente de instabilidades próprias do disco de matéria que o circunda, ou da interação com outras galáxias), dando origem a nova emissão, que começou antes dos lóbulos iniciais se desvanecerem.

A equipe vai agora efetuar novas observações, na região dos raios gama e em rádio, procurando indícios diretos da presença de um jato jovem e do reacendimento recente do buraco negro central.

Um artigo descrevendo a descoberta foi aceito para publicação na revista Astronomy & Astrophysics.

Fonte: CAUP e AstroPT

Os dois maiores buracos negros conhecidos

Um grupo de cientistas descobriu os dois maiores buracos negros conhecidos até o momento, com uma massa quase 10 bilhões de vezes superior à do Sol.

ilustração de um grande buraco negro

© Pete Marenfeld (ilustração de um grande buraco negro)

Esses buracos negros, localizados em duas enormes galáxias elípticas a cerca de 270 milhões de anos-luz da Terra, são muito maiores do que se previa por meio de deduções dos atributos das galáxias anfitriãs. Segundo os especialistas, liderados por Chung-Pei Ma, da Universidade da Califórnia, nos Estados Unidos, a descoberta sugere que os processos que influenciam no crescimento das galáxias grandes e seus buracos negros diferem dos que afetam as galáxias pequenas.

Os cientistas acreditam que todas as galáxias massivas com componente esferoidal abrigam em seus centros buracos negros gigantescos. As oscilações de luminosidade e brilho identificadas nos quasares no Universo sugerem ainda que alguns deles teriam sido alimentados por buracos negros com massas 10 bilhões de vezes superiores à do Sol.

No entanto, o maior buraco negro conhecido até então, situado na gigantesca galáxia elíptica Messier 87, tinha uma massa de apenas 6,3 bilhões de massas solares. Os buracos negros são difíceis de serem detectados porque sua poderosa gravidade os absorve por completo, incluindo a luz e outras radiações que poderiam revelar sua presença.

Foram avaliados os dados de duas galáxias vizinhas a Messier 87 - NGC 3842 e NGC 4889 – e foi possível observar que nelas haviam buracos negros supermassivos. Foi usado o telescópio Gemini do Havaí, adaptado com lentes especiais que permitem detectar o movimento irregular de estrelas que se movimentam perto dos buracos negros e que são absorvidas por eles.

Os pesquisadores constataram que a NGC 3842 abriga em seu centro um buraco negro com uma massa equivalente a 9,7 milhões de massas solares, enquanto, na NGC 4889, há outro com uma massa igual ou superior. Esses buracos negros teriam um horizonte de eventos cerca de sete vezes maior do que todo o Sistema Solar.

O enorme tamanho dos buracos se deve à sua habilidade para devorar não só planetas e estrelas, mas também pequenas galáxias, um processo que teria sido produzido ao longo de milhões de anos.

Fonte: Nature

Descoberto o menor exoplaneta em zona habitável

O telescópio Kepler da NASA descobriu um planeta em uma região habitável de um sistema solar, ou seja, onde possa haver água em estado líquido.
ilustração do menor exoplaneta em zona habitável
© NASA (ilustração do menor exoplaneta em zona habitável)
O exoplaneta Kepler-22b é o menor já encontrado em uma região habitável de uma estrela similar ao Sol, mas ainda assim tem cerca de 2,4 vezes o raio da Terra. Os cientistas não sabem afirmar se ele é predominantemente rochoso, gasoso ou líquido, mas a descoberta favorece a localização de planetas parecidos com a Terra.
As pesquisas anteriores já indicaram a presença de planetas parecidos com o nosso em zonas habitáveis, mas os indícios nunca foram confirmados. Outros corpos do tamanho da Terra já foram descobertos, mas em regiões não propícias ao surgimento da vida como a conhecemos.
"Este é um grande marco na estrada para encontrar um 'gêmeo' da Terra", diz Douglas Hudgins, cientista do programa Kepler, na sede da NASA, em Washington. O telescópio analisa o brilho de mais de 150 mil estrelas. Quando os planetas passam em frente às estrelas, o brilho muda e o Kepler detecta, contudo são necessários pelo menos três trânsitos para se descobrir um novo astro. Os dados então são revistos por telescópios no solo e pelo Spitzer.
O Kepler-22b está a 600 anos-luz de distância. Apesar de ser maior que o nosso planeta, ele leva 290 dias terrestres para completar uma volta ao redor de sua estrela; que, por sua vez, pertence à classe G, a mesma do Sol, mas é um pouco menor e mais fria.
O mais completo catálogo de exoplanetas foi publicado pelo Laboratório de Planetas Habitáveis da Universidade de Porto Rico, em Arecibo, que os listou e fez um ranking de habitabilidade. O exoplaneta KOI 736.01, também identificado pelo telescópio Kepler, é o maior candidato a abrigar vida. Com uma massa praticamente igual à da Terra, esse exoplaneta está a 1.750 anos-luz de distância.
Fonte: NASA

segunda-feira, 5 de dezembro de 2011

A estrela com rotação mais rápida

Uma equipe internacional de astrônomos tem utilizado o VLT (Very Large Telescope) do ESO, instalado no Observatório do Paranal no Chile, para fazer um rastreio das estrelas mais pesadas e brilhantes da Nebulosa da Tarântula, situada na Grande Nuvem de Magalhães.

© ESO (localização da estrela VFTS 102)

Dentre as muitas estrelas brilhantes desta maternidade estelar foi descoberta uma, chamada VFTS 102, que está rodando a mais de dois milhões de quilômetros por hora -  mais de 300 vezes mais depressa do que o Sol e muito próximo do ponto onde seria desfeita devido às forças que agem sobre ela. A VFTS 102 é a estrela com rotação mais rápida que se conhece até hoje. Algumas estrelas terminam as suas vidas como objetos compactos tal como pulsares, que rodam muito mais rapidamente do que a VFTS 102, mas estes objetos são muito mais pequenos e densos e não brilham por efeito de reações termonucleares como estrelas normais.

Os astrônomos descobriram também que a estrela, que tem cerca de 25 vezes a massa do Sol e é cerca de cem mil vezes mais brilhante, e se desloca no espaço a uma velocidade muito diferente da das suas companheiras. A VFTS 102 desloca-se a cerca de 228 quilômetros por segundo, 40 quilômetros por segundo mais devagar do que estrelas semelhantes situadas na mesma região.

“A extraordinária velocidade de rotação aliada ao movimento invulgar relativamente às estrelas situadas na sua vizinhança, levou-nos a perguntar se esta estrela não teria tido um começo de vida invulgar. Ficamos desconfiados.”  explica Philip Dufton (Queen´s University Belfast, Northern Ireland, RU), autor principal do artigo científico que apresenta estes resultados.

A diferença em velocidade poderia apontar para o fato da VFTS 102 ser uma estrela fugitiva - uma estrela que foi ejetada de um sistema de estrelas duplas depois da sua companheira ter explodido sob a forma de supernova. Esta hipótese é corroborada por mais duas pistas adicionais: um pulsar e um resto de supernova a ele associado, encontrados na vizinhança da estrela. Os pulsares têm origem nas explosões de supernovas. O núcleo da estrela colapsa, criando uma  estrela de nêutrons muito pequena, que roda muito depressa emitindo jatos de radiação muito intensos. Estes jatos dão origem a uma “pulsação” regular observada a partir da Terra, à medida que a estrela roda em torno do seu eixo. O resto de supernova associado consiste numa nuvem de gás soprada pela onda de choque, que resulta do colapso da estrela numa estrela de nêutrons.

Um possível cenário evolutivo para esta estrela tão invulgar foi desenvolvido. O objeto poderia ter começado a sua vida como um componente de um sistema estelar binário. Se as duas estrelas estivessem próximas uma da outra, o gás da companheira poderia ter fluído continuamente na sua direção, fazendo com que a estrela começasse a rodar mais e mais depressa, devido à sua rotação extremamente elevada. Após um curto espaço de tempo na vida da estrela, de cerca de dez milhões de anos, a companheira de elevada massa teria explodido como uma supernova - o que explicaria a nuvem de gás característica conhecida como resto de supernova que se encontra nas proximidades. A explosão teria também dado origem à ejeção da estrela, o  que poderia explicar a terceira anomalia -  a diferença entre a sua velocidade e a das outras estrelas da região. Ao colapsar a companheira de grande massa teria se transformado no pulsar que observamos hoje, completando assim a solução do puzzle.

Embora os astrônomos não possam ter a certeza deste cenário, Dufton conclui: “Esta é uma hipótese com muito mérito, uma vez que explica todas as caraterísticas invulgares que observamos. Esta estrela mostra-nos claramente lados inesperados das vidas curtas mas dramáticas das estrelas mais pesadas.”

Fonte: ESO

sábado, 3 de dezembro de 2011

Novos exoplanetas foram descobertos

Uma equipe de astrônomos do Instituto de Tecnologia da Califórnia(Caltech), nos EUA, descobriu 18 planetas fora do Sistema Solar.

ilustração de novo exoplaneta ao redor de estrela

© Caltech (ilustração de novo exoplaneta ao redor de estrela)

Conforme o professor de astronomia e responsável pela pesquisa, John Johnson, é a maior descoberta feita de uma só vez de planetas maiores que o Sol fora do Sistema Solar. A descoberta foi publicada na edição de dezembro da revista The Astrophysical Journal.

Apenas a sonda Kepler, lançada em 2009 pela Nasa somente com o objetivo de detectar exoplanetas que possam reunir condições para abrigar a vida, conseguiu encontrar um número superior: até agora foram mais de 1.200 possíveis novos planetas, que ainda precisam ser confirmados por novos estudos.

Para encontrar novos planetas, os astrônomos buscam por estrelas com pertubações no brilho, que podem ser traços de astros que orbitem ao seu redor.

Os cientistas utilizaram o Observatório Keck, do Havaí, para encontrar os planetas e confirmaram os dados com pesquisadores dos observatórios McDonald, no Texas, e Fairborn, no Arizona. Para encontrar os planetas eles pesquisaram cerca de 300 estrelas e concluíram que a massa dos 18 é semelhante à de Júpiter.

Com a descoberta, o número de planetas que orbitam ao redor de estrelas semelhantes ao Sol aumentou em 50%. Atualmente, o número de exoplanetas conhecidos e confirmados já ultrapassou 600. Essa pesquisa reforça a ideia de que planetas podem ser gerados a partir de partículas de poeira e gás ao redor de estrelas. De acordo com essa teoria, partículas minúsculas começam a se aglutinar como uma bola de neve e se transformam em um planeta. Quanto maior a massa da estrela, maior o tamanho do planeta.

Fonte: California Institute of Technology

sexta-feira, 2 de dezembro de 2011

Novos radiotelescópios permitirão estudos inéditos sobre explosões solares

Um grupo brasileiro de cientistas liderou a instalação de um sistema de dois radiotelescópios polarimétricos solares na Argentina no dia 22 de novembro.

radiotelescópio no CASLEO

© Pierre Kaufmann (radiotelescópio no CASLEO)

Os instrumentos são os únicos no mundo a operar em frequências entre 20 e 200 gigahertz, preenchendo uma grande lacuna que impedia o estudo de vários aspectos relacionados às explosões solares.

Os instrumentos, financiados pela FAPESP, serão operados por um convênio que envolve há 11 anos cientistas do Centro de Radioastronomia e Astrofísica Mackenzie (CRAAM) e do observatório do Complexo Astronômico El Leoncito (CASLEO), localizado em San Juan, na Argentina - onde os radioteslescópios foram instalados, alinhados e já começaram a operar.

De acordo com Pierre Kaufmann, coordenador do CRAAM, os dois radiotelescópios para ondas milimétricas permitirão a realização de observações, respectivamente, em 45 e em 90 gigahertz. “São os únicos radiotelescópios do gênero existentes em operação no mundo. Suas medições complementarão espectros de explosões solares observadas em frequências mais elevadas feitas no CASLEO - entre 200 e 400 gigahertz - e em frequências mais baixas do que 20 gigahertz, obtidas em instrumentos instalados nos Estados Unidos”, disse Kaufmann.

A lacuna na faixa de frequências de 20 a 200 gigahertz não apenas tem limitado os estudos sobre determinados parâmetros das explosões solares, como têm gerado grandes complicações para as interpretações dos resultados obtidos nos instrumentos existentes.

“Trata-se de uma faixa muito crítica sobre a qual a comunidade científica não dispõe de informações. Os novos instrumentos deverão trazer informações cruciais para a interpretação das explosões solares”, disse.

Os radiotelescópios terão a função de estudar mecanismos de conversão e produção de energia por trás das explosões solares. “Embora atualmente seja possível assistir com riqueza de detalhes às espetaculares ejeções de massa das explosões solares, o fenômeno físico que dá origem a todas essas manifestações é desconhecido”, explicou.

Além da relevância científica, o estudo do mecanismo energético das explosões solares, segundo Kaufmann, é importante também por causa de seus subprodutos que têm impacto no planeta Terra, alterando o chamado “clima espacial”.

“Embora não tenhamos detalhes sobre a física das explosões solares, é certo que esses fenômenos têm forte impacto no clima terrestre. Essas explosões liberam imensas quantidades de energia, interagindo com o espaço interplanetário e com a Terra”, disse.

Fonte: FAPESP (Agência)

Descoberta galáxias totalmente vermelhas

Astrônomos descobriram quatro galáxias absolutamente vermelhas.

galaxias vermelhas

© CfA (galaxias vermelhas)

O Spitzer encontrou as galáxias vermelhas onde o Hubble havia visto apenas poeira porque ele observa o Universo na faixa do infravermelho - as galáxias super-vermelhas são 60 vezes mais brilhantes no infravermelho do que na cor mais vermelha que o Hubble consegue detectar.

As quatro galáxias formam um grupo e parecem estar fisicamente interligadas. Devido à sua enorme distância, nós as vemos como elas eram poucos bilhões de anos após o Big Bang, ou seja, quando elas ainda eram muito jovens.

As galáxias podem ser vermelhas por várias razões. Uma das possibilidades é que uma galáxia contenha muitas estrelas velhas, que são avermelhadas, mas este não parece ser o caso. Ou elas podem ser ricas em poeira interestelar.

Outra possibilidade é que uma galáxia seja vermelha porque está muito distante de nós, quando então a expansão do Universo estica o comprimento de onda de sua luz, que tende para o lado vermelho do espectro.

Os cientistas acreditam que, com base nos dados dessa primeira descoberta, poderão agora encontrar outras galáxias super-vermelhas, uma vez que já sabem onde e como encontrá-las.

Fonte: Harvard-Smithsonian Center for Astrophysics

Buracos negros supermassivos desafiam teoria atual

Astrônomos da Universidade de Yale descobriram o que parece ser três buracos negros supermassivos de crescimento rápido e relativamente jovens, em uma galáxia ainda em formação.

três buracos negros supermassivos

© Universidade Yale (três buracos negros supermassivos)

A descoberta resulta na possibilidade de que esse tipo de buraco negro continue a se formar bilhões de anos depois do Big Bang, desafiando assim a teoria atual. Os astrônomos anteriormente pensavam que todos os buracos negros supermassivos emergiram pouco após o nascimento do Universo que se deu a 13,7 bilhões de anos atrás.

“Na medida em que a galáxia anfitriã está envolvida, esses buracos negros apenas surgem”, disse Kevin Schawinski, um pós doutorando no Yale Center for Astronomy and Astrophysics.

Buracos negros tradicionais caem dentro de um estreito intervalo de massa, e podem existir dentro de qualquer galáxia. Buracos negros supermassivos possuem uma massa maior, que pode variar mais vastamente e existem somente no centro de algumas galáxias. Acredita-se que cada galáxia tenha um buraco negro supermassivo em seu centro, incluindo a Via Láctea.

Os astrônomos acreditam que os buracos negros tradicionais se formam quando o centro de gigantesca estrela se colapsa. Mas a formação dos buracos negros supermassivos ainda é um grande mistério.

Usando observações e dados coletados pelo telescópio espacial Hubble, a equipe identificou os três suspeitos buracos negros supermassivos em uma galáxia distante ainda em formação, incluindo uma abundância de gás e estrelas jovens. A galáxia está localizada num ponto do espaço que surgiu 4,8 bilhões de anos depois do Big Bang, ou a aproximadamente nove bilhões de anos atrás. Com relação à galáxia, os três buracos negros tem 100 milhões de anos de vida.

Algumas pistas sugerem que os buracos negros recém descobertos são jovens: seus tamanho são pequenos para os seus tipos, a extrema raridade de encontrar três juntos e a rápida taxa de crescimento. Observações mais detalhadas são necessárias para confirmar que esses são buracos negros supermassivos.

A descoberta traz questões sobre como os buracos negros supermassivos poderiam se formar tanto tempo depois do Big Bang e se isso aconteceria em muitas galáxias ou é apenas uma estranha coincidência.

Fonte: Astrophysical Journal Letters

quinta-feira, 1 de dezembro de 2011

Supernova na nebulosa Medusa

Um estudo de remanescentes de supernova usando o observatório Suzaku (Japão e EUA) revelou algo nunca visto antes, alta temperatura que se seguiu imediatamente às explosões.

nebulosa Jellyfish

© Philip Perkins (nebulosa Jellyfish)

O satélite Suzaku, lançado em 10 de julho de 2005, foi desenvolvido no Instituto Japonês do Espaço e Ciência Astronáutica (ISAS), que faz parte da Agência Japonesa de Exploração Aeroespacial (JAXA), em colaboração com a NASA.

Mesmo depois de milhares de anos, o gás dentro destes destroços estelares retêm temperaturas 10.000 vezes mais quentes que a superfície do Sol, cuja temperatura é cerca de 5.800 kelvin.

Esta é a primeira evidência de um novo tipo de supernova, uma que foi aquecida logo após a explosão.
Um remanescente de supernova geralmente esfria rapidamente, devido à rápida expansão após a explosão. Então, como ela varre o gás interestelar tênue durante milhares de anos, o remanescente gradualmente se aquece novamente.
Utilizando a sensibilidade do satélite Suzaku, uma equipe liderada por Yamaguchi e Ozawa Midori, da Universidade de Kyoto, detectou características incomuns no espectro de raios-X do IC 443, mais conhecida como a Nebulosa Jellyfish (Medusa).
O remanescente, que fica cerca de 5.000 anos-luz de distância na constelação de Gêmeos, formada cerca de 4.000 anos atrás. A emissão de raios-X faz um caminho aproximadamente circular na parte norte da nebulosidade visível.
Espectrômetros de raios-X do Suzaku (Xiss) separa os raios-X por energia da mesma maneira como um prisma separa a luz em um arco-íris. Isso permite evidenciar os tipos de processos responsáveis ​​pela radiação.
Algumas das emissões de raios-X na nebulosa Jellyfish surge como um movimento rápido de elétrons livres perto do núcleo dos átomos. Sua atração mútua desvia os elétrons, que depois emitem raios-X à medida que mudam de rumo. Os elétrons têm energias correspondentes a uma temperatura de cerca de 7 milhões de graus Celsius.
A equipe sugere que a supernova ocorreu em um ambiente relativamente denso, talvez em um casulo para gerar a própria estrela. Como uma estrela massiva que lança material pelo  vento estelar e cria um casulo de gás e poeira. Quando a estrela explode, a onda de choque atravessa o casulo denso e aquece atingindo temperaturas de até 55 milhões ºC, ou 10.000 vezes mais quente que a superfície do Sol.
Eventualmente, a onda de choque se transforma em espaço interestelar, onde a densidade do gás pode ser tão baixa quanto um único átomo por centímetro cúbico. Uma vez que neste ambiente de baixa densidade, o remanescente de supernova jovem rapidamente se expande.
A expansão esfria os elétrons, mas também dilui o gás remanescente e as colisões entre partículas tornam-se eventos raros.

remanescente supernova W49B

© Chandra (remanescente supernova W49B)

A equipe já identificou também altas temperaturas no remanescente de supernova conhecido como W49B, que fica a 35.000 anos-luz de distância, na constelação Aquila.

Fonte: The Astrophysical Journal

Estrelas encontraram nova forma de morrer

Pesquisadores espanhóis descobriram como uma estrela induz outra à morte originando um buraco negro com uma massa maior que a do Sol e com diâmetro de 20 km.

ilustração da emissão de raios gama pela fusão de estrelas

© NASA (ilustração da emissão de raios gama pela fusão de estrelas)

A descoberta é resultado de uma pesquisa liderada por Christina Thöne e Antonio Ugarte Postigo, do Instituto de Astrofísica da Andaluzia, em colaboração com Miguel Ángel Aloy e Petar Mimica, da Universidade de Valência.

O inovador estudo traz uma explicação plausível ao enigma conhecido como "Erupção do Natal", uma erupção de raios gama (GRB, na sigla em inglês) de mais de meia hora de duração, que ocorreu no dia 25 de dezembro de 2010.

Esta "Erupção do Natal", ou GRB101225A segundo sua identificação científica, é o resultado de uma estrela de nêutrons se fundindo com o núcleo de hélio de uma estrela gigante e antiga, a uma distância de 5,5 bilhões de anos-luz da Terra.

Este exótico sistema binário passou por uma fase em que a estrela de nêutrons penetrou na atmosfera da estrela companheira gigante e, ao alcançar seu núcleo, se fundiu com ele, resultando numa gigantesca explosão, inicialmente invisível da Terra. O fenômeno possivelmente também produz um novo buraco negro.

A tremenda quantidade de energia liberada pela explosão foi canalizada longe do centro da estrela com velocidades próximas às da luz. Antes se pensava que a maioria das GRB se associava às estrelas maiores que o Sol, que acabavam produzindo supernovas.

No entanto, a "Erupção do Natal" é uma GRB rara com propriedades distintas das que se conheciam até agora, podendo considerar o fato como uma evidência de que existe uma nova forma de se produzir buracos negros estelares.

Uma estrela em massa morre formando uma supernova, enquanto esta foi induzida à morte por sua companheira, que chega ao núcleo da estrela, onde se induz uma explosão supernova incomum e um objeto muito compacto, possivelmente um buraco negro. Tal fato passaria despercebido se não fosse pela detecção da GRB.

As erupções de raios gama são flashes de radiação ultra-intensos, que podem chegar à Terra de qualquer direção do espaço. São fenômenos tão potentes e energéticos que apenas um deles pode ser tão luminoso como todas as estrelas visíveis simultaneamente no céu, embora ocorra somente em poucos segundos. A atmosfera da Terra é opaca aos raios gama, de modo que as GRB só podem ser captadas graças a detectores espaciais, como o satélite Swift da NASA.

Parece que as estrelas encontraram nova forma de morrer!

Fonte: Nature

quarta-feira, 30 de novembro de 2011

Uma relíquia de antigos ventos estelares

A imagem abaixo mostra a Via Láctea e as Nuvens de Magalhães numa combinação na região do vísivel e do rádio, e uma nova imagem de rádio da “Corrente de Magalhães”.

Corrente de Magalhães

© NRAO (Corrente de Magalhães)

Os fortes ventos estelares e explosões de supernovas que provocaram a formação de estrelas poderiam ter eliminado o gás que começou fluir em direção à Via Láctea.
A Via Láctea e as Nuvens de Magalhães estão em azul e branco, e o gás de hidrogênio na Corrente de Magalhães e nos discos das Nuvens de Magalhães estão em vermelho. A Via Láctea está na horizontal no meio da imagem, e as Nuvens de Magalhães são os pontos de luz na porção centro-direita da imagem, do qual o fluxo de gás se origina. As nuvens de poeira na Via Láctea estão em marron.
David Nidever da Universidade de Virginia e seus colegas usaram o telescópio GBT (Green Bank Telescope) para preencher lacunas importantes neste quadro de gás fluindo para fora das Nuvens de Magalhães.
As Nuvens de Magalhães são as duas galáxias vizinhas mais próximas da nossa galáxia, cerca de 150.000 a 200.000 anos-luz distante da Via Láctea. Visível no Hemisfério Sul, elas são muito menores do que a nossa galáxia e podem ter sido distorcidas por sua gravidade.
Depois de observar a Corrente de Magalhães há mais de 100 horas com o GBT, os astrônomos combinaram estes registros com de estudos anteriores através de radiotelescópios e descobriram que o fluxo é mais do que 40 por cento maior do que o anteriormente conhecido. Concluiram que o maior comprimento significa que o fluxo de gás é mais antigo do que se pensava, provavelmente cerca de 2,5 bilhões de anos.

Fonte: Daily Galaxy

As estrelas vampiras

Um dos principais problemas na astronomia moderna é o fato de ainda não conhecermos exatamente que tipo de sistema estelar explode sob a forma de supernova de tipo Ia.  Estas supernovas têm a função de mostrar que a expansão do Universo está atualmente em aceleração.

aglomerado estelar NGC 188

© NOAA (aglomerado estelar NGC 188)

A imagem acima mostra o aglomerado estelar NGC 188 com as estrelas “vampiras” circuladas.

Os astrônomos estudaram o objeto conhecido como V445 na constelação de Puppis (Popa) com bastante rigor. A V445 Puppis é a primeira, e até agora a única, nova que não mostra evidências de hidrogênio. É a primeira evidência de uma explosão na superfície de uma anã branca dominada por hélio, e a estrela companheira da V445 Puppis também apresenta deficiência em hidrogênio, fornecendo principalmente hélio à anã branca.

Em novembro de 2000, este sistema sofreu uma explosão do tipo nova, tornando-se 250 vezes mais brilhante que anteriormente e ejetando uma grande quantidade de matéria para o espaço.

A equipe de astrônomos utilizou o instrumento de óptica adaptativa NACO, montado no VLT (Very Large Telescope) do ESO, para obter imagens muito nítidas da V445 Puppis durante um período de dois anos. As imagens mostram uma concha bipolar, inicialmente com uma cintura muito fina, e com lóbulos de cada lado. Dois nodos observados em ambos os extremos da concha, parecem deslocar-se cerca de 30 milhões de quilômetros por hora. A concha - diferente de todas as observadas até agora em novas - encontra-se ela própria em movimento, deslocando-se cerca de 24 milhões de quilômetros por hora. As duas estrelas centrais estão obscurecidas por um disco espesso de poeira, que parece ter sido formado durante a última explosão.

concha ao redor da estrela V445 Puppis

© ESO (concha ao redor da estrela V445 Puppis)

Uma supernova é um dos processos pelo qual uma estrela termina a sua vida, explodindo e aumentando drasticamente seu brilho. Uma família de supernovas, chamadas supernovas de tipo Ia, desperta particular interesse no campo da cosmologia já que estes objetos podem ser usados como “velas padrão”  no cálculo de distâncias no Universo. Utilizam-se por isso para calibrar a expansão em aceleração, que se deve à energia escura.

Uma característica que define as supernovas de tipo Ia é a falta de hidrogênio no seu espectro. Sabe-se, no entanto, que o hidrogênio é o elemento químico mais abundante no Universo. Tais supernovas serão, muito provavelmente, produzidas em sistemas compostos por duas estrelas, onde uma delas é o produto final da vida de estrelas do tipo do Sol, as anãs brancas. As anãs brancas representam o produto final da evolução de estrelas com massas iniciais não superiores a algumas massas solares. Uma anã branca é composta por um núcleo estelar em final de combustão, abandonado quando uma estrela como o Sol ejeta as camadas exteriores no final da sua vida ativa. Este núcleo é composto essencialmente por carbono e oxigênio. Este processo normalmente dá origem à formação de uma nebulosa planetária.

Quando estas anãs brancas se comportam como vampiros estelares sugando matéria da estrela companheira, acabam por se tornar mais pesadas que determinado limite, o que as torna instáveis e consequentemente explodem. Este limite de Chandrasekhar, assim chamado devido ao físico indiano Subrahmanyan Chandrasekhar, é quase 1,4 vezes a massa do Sol. Quando a anã branca atinge uma massa superior a este limite, ou sugando matéria de uma estrela companheira ou juntando-se com outra anã branca, transforma-se numa bomba termonuclear que queimará carbono e oxigênio de maneira explosiva.

O ato de acumular esta matéria adicional não é um processo simples. À medida que a anã branca canibaliza a sua companheira, a matéria acumula-se na sua superfície. Se esta camada se tornar demasiado densa,  a estrela torna-se instável e irrompe como uma nova. Estas pequenas explosões controladas ejetam parte do material acumulado de volta ao espaço. Portanto, é necessário saber se a anã branca consegue acumular peso apesar destas explosões, ou seja, se alguma da matéria retirada à estrela companheira permanece na anã branca, de modo que ela se torne suficientemente pesada para explodir como supernova.

Combinando as imagens do NACO com dados obtidos por vários outros telescópios foi possível determinas a distância ao sistema, que se encontra a cerca de 25.000 anos-luz  de distância do Sol, e o seu brilho intrínseco, que é mais de 10.000 vezes mais brilhante que o Sol. Estes valores indicam que a anã branca vampiro deste sistema tem uma massa elevada, que está próxima do limite fatal e ao mesmo tempo continua sendo alimentada através de elevada taxa pela sua companheira. Se a V445 Puppis vai eventualmente explodir como supernova, ou se a atual explosão de nova já fez com que esse fenômeno não se produza ao ejetar demasiada matéria de volta ao espaço é algo que ainda precisa ser esclarecido. No entanto, a V445 Puppis é excelente candidata a futura supernova de tipo Ia!

Fonte: ESO e Nature

Supernova mais jovem já registrada

Os astrônomos têm obtido uma imagem da mais jovem supernova já registrada na região do rádio, apenas duas semanas depois da explosão de uma estrela na Galáxia do Redemoinho, a M51, localizada a 23 milhões de anos-luz de distância da Terra.

galáxia M51 e a jovem supernova

© Sloan Digital Sky Survey (galáxia M51 e a jovem supernova)

Telescópios coordenados ao redor da Europa conseguiram fazer uma imagem da explosãoo cósmica que é cem vezes maior em detalhe do que uma imagem obtida pelo telescópio espacial Hubble. Essa técnica chamada de rádio interferometria, tem uma resolução capaz de ver uma bola de golfe na superfície da Lua.

A Universidade de Valência e o Instituo de Astrofísica da Andalusia fizeram parte dessa pesquisa. Os telescópios que participaram da pesquisa foram os telescópios da NASA localizados em Robledo de Chavela (Madrid) e os telescópios do Insituto Nacional Geográfico em Yebes (Guadalajara).

A partir dessa imagem de alta resolução é possível definir a velocidade de expansão da onda de choque criada na explosão.

A equipe internacional de astrônomos já está trabalhando em novas observações. A rede europeia VLBI (Very Long Baseline Interferometry) é uma colaboração de institutos de radioastronomia ao redor da Europa, China e África do Sul, e é financiada pelos órgãos científicos nacionais dos respectivos países.

Fonte: Astronomy & Astrophysics

terça-feira, 29 de novembro de 2011

Galáxia sem bulbo e com buracos negros

A imagem a seguir feita pelo VLT (Very Large Telescope) do ESO, mostra uma galáxia realmente impressionante conhecida como NGC 3621.

© ESO (NGC 3621)

Ela é uma galáxia de disco puro. Como outras espirais, ela tem um disco achatado, permeado por linhas escuras de material e com braços espirais proeminentes onde estrelas jovens estão se formando em aglomerados (os pontos azuis na imagem). Mas enquanto a maioria das galáxias espirais possuem um bulbo central, um grande grupo de estrelas velhas localizadas em uma região compacta e esferoidal, a NGC 3621 não possui essa característica. Nessa imagem nota-se que existe um simples brilho no centro, mas não um bulbo verdadeiro como pode ser visto em outras galáxias como a NGC 6744.

© ESO (NGC 6744)

A NGC 3621 é também interessante, pois acredita-se que tenha um buraco negro supermassivo em seu centro que está engolindo matéria e produzindo radiação. Isso é algo pouco comum, pois a maior parte desses chamados núcleos ativos galácticos existem em galáxias com bulbos proeminentes. Nesse caso particular, o buraco negro supermassivo deve ter uma massa relativamente pequena de aproximadamente 20.000 vezes a massa do Sol.

Outro aspecto interessante é que também devem existir dois buracos negros menores, com massas de algumas milhares de vezes a massa do Sol, perto do núcleo da galáxia. Assim a NGC 3621 é um objeto interessante que, apesar de não ter um bulbo central, tem um sistema de três buracos negros em sua região central.

A galáxia NGC 3621 está localizada na constelação de Hydra (A Cobra do Mar) e pode ser vista com telescópios de tamanho médio. Essa imagem, foi feita usando os filtros B, V e I com o instrumento FORS1 acoplado ao poderoso VLT, e mostra detalhes surpreendentes desse estranho objeto revelando também uma grande quantidade de galáxias em segundo plano. Um grande número de estrelas brilhantes pertencentes à nossa galáxia também podem ser vistas na imagem.

Fonte: ESO

Calmaria depois da tempestade galáctica

O telescópio espacial Hubble registrou uma imagem, de uma galáxia difusa que provavelmente é a consequência de colisão galáctica ocorrida há muito tempo atrás.

galáxia elíptica SDSS J162702.56 432833.9

© Hubble (galáxia elíptica SDSS J162702.56+432833.9)

Duas galáxias espirais, cada uma talvez parecida com a Via Láctea, se entrelaçaram por milhões de anos.

Nesse tipo de fusão, as galáxias originais normalmente são estiradas e destruídas à medida que elas giram ao redor de um centro comum de gravidade. Após algumas idas e vindas, essa tempestade estelar se acalma formando um novo objeto arredondado. O novo objeto celeste, catalogado como SDSS J162702.56+432833.9 é conhecido tecnicamente como uma galáxia elíptica.

Quando as galáxias colidem, um evento comum no Universo, uma nova explosão de formação de estrelas normalmente acontece à medida que nuvens de gás são esmagadas de forma conjunta. Nesse ponto, a galáxia tem uma tonalidade azul, mas a cor não significa que ela é fria, essa cor é o resultado do intenso calor gerado pelas estrelas brancas e azuis recém formadas. Essas estrelas não duram muito, e depois de alguns bilhões de anos, as tonalidades avermelhadas das estrelas velhas menores dominam o espectro de uma galáxia elíptica. O Hubble tem auxiliado nas observações das fusões de galáxias em todos os estágios do processo.

Na SDSS J162702.56+432833.9, algumas faixas de poeira notavelmente obscurecem partes da região central, azulada e conglomerada da galáxia. Essas linhas de poeira poderiam ser partes remanescentes dos braços espirais das galáxias recentemente destruídas.

Fonte: ESA

domingo, 27 de novembro de 2011

Galáxia distante vista por lente gravitacional

Lente gravitacional é uma ferramenta poderosa para os astrônomos, que lhes permitem explorar galáxias distantes com muito mais detalhes do que seria permitido.

aglomerado MACS J0329.6-0211 e galáxia anã distante

© A. Zitrin (aglomerado MACS J0329.6-0211 e galáxia anã distante)

Sem essa técnica, as galáxias na borda do Universo visível são meras bolhas minúsculas de luz, mas quando ampliada dezenas de vezes possibilita explorar as propriedades internas estruturais mais diretamente.
Recentemente, astrônomos da Universidade de Heidelberg descobriram uma galáxia através da lente gravitacional que é uma das mais distantes já vistas, localizada à 12,8 bilhões de anos-luz sa Terra. No entanto, esta é notável por ser uma lente rara quádrupla.
As imagens desta descoberta interessante foram tiradas usando o telescópio espacial Hubble em agosto e outubro deste ano, utilizando um total de 16 diferentes filtros coloridos, bem como dados adicionais a partir do telescópio infravermelho Spitzer. O aglomerado no primeiro plano, MACS J0329.6-0211, está cerca de 4,6 bilhões de anos-luz distante. Na imagem acima, a galáxia de fundo foi dividida em quatro imagens, rotuladas pelas ovais em vermelho e marcadas de 1.1 a 1.4. Elas são ampliadas no canto superior direito.
Assumindo que a massa do aglomerado está concentrada ao redor das galáxias que estavam visíveis, a equipe tentou reverter os efeitos que o aglomerado teria pela galáxia distante, o que reverteria as distorções. A imagem restaurada, também corrigida para o redshift considerado, é mostrado na caixa inferior, no canto superior direito.
Depois de corrigir essas distorções, a equipe estimou que a massa total da galáxia distante é de apenas alguns bilhões de vezes da massa do Sol. Em comparação, a Grande Nuvem de Magalhães, um satélite anão da nossa própria galáxia, é cerca de dez bilhões de massas solares. O tamanho total da galáxia é pequeno também. Estas conclusões se encaixam bem com as expectativas de galáxias no Universo primitivo, que prevêem que as galáxias grandes no Universo de hoje foram construídos a partir da combinação de muitas galáxias menores.
A quantidade de elementos pesados na galáxia é significativamente menor do que estrelas como o Sol, que está de acordo com as expectativas. Esta falta de elementos pesados indica que deve haver poucos na forma de grãos de poeira. Essa poeira tende a ser um bloco forte com comprimentos de onda mais curtos de luz, tais como ultravioleta e azul. Sua ausência ajuda a dar à galáxia a sua tonalidade azul.
Formação estelar também é alta na galáxia. A taxa de produção de novas estrelas é um pouco maior do que em outras galáxias descobertas em torno da mesma distância, mas a presença de aglomerados mais brilhantes na imagem restaurada sugere que a galáxia pode estar passando por algumas interações, contribuindo para a formação de novas estrelas.

Fonte: Universe Today

Anéis em exoplanetas

Um novo estudo explora a presença de exoanéis em exoplanetas.

ilustração de um exoplaneta com seus anéis

© Andy McLatchie (ilustração de um exoplaneta com seus anéis)

Os quatro planetas maiores em nosso Sistema Solar: Júpiter, Saturno, Urano, e Netuno têm anéis ao seu redor. A existência de um sistema de anéis em planetas gigantes fora do Sistema Solar deve ser possível. 

A ideia de detectar anéis em torno de planetas distantes surgiu em 2004. Então, Barnes & Fortney sugeriu que os anéis seriam potencialmente detectáveis ​​a partir do eclipse que causaria se a precisão fotométrica fosse uma parte de dez mil.

Um estudo realizado este ano por Schlichting & Chang demonstrou que, mesmo se o planeta girar alinhado com o plano da órbita, é bem possível que os anéis serão significativamente distorcidos devido às interações gravitacionais com a estrela.
O novo estudo, realizado  pelos pesquisadores brasileiros Luis Ricardo Moretto Tusnski do INPE (Instituto Nacional de Pesquisas Espaciais) e Adriana Valio do CRAAM (Centro de Rádio Astronomia e Astrofísica Mackenzie), tenta responder a esta questão através da simulação de curvas de luz de um exoplaneta hipotético anéis. O primeiro resultado é que a área extra de superfície da estrela coberta pelos anéis reduz a luz detectada. No entanto, isso é difícil separar os efeitos de simplesmente ter um planeta maior que bloqueia a luz.
Um segundo efeito é baseado no formato da curva de luz (um gráfico do brilho em função do tempo) como o planeta começa e termina o trânsito.

curva de luz de um exoplaneta com anéis

© Tusnski & Valio (curva de luz de um exoplaneta com anéis)

Em suma, a natureza semi-transparente dos anéis faz com que a queda no arredondamento suave brilho, fora das bordas da curva de luz. Quando modelado contra um planeta que não tinham anéis, isso seria facilmente detectável por um instrumento como o telescópio Kepler.
Com tal precisão, sugerem que o Kepler deve ser mais do que capaz de detectar um sistema de anéis similares em tamanho e natureza como os de Saturno.

No futuro, os pesquisadores planejam utilizar seu modelo e os dados dos telescópios Kepler e CoRoT (COnvection ROtation and planetary Transits) para a procura de anéis e luas através da detecção de trânsitos planetários.

Fonte: Universe Today