terça-feira, 30 de julho de 2013

Buraco negro ejetado de uma colisão galáctica?

Será que buracos negros abandonam suas casas e vão para outras galáxias?

galáxia NGC 1277

© NASA (galáxia NGC 1277)

Se for o caso, uma galáxia chamada NGC 1277 pode abrigar um fugitivo em seu núcleo.

Em 2012, astrônomos descobriram um buraco negro supermassivo em seu centro, com a massa de 17 bilhões de sois, o mais massivo conhecido. Veja notícia divulgada neste blog.
Normalmente, um buraco negro tão enorme só seria encontrado em uma galáxia muito maior, o que sugere algo incomum no passado da NGC 1277. Dois astrônomos têm uma ideia: e se o buraco negro foi capturado após ser ejetado de uma colisão galáctica há bilhões de anos?
Na verdade, o buraco negro pode ser o que restou de uma galáxia ainda maior que fica nas proximidades. Há bilhões de anos, duas galáxias, cada uma carregando um buraco negro em seu núcleo, se chocaram para formar uma galáxia massiva chamada de NGC 1275.

galáxia NGC 1275

© Hubble (galáxia NGC 1275)

Durante a colisão, os buracos negros centrais se atraíram, se fundiram, e recuaram para o espaço intergaláctico. O recém-nascido buraco negro sem casa vagou pelo aglomerado galáctico de Perseu até a galáxia NGC 1277 passar perto o suficiente para atraí-lo gravitacionalmente.
“Isso é especulação, mas é uma história divertida”, declara Gregory Shields, astrônomo da University of Texas, em Austin, e principal autor de um artigo publicado no periódico The Astrophysical Journal Letters propondo esse cenário. “Você não precisa inventar nenhuma física nova. Você só precisa ter a sorte de encontrar uma galáxia menor”.
Simulações de computador mostram que quando dois buracos negros se fundem, a radiação irregular de energia gravitacional dá um chute no buraco negro resultante.
No caso de buracos negros supermassivos encontrados no centro de galáxias, esse chute pode ejetar o buraco negro final a uma velocidade de até cinco mil quilômetros por segundo, rápido o bastante para expulsá-lo de sua própria galáxia. 
Inspirado por essas simulações, Shields começou a trabalhar com Erin Bonning, astrofísica da Quest University Canada, para procurar buracos negros órfãos.
“Nós consideramos a possibilidade de que quando um buraco negro é ejetado dessa forma, ele pode arrastar um longo disco de gás consigo e continuar a se alimentar desse gás mesmo enquanto voa para longe da galáxia original”.
O conjunto de buraco negro e gás formaria um quasar flutuando livremente: um brilhante motor de radiação movido a gás superaquecido espiralando ao redor de um buraco negro massivo.
Apesar de eles ainda não terem encontrado um quasar andando entre galáxias, a ideia nunca foi abandonada. “É um processo tão fascinante que você simplesmente continua pensando nele”, comenta Shields.
Quando a descoberta de um buraco negro muito grande na NGC 1277 foi anunciada em 2012, Shields ficou atento. “Quando eu li aquele artigo, a ideia simplesmente surgiu na minha mente: aquele buraco negro se formou em uma galáxia maior e foi chutado dela”.
Karl Gebhardt, outro astrofísico da University of Texas, Austin, e co-descobridor do buraco negro da NGC 1277, está um pouco cético: “Essa é uma ideia muito interessante... mas vai precisar de muita sorte”.
Para que o cenário de Shields funcione, três fenômenos precisam ocorrer: os buracos negros precisam se fundir, o buraco negro resultante precisa ser chutado de outra galáxia (a NGC 1275) e então ser capturado pela NGC 1277.
Cada um desses eventos tem baixa probabilidade de ocorrer.
Mas em um Universo tão grande, até coisas improváveis acontecem de vez em quando. “Essa galáxia é estranha”, observa Gebhardt, “então o fato de que uma possível explicação também é estranha pode não ser tão surpreendente”.
Para descobrir o quanto a explicação é estranha será necessário observar muitas outras galáxias. “Se não houver outra galáxia com um buraco negro tão massivo [quanto esse]”, explica Gebhardt, “então algo com uma probabilidade muito baixa poderia ser uma explicação válida”.
Se, no entanto, descobrirmos que buracos negros enormes não são tão incomuns, devemos pensar em outra explicação.
A NGC 1277 pode já ter sido uma galáxia maior, e pode ter tido muitas de suas estrelas e gás roubados durante uma colisão próxima. Ou talvez o buraco negro tenha sido ejetado a partir de uma grande galáxia e arrastado o núcleo dessa galáxia consigo. Todos os cenários em que astrônomos conseguem pensar, porém, começam com o buraco negro surgindo em uma galáxia muito maior.
Descobrir de onde vêm esses buracos negros colossais pode levar a pistas sobre como galáxias evoluem.
Há algum tempo astrônomos sabem que buracos negros supermassivos e suas galáxias hospedeiras exercem influência um sobre o outro. Conforme galáxias aumentam devido a colisões sucessivas, os buracos negros crescem.
Um buraco negro massivo pode se acender como um quasar ao sugar gases que teriam formado novas estrelas. O gás então dispara jatos com milhares de anos-luz de comprimento, reduzindo a formação estelar da galáxia.
“As pessoas estão vendo a simbiose de um buraco negro, a energia que ele produz como um quasar, e a evolução da própria galáxia como uma parceria que pode ter influências significativas de uma forma ou de outra”, finaliza Shields. “Então nós queremos entender como buracos negros chegam às galáxias”.

Fonte: Scientific American Brasil

Messier 100: Esplendor grandioso

As galáxias espirais são geralmente objetos esteticamente muito atraentes, ainda mais quando nos aparecem de frente.

Messier 100 — Grand Design Splendour

© ESO/VLT (galáxia M100)

Esta imagem mostra um exemplo particularmente bonito: trata-se da galáxia espiral Messier 100, situada a cerca de 55 milhões de anos-luz de distância, na região sul da constelação da Cabeleira de Berenice.
Além dos braços espirais extremamente bem definidos, Messier 100 apresenta também no seu centro uma estrutura em barra muito tênue, o que permite classificá-la como sendo do tipo SAB. Embora não seja muito óbvia a partir desta imagem, os cientistas confirmaram efetivamente a existência da barra ao observar a galáxia em outros comprimentos de onda.
Esta imagem muito detalhada mostra as características principais que se esperam de uma galáxia deste tipo: enorme nuvens de hidrogênio gasoso, que brilham em regiões avermelhadas quando re-emitem a energia absorvida, emitida por estrelas de grande massa recentemente formadas; o brilho uniforme das estrelas mais velhas amareladas situadas próximo do centro; e as manchas negras de poeira que se entrelaçam por entre os braços da galáxia.
Messier 100 é um dos membros mais brilhantes do aglomerado da Virgem, constituído pelas galáxias mais próximas da Via Láctea, e que contém mais de 200 galáxias, incluindo espirais, elípticas e irregulares. Esta fotografia é a combinação de imagens obtidas com o instrumento FORS, montado no Very Large Telescope do ESO, no Observatório do Paranal, no Chile, com os filtros vermelho (R), verde (V) e azul (B).

Fonte: ESO

segunda-feira, 29 de julho de 2013

Terceira supernova descoberta na galáxia M74

A galáxia M74 não somente pode ser considerada uma espiral quase que perfeita como também é um local repleto de atividades de supernovas, em onze anos três supernovas explodiram nessa galáxia.

galáxia M74

© Jim Misti (galáxia M74)

O mais novo objeto chamado PSN J01364816+1545310, cujo nome oficial é SN 2013ej, foi descoberto brilhando com uma magnitude de 12,4  pelo projeto conhecido como Lick Observatory Supernova Search, no Observatório Lick perto de San Jose, na Califórnia.

A M74 é uma galáxia espiral clássica com braços que parecem ser soprados do núcleo brilhante repleto de estrelas. Localizada a 32 milhões de anos-luz de distância na constelação de Pisces, a M74 contém algo em torno de 100 bilhões de estrelas. Os braços espirais são pontuados com densos aglomerados estelares e com nuvens rosas de gás hidrogênio fluorescente.

A pesquisa do Lick usa um telescópio robótico de 76 cm dedicado especificamente para vasculhar o céu procurando por novas supernovas. Ele registrou a última explosão estelar na M74 no dia 25 de Julho de 2013. Anteriormente duas supernovas já haviam explodido nessa galáxia, a SN 2002ap e a SN 2003gd, com magnitudes 12 e 13 respectivamente.

supernova 2013ej

© Remanzacco Observatory (supernova 2013ej)

A imagem acima mostra a localização da supernova 2013ej feita por uma equipe de astrônomos usando um espectrógrafo no Faulkes Telescope South em Siding Spring, na Austrália, fizeram um estudo separado da luz da supernova e agora sabem exatamente o que explodiu. Tudo indica que essa supernova se originou de uma estrela supergigante com no mínimo 8 vezes a massa do Sol. Após uma vida relativamente curta de milhões de anos, a supergigante esgotou seu combustível. Com o gás esgotado e com nenhuma nova energia sendo produzida em seu núcleo para contrapor a força da gravidade, a estrela implodiu, enviando uma onda de choque em direções opostas.

A explosão de supernova, que é do Tipo II, enviou o material estelar para o espaço a uma velocidade aproximada de 70.000 km/s. O mais espetacular, é que uma poderosa explosão de supernova pode lançar energia equivalente àquela produzida pelo Sol em todos os seus 10 bilhões de anos de vida.

Enquanto a M74 é relativamente brilhante e aparece de modo espetacular nas imagens de longa exposição, em telescópios menores ela é apagada e sem brilho.

Fonte: Universe Today

domingo, 28 de julho de 2013

Os exoplanetas mais velhos já descobertos

Dois grandes planetas do tamanho de Júpiter estão entre os mundos alienígenas mais velhos já descobertos.

exoplanetas se formando ao redor de estrela vermelha

© UMN/LCSE (exoplanetas se formando ao redor de estrela vermelha)

Eles foram descobertos em 2012 orbitando uma estrela localizada a 375 anos-luz de distância da Terra, que irá em breve se transformar em uma gigante vermelha. “A própria Via Láctea ainda não está completamente formada”, disse Johny Setiawan, do Max-Planck Institute for Astronomy em Heidelberg, na Alemanha. Durante uma pesquisa usando a técnica de velocidade radial, onde os astrônomos observam por oscilações periódicas na luz da estrela devido a força gravitacional de corpos que a orbitam, Setiawan e seus colegas descobriram as assinaturas de dois planetas orbitando a estrela, chamada de HIP 11952.

Com uma idade estimada de 12,8 bilhões de anos, a estrela hospedeira e seus planetas, muito provavelmente se formaram no alvorecer do Universo, menos de um bilhão de anos depois do Big Bang. Com base no cálculo feito pela equipe, um exoplaneta é quase tão massivo quanto Júpiter e completa a sua órbita em aproximadamente sete dias. O outro exoplaneta tem cerca de três vezes a massa de Júpiter e tem um período orbital de nove meses e meio.

“Normalmente os planetas se formam pouco depois da formação da estrela. Planetas de segunda geração podem também se formar depois da estrela morta, mas isso ainda se encontra em debate”, disse Setiawan.

A descoberta indica que a formação do planeta no início do Universo foi possível apesar do fato das estrelas existentes naquela época possuírem uma deficiência de elementos mais pesados do que o hidrogênio e o hélio, o que vai contra a vastamente aceita teoria do modelo do crescimento, que diz que os elementos mais pesados são necessários para formar os planetas. No caso da HIP 11952, sua abundância em ferro é somente um por cento daquela existente no Sol.

A teoria do crescimento tem por muito tempo tido o suporte de observações: A maior parte das estrelas que abrigam planetas e que foram descobertas até o momento são relativamente jovens e possuem uma quantidade moderada de metais, mas os astrônomos pensam que o modelo de crescimento esteja correto pois os caçadores de planetas usando os dados da missão Kepler têm observado na maior parte das vezes estrelas jovens e parecidas com o Sol.

Para verificar essa questão é necessário fazer uma busca de planetas ao redor de estrelas mais velhas e pobres em metal, completa Setiawan.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Daily Galaxy

sexta-feira, 26 de julho de 2013

Misteriosos centauros podem ser cometas

A verdadeira identidade dos centauros, os pequenos corpos celestes que orbitam o Sol entre Júpiter e Netuno, é um dos grandes mistérios persistentes da astrofísica. Eles são asteroides ou cometas?

ilustração de Centauro com asteroides e cometas

© NASA/JPL (ilustração de Centauro com asteroides e cometas)

Um novo estudo de observações feitas com o Wide-field Infrared Survey Explorer (WISE) da NASA indica que a maior parte dos objetos centauros são cometas.

Até agora, os astrônomos não tinham certeza se os centauros são asteroides expulsos da parte interna do Sistema Solar, ou cometas viajando em direção ao Sol de muito longe. Devido a sua natureza dúbia, eles receberam o nome da criatura da mitologia grega que tem cabeça e dorso humano e pernas de cavalo.

“Como as criaturas místicas, os objetos centauros parecem ter uma vida dupla”, disse James Bauer do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia. “Nossos dados apontam para uma origem cometária para a maior parte dos objetos, sugerindo que eles veem dos locais mais profundos do Sistema Solar”.

A origem cometária significa que um objeto provavelmente é feito do mesmo material de um cometa, que pode ter sido um cometa ativo no passado e que pode voltar a ser ativo no futuro.

As descobertas vieram da maior pesquisa em infravermelho já realizada até a data dos centauros e de seus primos mais distantes, chamados de objetos dispersos de disco. A NEOWISE, a porção da missão WISE que caça asteroides, adquiriu imagens infravermelhas de 52 centauros e objetos dispersos de disco. Quinze dos 52 são novas descobertas. Os Centaurus e os objetos dispersos de disco orbitam em um cinturão instável. A gravidade dos planetas gigantes levarão esses objetos para mais perto do Sol ou para mais distante de suas posições atuais.

Embora os astrônomos já tivessem observado anteriormente alguns dos objetos centauros com halos empoeirados, uma característica comum de cometas, e o telescópio espacial Spitzer da NASA também tivesse encontrado evidências para cometas no grupo, eles não eram capazes de estimar o número de cometas e asteroides.

Dados infravermelhos da missão NEOWISE fornecem informações sobre o albedo dos objetos, ou seja, sua refletividade, para ajudar os astrônomos a vasculharem a população. A missão NEOWISE pode dizer se um objeto centauro tem uma superfície escura ou uma superfície brilhante e que reflete mais luz. As peças do quebra-cabeça começam a fazer sentido quando os astrônomos combinam as informações de albedo com o que já se sabia sobre as cores dos objetos. Observações na luz visível têm mostrado que os objetos centauros normalmente têm tonalidades azul acinzentadas ou mais avermelhadas. Um objeto azul acinzentado poderia ser um asteroide ou um cometa. A missão NEOWISE mostrou que a maior parte dos objetos azul acinzentados são escuros, uma assinatura dos cometas. Um objeto mais avermelhado é mais provável que seja um asteroide.

“Os cometas têm uma superfície congelada coberta por material escuro, fazendo com que eles sejam mais escuros do que a maior parte dos asteroides”, disse o co-autor do estudo, Tommy Grav do Planetary Science Institute em Tucson, no Arizona. “As superfícies dos cometas tendem a ser mais escuras, enquanto que as dos asteroides são mais brilhantes como a da Lua”.

Os resultados indicam que aproximadamente dois terços da população dos objetos centauros são cometas, que vieram das regiões frígidas do nosso Sistema Solar. Não é claro se o restante dos objetos são asteroides. Os corpos centauros não perderam sua mística inteiramente, mas futuras pesquisas da missão NEOWISE podem revelar seus segredos mais escondidos.

Um artigo foi publicado online esta semana no periódico The Astrophysical Jornal.

Fonte: NASA

quinta-feira, 25 de julho de 2013

Detectados pósitrons nas explosões solares

As erupções solares são associadas às tempestades magnéticas gerando explosões gigantescas no Sol que enviam energia, luz e partículas em todas as direções do espaço, cujo pico ocorre num ciclo de aproximadamente onze anos.

erupção solar

© SOHO (erupção solar)

Quando o Universo se formou a 13,8 bilhões de anos no evento que conhecemos como o Big Bang, existia a mesma quantidade de matéria e antimatéria. De alguma forma a matéria aniquilou a antimatéria ficando apenas uma porção de matéria, o suficiente para formar estrelas, planetas e as galáxias que formam o nosso Universo.

O estudo de fontes naturais de antimatéria, permitirá aos pesquisadores entender porque a matéria prevaleceu em relação à antimatéria nos primórdios do nosso Universo.

Os pósitrons são antipartículas de antimatéria. Os pósitrons possuem carga elétrica positiva (e+) e são antipartículas dos dos elétrons que possuem carga elétrica negativa (e-). Esta diferença de carga faz com que os pósitrons interajam de forma diferente com os campos eletromagnéticos, o que o professor Gregory Fleishman, do Instituto de Tecnologia de New Jersey e seus colegas russos do Instituto de Física Solar-Terrestre usaram para distinguí-los.

O processo das erupções solares são muito energéticas e a massa que é ejetada acelera as partículas a uma velocidade próxima da velocidade da luz, permitindo a criação desses pósitrons.

Usando os dados do SOHO e imagens de rádio de duas frequências diferentes obtidas pelo radioheliógrafo Nobeyama do Japão, a equipe russo-americana descobrirou que a luz foi polarizada em diferentes direções para baixas frequências, onde predomina a matéria ordinária, comparativamente às altas frequências, onde mais antimatéria é esperada.

Este tipo de antipartículas que são criadas nas erupções solares não é surpresa, mas esta é a primeira vez que os seus efeitos imediatos são detectados.

O estudo tem profundas implicações para a obtenção de um conhecimento valioso através da detecção remota de antipartículas relativistas pelo Sol e de outros objetos astrofísicos por meio de observações através de radiotelescópios.

A capacidade de detectar essas antipartículas numa fonte astrofísica promete melhorar a nossa compreensão da estrutura básica da matéria e dos processos de alta energia, tais como erupções solares, que oferece ser um laboratório natural para abordar a maioria dos mistérios fundamentais do Universo.

Estes resultados foram apresentados este mês na 44ª reunião da Divisão de Física Solar da Sociedade Americana de Astronomia, em Bozeman, Montana.

Fonte: Sci-News

quarta-feira, 24 de julho de 2013

Formação explosiva ou fiasco estelar?

Novas observações obtidas com o telescópio ALMA no Chile forneceram aos astrônomos a melhor pista até hoje sobre como é que a formação estelar vigorosa pode ejetar gás de uma galáxia.

imagem tridimensional das correntes de gás ejetadas pela galáxia

© ESO (imagem em 3D das correntes de gás ejetadas pela galáxia)

Este processo faz com que futuras gerações de estrelas não tenham combustível suficiente para se formar e crescer. A imagem mostra enormes correntes de gás molecular sendo ejetadas por regiões de formação estelar na vizinha galáxia do Escultor. Este novo resultado ajuda a explicar a estranha escassez de galáxias de massa extremamente elevada no Universo.

As galáxias, sistemas como a nossa Via Láctea que contém até centenas de bilhões de estrelas, são os blocos constituintes do cosmos. Um objetivo ambicioso da astronomia moderna é compreender o modo como as galáxias crescem e evoluem, sendo que a formação estelar é uma questão fundamental neste processo: o que é que determina o número de novas estrelas que irão se formar numa galáxia?

vista de grande angular da galáxia NGC 253

© ESO (vista de grande angular da galáxia NGC 253)

A Galáxia do Escultor, também conhecida como NGC 253, é uma galáxia espiral situada na constelação austral do Escultor. A uma distância de cerca de 11,5 milhões de anos-luz do Sistema Solar, é uma das nossas vizinhas galáticas mais próxima, e uma das galáxias com formação estelar explosiva mais próxima visível desde o hemisfério sul. Com o auxílio do ALMA (Atacama Large Millimeter/submillimeter Array), os astrônomos descobriram colunas imensas de gás frio e denso sendo ejetadas a partir do centro do disco galático.
“Com a magnifica resolução e sensibilidade do ALMA, podemos ver claramente pela primeira vez concentrações maciças de gás frio sendo ejetadas por conchas em expansão com pressão extremamente elevada, criadas por estrelas jovens", diz Alberto Bolatto (Universidade de Maryland, EUA), autor principal do artigo científico que descreve estes resultados. “A quantidade de gás que medimos nos dá uma evidência clara de que algumas galáxias em crescimento cospem mais gás do que ingerem. Podemos estar assistindo um exemplo atual de uma ocorrência bastante comum no Universo primordial”.
Estes resultados podem ajudar a explicar porque é que os astrônomos encontraram muito poucas galáxias de massa elevada no cosmos. Modelos de computador mostram que as galáxias mais velhas, vermelhas, deveriam ter consideravelmente mais massa e um maior número de estrelas do que se observa atualmente. Parece que os ventos galáticos ou as correntes de gás ejetado são tão fortes que privam a galáxia do combustível necessário à formação de novas gerações de estrelas.
“Estes jatos traçam um arco que está quase perfeitamente alinhado com os extremos da corrente de gás ionizado observada anteriormente”, comenta Fabian Walter, pesquisador principal no Instituto Max Planck de Astronomia (Heidelberg, Alemanha), e co-autor do artigo. “Estamos assistindo uma evolução passo a passo que nos leva desde da formação estelar explosiva às correntes de matéria ejetada”.
Os pesquisadores determinaram que enormes quantidades de gás molecular, quase dez vezes a massa do nosso Sol e possivelmente muito mais, estão sendo ejetadas pela galáxia, por ano, a velocidades entre 150 mil a quase um milhão de quilômetros por hora. A quantidade total de gás ejetada seria maior do que a quantidade de gás que teria sido usada para efetivamente formar as estrelas da galáxia, nesse momento. A esta taxa, a galáxia poderia ficar sem gás em tão pouco tempo como 60 milhões de anos.
“Para mim este é um exemplo claro de como os novos instrumentos moldam o futuro da astronomia. Estamos estudando esta região de formação estelar explosiva na NGC 253, e em outras galáxias próximas do mesmo tipo, há quase dez anos. Mas antes do ALMA não tínhamos chance de ver tais detalhes“, diz Walter. O estudo utilizou uma configuração inicial do ALMA com apenas 16 antenas. “É bastante excitante pensar no que o ALMA completo com as 66 antenas nos mostrará estes tipos de jatos!”, acrescenta Walter.
Mais estudos que utilizarão a rede completa do ALMA ajudarão na determinação do destino final do gás que está sendo levado pelo vento, o que revelará se estes ventos originados pela formação estelar explosiva estão reciclando o material que serve para formar estrelas ou se estão efetivamente o removendo da galáxia.

Este estudo será publicado na edição de amanhã da revista Nature.

Fonte: ESO

terça-feira, 23 de julho de 2013

Imagem da Terra vista por nave espacial

Imagens coloridas da Terra foram feitas pela nave espacial Cassini da NASA, no último dia 19 de Julho de 2013 e mostram nosso planeta e a Lua como pontos brilhantes observados a 1,5 bilhões de quilômetros de distância.

Terra e Lua vista de Saturno

© Cassini (Terra e Lua vista de Saturno)

Nas imagens da Cassini, a Terra e a Lua aparecem como meros pontos, a Terra, um pálido ponto azul e a Lua uma mancha branca, visível entre os anéis de Saturno. Essa foi a primeira vez que a câmera de mais alta resolução da sonda Cassini capturou a Terra e a Lua como dois objetos distintos.

Terra e Lua

© Cassini (Terra e Lua)

Essa imagem também marcou a primeira vez que as pessoas na Terra souberam que o planeta seria fotografado com antecedência de uma distância interplanetária. A NASA convidou o público para celebrar esse momento, encontrando o planeta Saturno no céu e mandando uma verdadeira onda para o planeta, de abraços, sorrisos e imagens. Mais de 20.000 pessoas ao redor do mundo participaram dessa iniciativa.

Imagens da Terra, feitas das fronteiras externas do Sistema Solar são raras pois desta distância, a Terra aparece muito próxima do Sol. Os detectores sensíveis da câmera podem ser danificados ao visarem diretamente para o Sol, do mesmo modo como o olho humano pode ter a retina danificada quando fazemos o mesmo. A Cassini foi capaz de fazer essa imagem devido ao fato do Sol estar temporariamente escondido atrás de Saturno do ponto de vista da nave.

Uma imagem de grande angular da Terra será parte de um mosaico, dos anéis de Saturno que os cientistas estão montando. Não se espera que essa imagem esteja pronta nas próximas semanas pois ela necessita de um certo tempo e de um grande desafio para ser constituída da maneira correta, já que a geometria precisa ser ajustada, além dos diferentes níveis de iluminação dos alvos.

Fonte: NASA

segunda-feira, 22 de julho de 2013

Novos mundos em xeque

Falhas em discos de poeira que circundam estrelas jovens não são necessariamente causadas pelos efeitos gravitacionais decorrentes da existência de um exoplaneta nessa região.

disco de poeira ao redor da estrela Fomalhaut

© NASA (disco de poeira ao redor da estrela Fomalhaut)

A presença de gás, muitas vezes ignorada, pode alterar a dinâmica dos discos e originar finos e alongados anéis de poeira ao redor das estrelas. Essa é principal conclusão de simulações computacionais feitas pelo astrofísico brasileiro, Wladimir Lyra, do Laboratório de Propulsão a Jato da NASA, e seu colega americano Marc Kuchner, do Centro de Voo Espacial Goddard, também da agência espacial norte-americana. “Esses anéis eram tidos como uma prova da existência de um planeta”, diz Lyra, que, no final de 2011, ganhou uma bolsa Carl Sagan, da NASA, para tocar suas pesquisas. “Mas mostramos que eles podem se formar apenas em razão das interações de gás e poeira.”

O estudo de Lyra e Kuchner fornece uma explicação plausível para a dificuldade em se confirmar a existência de planetas ao redor de estrelas que apresentam tais falhas em seu disco de poeira. O caso mais conhecido é o da estrela Fomalhaut, a mais brilhante da constelação de Peixe Austral, distante 25 anos-luz da Terra. Falhas nos anéis de poeira são interpretadas como indícios de que haveria dois planetas mais ou menos do tamanho da Terra ao da estrela, que se formou há aproximadamente 440 milhões anos. No entanto, a existência desses possíveis novos mundos ainda não foi comprovada.

Segundo o astrofísico brasileiro, as simulações indicam que, se os níveis de gás forem equivalentes a pelo menos 10% da quantidade de poeira, já aparecem falhas nos discos em torno da estrela. Os anéis se formam de maneira mais evidente quando o total de gás representa cinco vezes o volume da poeira. O processo físico por trás da origem dos anéis seria o efeito fotoelétrico. Se tiver muita energia, a luz da estrela se comporta menos como onda e mais como se fosse uma bola de sinuca. Se atingir um elétron do grão de poeira, esse fóton de alta energia vai provavelmente arrancá-lo. Tal elétron, por sua vez, vai ricochetear em uma molécula do gás, à qual passa sua energia cinética. O efeito do processo é aquecer o gás. O resultado dessa interação de gás e poeira leva à formação de falhas no disco ao redor da estrela. “Nosso modelo fornece uma explicação simples para a origem dos anéis”, afirma Lyra.

Os discos de poeira que circundam estrelas jovens são análogos do Cinturão de Kuiper do Sistema Solar. São formados basicamente por planetesimais, pequenos pedaços do disco protoplanetário original que não conseguiram se aglutinar a ponto de gerarem corpos maiores, como os planetas. O planeta anão Plutão, por exemplo, é o objeto mais conhecido do Cinturão de Kuiper. Os discos de poeira são, portanto, originários de uma sobra de material do processo de formação de planetas.

Os resultados do estudo foram publicados na edição deste mês na revista Nature.

Fonte: FAPESP (Pesquisa)

Uma nebulosa planetária eclodindo

A imagem a seguir do telescópio espacial Hubble mostra a nebulosa planetária IC 289, localizada na constelação do norte, de Cassiopeia.

nebulosa planetária IC 289

© Hubble (nebulosa planetária IC 289)

Antigamente, era uma estrela como o Sol, e agora é apenas um gás ionizado sendo empurrado para o espaço pela parte remanescente do núcleo da estrela, visível  com um pequeno ponto brilhante no meio da nuvem.

Lembando que, as nebulosas planetárias não têm relação com planetas. Os antigos observadores, quando olhavam através dos pequenos telescópios, só podiam ver uma forma indefinida que parecia muito com os planetas gasosos, e consequentemente surgiu esse nome. O termo permaneceu mesmo depois que os modernos telescópios e até mesmo o Hubble já fizeram imagens claras desses objetos que mostram que eles nada têm a ver com planetas, mas são as camadas externas de estrelas mortas que estão sendo expelidas para o espaço.

As estrelas brilham como o resultado das reações de fusão nuclear que acontecem em seus núcleos, e que convertem hidrogênio em hélio. Todas as estrelas são estáveis, com um equilíbrio existente entre a força que a empurra para dentro causada pela sua gravidade com as pressões para fora devido à fusão nuclear que ocorre em seu núcleo. Quando todo o hidrogênio é consumido, o equilíbrio é rompido, as forças gravitacionais tornam-se mais poderosas do que a pressão para fora dos processos de fusão e o núcleo começa a colapsar, aquecendo-se. Quando o calor atinge um nível suficiente, o hélio no núcleo começa a se fundir em carbono e em oxigênio e o colapso cessa. Contudo, essa fase de queima do hélio é altamente instável e grandes pulsações ocorrem eventualmente tornando-se grandes o suficiente para soprar a atmosfera da estrela para o exterior.

Fonte: ESA

sexta-feira, 19 de julho de 2013

Idades e órbitas das estrelas em aglomerados

Astrônomos usando o telescópio espacial Hubble da NASA pela primeira vez conseguiram interligar duas distintas populações de estrelas em um antigo aglomerado estelar globular a sua dinâmica orbital única, oferecendo assim a prova de que as estrelas não compartilham da mesma data de nascimento.

aglomerado globular 47 Tucanae

© Hubble (aglomerado globular 47 Tucanae)

As análises do aglomerado globular 47 Tucanae mostram que as duas populações diferem em idade de menos de 100 milhões de anos. O aglomerado está localizado a 16.700 anos-luz de distância na constelação do sul de Tucana.

Os pesquisadores, liderados por Harvey Ricer da Universidade de British Columbia, em Vancouver, combinaram recentes observações feitas com o Hubble com oito anos de dados de arquivos de telescópios para determinar os movimentos das estrelas nesse aglomerado.

Estudos prévios de espectroscopia revelaram que muitos aglomerados globulares contém estrelas com composição química variável, sugerindo múltiplos episódios de nascimento. Essas análises do Hubble, dão um passo a frente, adicionando o movimento orbital das estrelas a essa análise.

“Quando analisamos os movimentos das estrelas, quanto maior o tempo de observação, com mais precisão podemos medir seus movimentos”, explicou Richer. “Esses dados são tão bons, que nós podemos na verdade ver pela primeira vez o tempo de movimento individual de estrelas no aglomerado. Os dados oferecem uma evidência detalhada para nos ajudar a entender como as várias populações de estrelas se formaram nesses aglomerados”.

Os aglomerados globulares da Via Láctea são relíquias sobreviventes da formação da nossa galáxia. Eles oferecem pistas sobre a história inicial da galáxia. O 47 Tucanae tem 10,5 bilhões de anos e é um dos mais brilhantes dos mais de 150 aglomerados globulares da Via Láctea. O aglomerado mede cerca de 120 anos-luz de largura.

Richer e sua equipe usou a Advanced Camera for Surveys do Hubble em 2010 para observar o aglomerado. Eles combinaram essas observações com 754 imagens de arquivos para precisamente medirem as mudanças nas posições de mais de 30.000 estrelas. Usando esses dados, eles puderam discernir com qual velocidade as estrelas estão se movendo. A equipe também mediu a luminosidade das estrelas bem como suas temperaturas.

Esse trabalho de arqueologia estelar identificou duas distintas populações de estrelas. A primeira consiste de estrelas mais avermelhadas, que são mais velhas e menos enriquecidas quimicamente, e possuem órbitas aleatórias circulares. A segunda população compreende estrelas mais azuladas, que são mais jovens, mais quimicamente enriquecidas e em órbitas mais elípticas.

“A geração avermelhada, que é deficiente em elementos pesados, reflete o movimento inicial do gás que se formou no aglomerado”, disse Richer. “Essas estrelas reteram uma memória de seu movimento original”.

Após as estrelas mais massivas terem completado sua evolução estelar, elas expeliram gás enriquecido com elementos mais pesados de volta para o aglomerado. Esse gás colidiu com outro gás e formou uma segunda geração de estrelas mais quimicamente enriquecida que ficou concentrada em direção ao centro do aglomerado. Vagarosamente com o passar do tempo, essas estrelas se moveram para fora, assumindo órbitas mais radiais.

Essa descoberta não é a primeira que o Hubble faz revelando múltiplas gerações de estrelas em aglomerados globulares. Em 2007, os pesquisadores do Hubble encontraram três gerações de estrelas no massivo aglomerado globular NGC 2808.

NGC 2808

© Hubble (NGC 2808)

A equipe de Richer, contudo, concatenou a dinâmica estelar para separar as populações estelares pela primeira vez. Encontrar múltiplas populações estelares em aglomerados globulares tem profundas implicações cosmológicas. Os astrônomos precisam resolver futuros enigmas dessas múltiplas gerações para melhor entender como as estrelas se formaram em galáxias distantes no início do Universo.

Os resultados obtidos pela equipe foram publicados na edição deste mês do periódico The Astrophysical Journal Letters.

Fonte: NASA

Observações reforçam teoria do Big Bang

Descobertas recentes feitas por cientistas do Brasil e do exterior derrubam algumas discrepâncias a cerca dos primeiros minutos após o Big Bang, a grande explosão que originou o Universo.

modelagem de uma estrela velha pobre em metais

© Karin Lind (modelagem de uma estrela velha pobre em metais)

A partir de dados de alta qualidade obtidos com o telescópio de 10 metros (o maior do mundo) do observatório Keck, localizado em Mauna Kea, no Havaí (EUA), os astrônomos acabam de eliminar uma discrepância que durava décadas. “Observações anteriores de estrelas muito antigas sugeriram que a quantidade de lítio-6 (Li-6) teria sido 200 vezes maior que o produzido nos primeiros minutos após a grande explosão, e que o lítio-7 (Li-7) entre três e cinco vezes menor que o calculado por cosmólogos e físicos teóricos”, conta o professor Jorge Meléndez, do Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP.

As observações recentes permitiram constatar, por meio de dados do telescópio Keck e de sofisticados cálculos, que o Li-6 não existe nas estrelas mais antigas de nossa Galáxia, o que está de acordo com os cálculos sobre a nucleossíntese do Big Bang, eliminando assim um dos principais problemas cosmológicos da atualidade.

Uma das provas da teoria do Big Bang é a proporção de elementos químicos mais simples produzidos nos primeiros instantes do Universo. A proporção dos diferentes isótopos mais ligeiros, como o Li-6 e Li-7, pode ser calculada com precisão pelo modelo de nucleossíntese do Big Bang, e essas previsões podem ser verificadas usando observações de objetos muito primitivos quimicamente, tais como estrelas muito pobres em metais. A previsão teórica é que apenas uma quantidade desprezível de Li-6 foi criada, tão pouco que seria impossível detectar Li-6 em estrelas. Portanto, as detecções anteriores de até 200 vezes mais Li-6 em estrelas do que o predito pelo Big Bang eram alarmantes, e muitos cosmólogos e físicos teóricos têm tentado explicar a discrepância usando teorias alternativas que incluem física exótica. “A descoberta da não existência de Li-6 em estrelas pobres em metais é de grande importância pois reconcilia as previsões teóricas do Big Bang com as recentes observações em estrelas”, afirma o Meléndez.

O docente integra a equipe liderada pela doutora Karin Lind, da Universidade de Cambridge, Inglaterra. Na opinião da pesquisadora, a teoria do Big Bang agora repousa sobre bases mais firmes. “Além disso, compreender o nascimento do nosso Universo é fundamental para a compreensão da posterior formação de todos os seus componentes, incluindo nós mesmos”, é o que declara a cientista em texto veiculado no site do Observatório Keck. Um artigo descrevendo os resultados acaba de ser publicado na revista internacional Astronomy & Astrophysics.

As primeiras observações que culminaram com o resultado atual tiveram início em 2005. Já em 2007, foi concluído o trabalho do tratamento dos dados observados no telescópio Keck e uma primeira análise dos dados. “Ao final de 2007 chegamos à surpreendente descoberta de Li-6 em estrelas muito mais primordiais do que se conhecia e preparamos um artigo para a revista Nature”, conta Melendez. No entanto, como a suposta presença de Li-6 poderia ser devida à convecção na atmosfera das estrelas (similar ao fenômeno observado na água fervente), a equipe optou por não submeter o artigo e investir em sofisticados modelos hidrodinâmicos de atmosferas estelares até chegar ao resultado recente.

As estrelas observadas são antigas, com cerca de 12 bilhões de anos, quase tão velhas quanto o Universo, que possui 13,8 bilhões de anos. Ao todo foram quatro as estrelas observadas, sendo uma delas tão primitiva que a quantidade de metais é de mais de mil vezes menor que o Sol. Elas têm em comum o fato de serem muito pobres em metais e, portanto, serem muito antigas, estando entre as primeiras estrelas formadas em nossa Galáxia. “Por serem estrelas muito antigas, elas são importantes para testar a teoria da nucleossíntese primordial do Big Bang. A não detecção de Li-6 está de acordo com as previsões dessa teoria, reforçando assim o nosso conhecimento sobre os primeiros instantes do Universo”, conta Meléndez.

Fonte: USP

quinta-feira, 18 de julho de 2013

Neve num sistema planetário recém nascido

Uma equipe internacional de astrônomos conseguiu obter pela primeira vez a imagem de uma linha de neve num sistema planetário recém nascido.

ilustração das linhas de neve em torno de estrela

© ESO (ilustração das linhas de neve em torno de estrela)

A linha de neve, situada no disco que rodeia a estrela do tipo solar TW Hydrae, promete ensinar-nos mais sobre a formação de planetas e cometas, incluindo os fatores que determinam a sua composição e consequentemente sobre a história do nosso próprio Sistema Solar.

Na Terra, as linhas de neve formam-se a altitudes elevadas, onde as temperaturas baixas transformam a umidade do ar em neve. Esta linha é claramente visível numa montanha, no local onde o pico coberto de neve termina e a face rochosa descoberta começa.

linha de neve do monóxido de carbono

© ESO (linha de neve do monóxido de carbono)

As linhas de neve em torno das estrelas jovens formam-se de maneira semelhante, nas regiões distantes e frias dos discos de poeira, a partir dos quais se formam os sistemas planetários. Partindo da estrela em direção ao exterior, a água (H2O), é a primeira a congelar, formando a primeira linha de neve. Mais longe da estrela, à medida que as temperaturas descem, as moléculas mais exóticas podem congelar e transformar-se em neve, tais como o dióxido de carbono (CO2), o metano (CH4) e o monóxido de carbono (CO). Estes diferentes tipos de neve dão aos grãos de poeira uma camada exterior pegajosa e desempenham um papel importante, ajudando os grãos a ultrapassarem a sua tendência natural para se quebrarem por meio de colisões, e permitindo-lhes tornarem-se os blocos constituintes cruciais de planetas e cometas. A neve também aumenta a quantidade de matéria sólida disponível, podendo fazer acelerar drasticamente o processo de formação planetária.
Cada uma destas diferentes linhas de neve - água, dióxido de carbono, metano e monóxido de carbono - podem estar ligadas à formação de tipos particulares de planetas. Por exemplo, os planetas rochosos secos formam-se no lado interior da linha de neve da água (mais próximo da estrela), onde apenas a poeira pode existir. No outro extremo encontram-se os planetas gigantes gelados que se formam para lá da linha de neve do monóxido de carbono. Em torno de uma estrela do tipo solar, num sistema planetário como o nosso, a linha de neve da água corresponderia à distância entre as órbitas de Marte e Júpiter, e a linha de neve do monóxido de carbono corresponderia à órbita de Netuno.
A linha de neve descoberta pelo ALMA (Atacama Large Millimeter/submillimeter Array ) é o primeiro indício que temos da linha de neve de monóxido de carbono em torno de TW Hydrae, uma estrela jovem situada a 175 anos-luz de distância da Terra. Os astrônomos acreditam que este sistema planetário em formação partilha muitas das características do nosso Sistema Solar, quando este tinha apenas alguns milhões de anos de idade.
“O ALMA deu-nos a primeira imagem real de uma linha de neve em torno de uma estrela jovem, o que é tremendamente excitante, pelo que podemos aprender sobre o período inicial da história do nosso Sistema Solar”, disse Chunhua “Charlie” Qi (Harvard-Smithsonian Center for Astrophysics, Cambridge, EUA), um dos autores principais do artigo científico que descreve este trabalho.

A presença da linha de neve do monóxido de carbono pode ter também consequências mais importantes do que apenas a formação de planetas. O gelo de monóxido de carbono é necessário à formação de metanol, que é um dos blocos constituintes das moléculas orgânicas mais complexas essenciais à vida. Se os cometas levarem estas moléculas a planetas recém formados, do tipo da Terra, estes planetas poderiam também ficar equipados com os ingredientes necessários à vida.
Até hoje, nunca se tinham obtido imagens diretas de linhas de neve, já que estas linhas se formam sempre no plano central relativamente estreito do disco protoplanetário e por isso, tanto a sua localização precisa como a sua extensão nunca tinham sido determinadas. Acima e abaixo da região estreita onde as linhas de neve existem, a radiação da estrela impede a formação de gelo. A concentração de gás e poeira no plano central é indispensável para isolar a área da radiação estelar, de modo a que o monóxido de carbono e outros gases possam arrefecer e congelar nesta zona.
A equipe de astrônomos conseguiu espreitar para o interior deste disco, onde a neve se formou, utilizando um truque. Em vez de procurarem a neve, que não pode ser observada diretamente, procuraram uma molécula chamada diazenylium (N2H+), a qual brilha intensamente na região do milímetro do espectro electromagnético e é por isso um alvo perfeito para um telescópio como o ALMA. Esta molécula frágil é facilmente destruída na presença de monóxido de carbono gasoso, por isso só aparecerá em quantidades susceptíveis de serem detectadas em regiões onde o monóxido de carbono se transformou em neve, não podendo por isso destruir a molécula. Ou seja, de uma maneira geral, a chave para encontrar a neve de monóxido de carbono consiste em encontrar diazenylium.
A sensibilidade e resolução únicas do ALMA permitiram aos astrônomos detectar a presença e traçar a distribuição de diazenylium, e com isso encontrar uma fronteira claramente definida a cerca de 30 UA (unidades astronômicas) da estrela (30 vezes a distância entre a Terra e o Sol), o que dá, efetivamente, uma imagem contrária da neve de monóxido de carbono no disco que rodeia TW Hydrae, que pode ser usada para ver a linha de neve do monóxido de carbono precisamente onde a teoria prevê que deva estar, na zona interior do anel de diazenylium.
“Nestas observações usamos apenas 26 das antenas ALMA, que serão um total de 66. Indicações de linhas de neve em torno de outras estrelas começam já a aparecer noutras observações ALMA, e estamos convencidos que futuras observações que usarão a rede total revelarão e fornecerão mais pistas sobre a formação e evolução de planetas. Aguardemos estes resultados“, conclui Michiel Hogerheijde do Observatório de Leiden, Holanda.

Os resultados foram publicados hoje na revista Science Express.

Fonte: ESO

Ouro da Terra veio de colisão de estrelas

Cientistas registraram uma explosão de raios gama após a colisão de duas estrelas de nêutrons.

ilustração mostra a colisão das estrelas de nêutrons

© Dana Berry (ilustração mostra a colisão das estrelas de nêutrons)

O resultado do evento cataclísmico foi a produção de diversos elementos; foi ejetado o equivalente a 100 vezes a massa do Sol em material. Há muito ouro nessa gigantesca quantidade de matéria, estima-se 10 vezes a massa da Lua.

Valorizamos o ouro por vários motivos: sua beleza, sua utilidade como joias, e sua raridade. O ouro é raro na Terra, em parte, porque também é raro no Universo. Ao contrário de elementos mais comuns, como carbono ou ferro, o ouro não é criado dentro das estrelas. Para isso, são necessários eventos mais extremos. No caso registrado, duas estrelas de nêutrons - o núcleo que sobrou de duas estrelas que explodiram como supernova - colidiram, o que levou a uma explosão de raios gama. Diversos elementos foram produzidos, entre eles o metal raro. O material rico pela colisão de estrelas de nêutrons podem gerar tais elementos, que então se submetem ao decaimento radioativo, emitindo um brilho que é dominado pela luz infravermelha, exatamente o que a equipe observou. Os pesquisadores calculam que cerca de um centésimo da massa solar do material foi ejetado pela explosão de raios gama, algumas das quais era de ouro. Ao combinar o ouro estimado produzido por um único GRB curto com o número de tais explosões que ocorreram durante a existência do Universo, todo o ouro no cosmos pode ter vindo de explosões de raios gama.

A explosão de raios gama (GRB) é um flash de luz de alta energia (raios gama) a partir de uma explosão extremamente enérgica. A maioria são encontrados no Universo distante. Os pesquisadores estudaram a GRB 130603B, cuja explosão ocorreu a 3,9 bilhões de anos-luz da Terra, uma das mais próximas já registradas, e foi vista pelo satélite Swift, da NASA, em 3 de junho. Ela durou menos de dois décimos de segundo.

"Parafraseando Carl Sagan, somos todos produtos das estrelas, e nossas joias são produtos de colisões de estrelas", diz o autor principal do artigo, Edo Berger, do Centro de Astrofísica Harvard-Smithsonian (EUA).

O estudo foi divulgado na revista Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 17 de julho de 2013

Despedaçada por um buraco negro

Novas observações obtidas com o Very Large Telescope (VLT) do ESO mostram pela primeira vez uma nuvem de gás sendo despedaçada pelo buraco negro de massa extremamente elevada que se encontra no centro da nossa Galáxia.

nuvem de gás sendo despedaçada pelo buraco negro

© ESO (nuvem de gás sendo despedaçada pelo buraco negro)

A imagem mostra as observações do VLT de 2006, 2010 e 2013, em azul, verde e vermelho, respectivamente. A nuvem está tão esticada que a sua parte da frente já passou pelo ponto mais próximo e desloca-se agora para longe do buraco negro a mais de 10 milhões de quilômetros por hora, enquanto a cauda da nuvem ainda cai em direção ao buraco negro.

gráfico da velocidade em função da posição

© ESO (gráfico da velocidade em função da posição)

Em 2011 o VLT descobriu uma nuvem de gás com várias vezes a massa da Terra acelerando em direção ao buraco negro, conhecido pelo nome formal de Sgr A*, que se encontra no centro da Via Láctea. Esta nuvem está agora efetuando a sua máxima aproximação a este objeto e as novas observações do VLT mostram que a nuvem está sendo esticada pelo campo gravitacional extremo do buraco negro.
“O gás que se encontra numa das extremidades da nuvem está esticado ao longo de mais de 160 bilhões de quilômetros em torno do ponto da órbita mais próximo do buraco negro. E o ponto de maior aproximação está a apenas um pouco mais que 5 bilhões de quilômetros de distância do buraco negro propriamente dito, por pouco não caindo lá dentro”, explica Stefan Gillessen (Instituto Max Planck de Física Extraterrestre, Garching, Alemanha), que liderou a equipe de observação. “A nuvem está tão esticada que atingir o ponto de maior aproximação ao buraco negro é um processo que dura não apenas um instante, mas um longo período de pelo menos um ano”. A distância da maior aproximação corresponde a cerca de cinco vezes a distância Netuno ao Sol, o que é realmente muito próximo para um buraco negro com uma massa de quatro milhões de vezes a do Sol!
À medida que a nuvem de gás se estica, a sua radiação torna-se mais difícil de observar. Mas utilizando o instrumento SINFONI montado no VLT, para observar a região próxima do buraco negro durante mais de 20 horas de exposição - a exposição mais profunda já feita nesta região com um espectrógrafo de campo integral - a equipe conseguiu medir as velocidades das diferentes partes da nuvem à medida que esta se aproxima o máximo possível do buraco negro central. Num espectrógrafo de campo integral a radiação coletada em cada pixel é separada individualmente nas suas componentes de cor, e por isso a cada pixel corresponde um espectro. Estes espectros são seguidamente analisados individualmente e usados para, por exemplo, criar mapas da velocidade e das propriedades químicas de cada parte do objeto observado.
“O mais excitante que vemos nestas novas observações é a extremidade da nuvem deslocando-se outra vez na nossa direção, ao longo da órbita, a mais de 10 milhões km/h, cerca de 1% da velocidade da luz”, acrescenta Reinhard Genzel, líder do grupo de pesquisa que estuda esta região há quase vinte anos. “O que significa que a parte dianteira da nuvem já passou pelo ponto da órbita mais próximo do buraco negro”.
A origem da nuvem de gás permanece um mistério, embora não haja falta de ideias sobre este assunto. É possível que a nuvem de gás possa ter sido criada por ventos estelares emitidos por estrelas que orbitam o buraco negro. Ou pode também ser o resultado de um jato emitido a partir do centro galático. Outra opção era a de uma estrela estar no centro da nuvem e neste caso o gás viria, ou de um vento desta estrela, ou de um disco planetário de gás e poeira que se encontrasse em redor da estrela.

“Tal como um desafortunado astronauta num filme de ficção científica, vemos que a nuvem está ficando tão esticada que parece um espaguete, o que quer dizer que provavelmente não terá uma estrela no seu interior”, conclui Gillessen. “Neste momento pensamos que o gás veio muito provavelmente das estrelas que orbitam o buraco negro”.
O culminar deste evento cósmico único no centro da nossa Galáxia está acontecendo e sendo observado de perto por astrônomos em todo o mundo. A extensa campanha de observação fornecerá uma riqueza de dados, revelando mais não somente sobre a nuvem de gás, mas também sobre as regiões próximas do buraco negro, as quais não tinham ainda sido estudadas anteriormente, e os efeitos da gravidade extremamente elevada, gerando efeitos turbulentos relacionados com hidrodinâmica complexa.

Este trabalho será publicado na revista especializada Astrophysical Journal.

Fonte: ESO