sexta-feira, 22 de novembro de 2013

Descoberta estrutura mais maciça do Universo

Astrônomos encontraram uma estrutura assombrosamente grande em uma parte remota do Universo, uma extensão do espaço que é tão grande que a luz demora 10 bilhões de anos para atravessar.

ilustração de uma explosão de raios gama

© ESO/L. Calçada (ilustração de uma explosão de raios gama)

A descoberta representa um dilema para um princípio fundamental da cosmologia moderna, que requer que a matéria deve aparentar estar distribuída uniformemente se vista em uma escala grande o suficiente.

A estrutura recém encontrada é mais que o dobro do tamanho do detentor do recorde anterior, um aglomerado de 73 quasares, referido como o Huge-LQG, ou Grande Grupo de Quasares, que se estende por 4 bilhões de anos-luz. É seis vezes maior que o diâmetro de 1,4 bilhões de anos-luz da Grande Muralha Sloan.

Os cientistas descobriram a nova estrutura, mapeando os locais das explosões de raios gama. Essas explosões fugazes, mas de alta energia, são provavelmente causadas pela explosão de estrelas massivas.

Devido a estrelas maiores se formarem geralmente em áreas com mais material, explosões de raios gama podem fornecer uma estimativa aproximada da quantidade de matéria uma determinada região contém.

A pesquisa atrvés do telescópio Swift da NASA e de outros rastreadores de raios gama encontrou uma região de cerca de 10 bilhões de anos-luz de distância, na direção da constelação de Hércules e Corona Borealis, que teve um número desproporcional de explosões de raios gama.

Investigando os locais das explosões, os cientistas estimam que a estrutura de onde vieram se estende por cerca de 10 bilhões de anos-luz de diâmetro, contendo uma grande concentração de aglomerados de galáxias.

A monitorização adicional das explosões de raios gama deve fornecer mais evidências da existência da estrutura.

Fonte: Discovery

Novas evidências de emissões de jatos por buraco negro

Novas evidências foram descobertas para a presença de um jato de partículas de alta energia expelidas pelo buraco negro supermassivo Sagitário A*  (Sgr A*) na Via Láctea.

buraco negro Sagitário A

© Chandra/VLA (buraco negro Sagitário A)

Os astrônomos observaram tal jato através da combinação de dados de raios X (em roxo) do observatório Chandra da NASA com a emissão de rádio (em azul) captada do Very Large Array (VLA) do NSF (National Science Foundation).

Os jatos emergem de Sgr A* viajando através do espaço até atingir o gás a vários anos-luz de distância, desencadeiando a formação de uma frente de choque (em azul). Essa interação também acelera os elétron, gerando raios X passando na frente de choque.

A frente de choque é também de interesse porque é extraordinariamente grande na emissão de rádio em comparação com o perfil mais estreito do jato em raios X. Isto sugere que pode ser um jato derivado com fraco escoamento, aparentando ser como um casulo em torno do jato com um ângulo de abertura de cerca de 25 graus.

O Sgr A* tem cerca de 4 milhões de vezes a massa do Sol e está situado a 26 mil anos-luz da Terra, no centro da Galáxia. Os astrônomos têm procurado por um jato noe Sgr A* por anos, uma vez que agora é comum encontrar jatos ligados a um conjunto de objetos cósmicos em grandes e pequenas escalas. Antes deste último estudo, houve relatos de possíveis evidências de um jato associado com o Sgr A*. No entanto, estes fatos eram contraditórios e não foram considerados definitivos.

Um artigo descrevendo os resultados será publicado na próxima edição da revista The Astrophysical Journal.

Fonte: Smithsonian Astrophysical Observatory

Explosões estelares na galáxia NGC 6984

As supernovas são objetos extremamente brilhantes. Elas são formadas quando uma estrela atinge o final da sua vida com uma explosão dramática, expelindo a maior parte do seu material no espaço.

galáxia NGC 6984

© Hubble (galáxia NGC 6984)

O objeto dessa nova imagem do Hubble é a galáxia espiral NGC 6984, executou uma dessas explosões em 2012, conhecida como SN 2012im. Agora, outra estrela explodiu, formando a supernova SN 2013ek, visível nessa imagem como o objeto proeminente brilhante, parecido com uma estrela logo acima e a direita do centro da galáxia. A SN 2012im é conhecida como uma supernova do Tipo Ic, enquanto que a supernova mais recente, a SN 2013ek é do Tipo Ib.

Ambos os tipos resultam do colapso de núcleos de estrelas massivas que expeliram suas camadas externas de hidrogênio. Acredita-se que as supernovas do Tipo Ic perdem a maior parte de seus envelopes externos mais do que as do Tipo Ib, incluindo a camada de hélio. As observações feitas para gerar a imagem acima foram feitas em 19 de Agosto de 2013, e tiveram como objetivo apontar o local dessa nova explosão com mais precisão.

A supernova de 2013 ocorreu tão perto da SN 2012im que acredita-se que os dois eventos estejam de alguma forma interligados; a chance de duas supernovas completamente independentes tão próximas e da mesma classe explodindo com um ano de diferença é um evento astronômico muito improvável. Inicialmente sugeriu-se que a SN 2013ek pode ter sido de fato uma nova explosão da SN 2012im, mas observações posteriores suportam a ideia de que elas são supernovas separadas, embora devem estar relacionadas de alguma maneira.

Fonte: NASA

quarta-feira, 20 de novembro de 2013

Nuvem escura colossal formando uma estrela gigante

Uma questão de longa data é se as estrelas mais massivas se formam de pequenos grupos densos se unindo, ou a partir do colapso em grande escala de uma única nuvem grande de gás e poeira.

Spitzer Dark Cloud 335

© NASA/ESA/ESO (Spitzer Dark Clouds 335)

A imagem mostra o Spitzer Dark Clouds 335 vista pelo satélite Spitzer da NASA (amarelo), Herschel (azul), e ALMA (magenta) mostrando a estrutura filamentar.

O tamanho e densidade dos núcleos proto-estelares no centro do Spitzer Dark Clouds 335 implica que é o colapso global em grande escala, o que levou à formação, embora não se conhece a ocorrência disto em todos os lugares.

"As observações notáveis ​​da ALMA nos permitiu obter a primeira observação em profundidade o que estava acontecendo dentro dessa nuvem", diz Nicolas Peretto, da Universidade de Cardiff. "Queríamos ver como estrelas gigantes se formam e crescem, e nós certamente atingimos o nosso objetivo! Uma das fontes que encontramos é um gigante absoluto, o maior núcleo protoestelar nunca visto na Via Láctea ".
O Herschel ajudou astronômos na identificação do nascimento de uma das maiores estrelas da nossa galáxia. A gigante está no coração de um casulo de poeira contendo mais de 500 mil vezes a massa do nosso Sol, que fica no Spitzer Dark Clouds 335.
A formação de estrelas maciças não é bem compreendida, em parte porque a sua formação é muito rápida. Normalmente, elas levam menos de um milhão de anos para se formar, então pegá-las no ato é muito difícil. O embrião estelar está ainda nas fases iniciais de formação, atualmente classificado como um núcleo proto-estelar. Espera-se que a estrela resultante pese uma centena de vezes a massa do nosso Sol, algo conseguido apenas por uma estrela de cada 10.000 em nossa galáxia.

A nuvem de gás e poeira foi inicialmente descoberta em imagens do satélite Spitzer, onde apareceu como uma região escura contra a luz de fundo da Galáxia. Outras imagens do Herschel, tomada como parte do Herschel infrared Galactic Plane Survey (Hi-GAL), mostrou que a região continha algumas grupos densos e frios de material no processo de formação de estrelas. Mas imagens com resolução muito maior da rede de antenas do telescópio ALMA, no Deserto do Atacama, no Chile, revelaram a imensa massa dos aglomerados proto-estelares.

Esta estrela monstruosa não estará sozinha, uma vez que a nuvem ao terminar a formação estelar prevê-se que haverá um conjunto de várias centenas de estrelas dentro de alguns anos-luz uma da outra, mas a maioria será muito menor. O resultado final pode ser bem semelhante em muitos aspectos ao conjunto maciço de estrelas no centro da nebulosa de Órion.

As regiões exteriores da nuvem possuem uma estrutura filamentar se estendendo em várias direções. O ALMA mostrou que o gás se move ao longo destes filamentos, alimentando a formação de estrelas no centro.

Resultados como este estão aumentando significativamente a nossa compreensão da formação de estrelas massivas. Embora a gravidade desempenha um papel muito importante, fazendo com que aglomerados de gás e poeira em colapso formam núcleos proto-estelares densos, é incerto quanto à escala em que estão ocorrendo.

Fonte: NASA

domingo, 17 de novembro de 2013

Novo tipo de quasar é descoberto

Como a nossa Via Láctea, cada grande galáxia conhecida tem em seu centro um buraco negro supermassivo, alguns dos quais estão rodeados por um disco muito brilhante de gás quente chamado quasar.

ilustração mostra o gás ao redor de buraco negro

© Universidade York (ilustração mostra o gás ao redor de buraco negro)

Agora, uma equipe de pesquisadores descobriu uma nova classe de quasares em galáxias distantes que mesmo as teorias mais atuais não tinham previsto.

“O gás neste novo tipo de quasar está se movendo em duas direções: uma parte em direção à Terra e a maior parte está se movendo em velocidades elevadas na direção do buraco negro do quasar. Assim como você pode usar o efeito Doppler para o som para saber se um avião está se afastando de você ou vindo na sua direção, foi utilizado o efeito Doppler para a luz para saber se o gás nestes quasares está se afastando da Terra, ou se está indo em direção aos buracos negros centrais, que têm uma massa de milhões a bilhões de vezes a do Sol”, disse o co-autor do estudo Niel Brandt, professor de astronomia e astrofísica da Universidade Penn State.

A matéria em torno destes buracos negros formam um disco que é maior do que a órbita da Terra em torno do Sol e mais quente do que a superfície do Sol. Estes quasares geram luz suficiente para serem vistos por todo o cosmo observável, se tornando um dos objetos mais brilhantes do Universo.

A equipe internacional de pesquisadores, liderada por Patrick Hall, da Universidade de York, em Toronto, no Canadá, descobriu os quasares incomuns com dados de um grande levantamento do céu, feito através do Sloan Digital Sky Survey (SDSS-III). “A matéria que cai em buracos negros não pode soar como surpreendente, mas o que encontramos é, de fato, muito misterioso e não foi previsto pelas teorias atuais.”, disse Hall.

Tal condição foi encontrada em apenas cerca de 1 em 10 mil quasares, e apenas 17 casos agora são conhecidos. “O gás no disco deve, eventualmente, cair no buraco negro do quasar, mas o que sempre foi visto até então era o gás sendo sempre soprado para longe do buraco negro com o calor e a luz do quasar, vindo em direção a nós em velocidades de até 20% a velocidade da luz”, disse Hall.

Hall disse que há uma possível explicação para esses objetos. “Pode ser que o gás se afastando de nós não esteja caindo no buraco negro, mas sim esteja orbitando em torno dele, um pouco acima do disco de gás quente, e está gradualmente sendo empurrado para longe do buraco negro”.

Para ajudar a entender o que é necessário rever nos modelos de quasares e seus fluxos de gás no disco, a equipe de pesquisadoes está observando esses quasares mais longe utilizando o telescópio Gemini Norte, no Havaí.

Fonte: Phys.Org

sábado, 16 de novembro de 2013

Jatos super energéticos lançados por buracos negros

Observações sem precedentes da composição dos jatos super energéticos lançados por buracos negros evidenciaram a composição desses feixes misteriosos.

ilustração da emissão de jatos por buraco negro

© Riccardo Lanfranchi (ilustração da emissão de jatos por buraco negro)

Os cientistas encontraram evidências de níquel e ferro nos jatos emitidos por um buraco negro relativamente pequeno, o que sugere que a matéria ordinária desempenha uma função mais importante nestas estruturas enigmáticas do que a antimatéria exótica.

"Nós sabemos há muito tempo que os jatos contêm elétrons, mas não tem uma carga global negativa, de modo que deve haver algo carregado positivamente neles também. Até agora, não estava claro se a carga positiva veio de pósitrons, a antimatéria 'oposta' de elétrons, ou átomos carregados positivamente. Uma vez que nossos resultados encontraram níquel e ferro nestes jatos, agora sabemos que a matéria comum deve estar fornecendo a carga positiva.", disse o co-autor James Miller-Jones, da Universidade de Curtin na Austrália.

Os pesquisadores estudaram o 4U1630-47, um candidato a buraco negro apenas algumas vezes mais massivo que o Sol. Eles estudaram as emissões de raios X do objeto usando o satélite XMM-Newton, da ESA e analisou o buraco negro em ondas de rádio usando o sistema Australia Telescope Compact Array.

As observações de rádio revelou para a equipe o súbito aparecimento dos jatos, enquanto os dados do XMM-Newton revelaram linhas de emissão no espectro de raios X dos jatos correspondentes a ferro e níquel. Além disso, estas linhas foram deslocadas significativamente, tanto quanto o som de uma sirene muda quando um caminhão de bombeiros ou ambulância se aproxima e, em seguida, passa um observador.

"Isso nos levou a concluir que as partículas estavam sendo aceleradas para velocidades rápidas nos jatos, uma voltada para a Terra e a outra na direção oposta", disse o co-autor Simone Migliari, da Universidade de Barcelona.

A equipe calculou a velocidade dos jatos como sendo de aproximadamente 66% da velocidade da luz, ou seja, 78 milhões km/h.

Como os átomos carregados positivamente são muito mais pesados ​​do que os pósitrons, os jatos provavelmente transportam energia muito mais longe do buraco negro do que estudos anteriores tinham sido capazes de confirmar, disseram os pesquisadores.

As novas descobertas também poderiam ajudar a responder um outro mistério antigo sobre jatos de buracos negros: a localização de onde são lançados. Alguns astrônomos dizem que jatos são alimentados pela rotação de seus buracos negros hospedeiros, enquanto outros pressupõem que eles nascem do disco do material que os rodeia e alimenta estes monstros devorando matéria.

Fonte: Space

sexta-feira, 15 de novembro de 2013

Uma ilusão galáctica

A ponta da galáxia espiral UGC 10288 parecia ser um único objeto em observações anteriores. No entanto, os novos dados detalhados de rádio do Jansky Very Large Array (VLA) do NRAO (National Radio Astronomy Observatory) revelou que a grande extensão perpendicular no halo da UGC 10288, é realmente uma galáxia distante ao fundo emitindo jatos de rádio.

galáxia UGC 10288

©  NRAO e NASA (galáxia UGC 10288)

Na nova imagem destacando a mudança no alinhamento, os dados de rádio (em azul) são observações do VLA e no infravermelho são do telescópio espacial Spitzer e o WISE (Wide-field Infrared Survey Explorer) da NASA (em amarelo e laranja, respectivamente). Dados visíveis também são mostrados, a luz das estrelas (em azul e púrpura) e o gás aquecido (em rosa).

A galáxia mais próxima, chamada UGC 10288, situa-se a 100 milhões de anos-luz de distância. Ela tem forma em espiral, mas do nosso ponto de vista na Terra, estamos vendo sua borda fina. A galáxia mais distante, vista em azul, está cerca de 7 bilhões de anos-luz de distância. Dois jatos gigantes são lançados longe desta galáxia, um dos quais é visto acima do plano do disco da galáxia mais próxima.

Imagens de rádio anteriores das duas galáxias aparecem como um borrão difuso, parencendo nas observações com sendo apenas uma galáxia. Graças ao VLA foi observar a dupla de galáxias.

galáxia UGC 10288

©  Spitzer (galáxia UGC 10288)

Observações do Spitzer e do WISE ajudaram a revelar as novas estruturas acima e abaixo do plano do disco da galáxia mais próxima. Por exemplo, o Spitzer confirmou uma estrutura em arco com elevação de mais de 11 mil anos-luz acima do disco, que foi visto nas observações de rádio.

Fonte: Astronomical Journal

quinta-feira, 14 de novembro de 2013

Estrelas jovens pintam paisagem estelar

Os astrônomos do ESO captaram a melhor imagem das nuvens situadas em torno do enxame estelar NGC 3572.

enxame estelar NGC 3572 e o seu meio circundante

© ESO (enxame estelar NGC 3572 e o seu meio circundante)

Esta nova imagem mostra como é que estas nuvens de gás e poeira estão sendo esculpidas em extravagantes bolhas, arcos e estruturas estranhas conhecidas como trombas de elefante, pelos ventos estelares originados por este conjunto de estrelas quentes jovens. As estrelas mais brilhantes do enxame são muito mais pesadas do que o Sol e terminarão a suas curtas vidas em explosões de supernovas.

A maioria das estrelas não se forma isoladamente mas sim em grupo, com todos os elementos criados essencialmente ao mesmo tempo a partir de uma única nuvem de gás e poeira. O NGC 3572, na constelação austral de Carina (a Quilha), é um destes enxames que contém muitas estrelas quentes jovens azul-esbranquiçadas. Estas estrelas brilham intensamente e emitem poderosos ventos estelares que tendem a dispersar o gás e a poeira que ainda restam na sua região circundante. As nuvens de gás brilhante e o enxame de estrelas que as acompanha são o assunto desta nova fotografia obtida com o instrumento Wide Field Imager, montado no telescópio MPG/ESO de 2,2 metros instalado no Observatório de La Silla, no Chile. O poder do Wide Field Imager propiciou o estudo sa física dos discos protoplanetários nas estrelas jovens do NGC 3572. Foi uma surpresa descobrir que o enxame contém estrelas mais velhas do que dez milhões de anos ainda acretando massa, o que significa que tais estrelas estão ainda rodeadas por discos. Este fato diz-nos que a formação estelar neste enxame dura há, pelos menos, de 10 a 20 milhões de anos e sugere que o processo de formação planetária pode ocorrer em escalas de tempos muito mais longas do que o que se pensava anteriormente.
Na parte inferior da imagem pode ver-se um grande pedaço da nuvem molecular que deu origem a estas estrelas. Esta parte da nuvem foi dramaticamente afetada pela forte radiação emitida pelas suas decendentes ardentes. Para além de a fazer brilhar com uma cor assaz caraterística, a radiação esculpe igualmente a nuvem em extraordinárias formas intricadas, incluindo bolhas, arcos e colunas escuras, conhecidas como trombas de elefante.
Nesta imagem capturou-se uma estranha estrutura que pode ser vista ligeiramente acima do centro da imagem: uma nebulosa muito pequenina em forma de anel. Os astrônomos ainda não sabem ao certo qual a origem desta curiosa estrutura, pensando-se, no entanto, que se trata provavelmente do resto denso da nuvem molecular que formou o enxame, talvez uma bolha criada em torno de uma estrela quente muito brilhante. Alguns autores pensam que pode ser um tipo de nebulosa planetária com uma forma estranha. Quando uma estrela moribunda do tipo do Sol gasta todo o seu combustível, liberta as suas camadas exteriores para o espaço circundante. Os restos quentes da estrela continuam brilhando intensamente no seio deste material, criando bonitas conchas brilhantes de gás ionizado, de curta duração, e formando as chamadas nebulosas planetárias. Este nome de origem histórica está relacionado com a aparência destes objetos quando vistos através de um pequeno telescópio, não tendo qualquer relação física com um planeta.
As estrelas que nascem no interior de um enxame podem ser irmãs mas não são gêmeas. Têm quase a mesma idade mas diferem em tamanho, massa, temperatura e cor. O percurso de vida de uma estrela é determinado em grande parte pela sua massa, por isso um determinado enxame conterá estrelas em várias fases das suas vidas, constituindo um laboratório perfeito para estudar a evolução estelar. O tempo de vida de uma estrela depende dramaticamente do quão pesada ela é. Uma estrela com cinquenta vezes mais massa do que o Sol terá um tempo de vida de apenas alguns milhões de anos, enquanto que o Sol viverá cerca de dez bilhões de anos e estrelas anãs vermelhas de pequena massa podem viver trilhões de anos, muito mais do que a idade atual do Universo.
Nestes grupos as estrelas jovens mantêm-se juntas durante um tempo relativamente curto, tipicamente da ordem das dezenas ou centenas de milhões de anos. O grupo acaba por se separar devido a interações gravitacionais, mas também porque as estrelas de massa mais elevada têm uma vida curta, queimando o seu combustível muito depressa e terminando as suas vidas sob a forma de violentas explosões de supernovas, contribuindo assim para a dispersão do restante gás e estrelas que ainda permaneciam no enxame.

Fonte: ESO

terça-feira, 12 de novembro de 2013

O nascimento borbulhante de uma estrela

Uma combinação de dados do telescópio espacial Spitzer da NASA e do telescópio terrestre ALMA do ESO, instalado no Chile, mostra o nascimento turbulento de uma estrela a 1.400 anos-luz da Terra, na constelação da Vela.

HH 46/47

© Spitzer e ALMA (HH 46/47)

A imagem acima mostra o objeto Herbig-Haro (HH) 46/47 formado após jatos liberados por estrelas recém-nascidas colidirem com o material cósmico circundante, o que produz pequenas regiões nebulosas e brilhantes.

A olho nu, essa estrela ficaria obscurecida pelo gás e pela poeira que a envolvem. Mas os telescópios usaram ondas de luz infravermelhas através do Spitzer e submilimétricas por intermédio do ALMA para ultrapassar a nuvem escura.

As observações feitas pelo Spitzer mostram jatos gêmeos supersônicos que saem do centro do astro, destroem o gás em volta e dividem o objeto em dois lóbulos borbulhantes.

Segundo o cientista Alberto Noriega-Crespo, do Centro de Processamento e Análise de Infravermelho do Instituto de Tecnologia da Califórnia (Caltech), em Pasadena, estrelas jovens como o nosso Sol precisam remover um pouco do gás que cai sobre elas para se manterem estáveis, e a HH 46/47 é um excelente laboratório para estudar como ocorre esse processo.

Noriega-Crespo liderou a equipe que começou a estudar esse astro com o telescópio Spitzer, há quase dez anos. Agora, ele e seus colegas conseguiram obter uma imagem com melhor resolução.

Com as informações do ALMA, captadas pela equipe do cientista Hector Arce, da Universidade Yale, nos EUA, os astrônomos observaram que o gás contido nos dois lóbulos do objeto está se expandindo mais rapidamente que o imaginado. Esse mecanismo exerce um efeito sobre a turbulência gerada na nuvem gasosa que originou a estrela.

Os resultados do ALMA foram publicados recentemente na revista The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

domingo, 10 de novembro de 2013

A formação estelar indicada por masers

Ocasionalmente, a emissão de raios X do gás quente muito perto dos buracos negros pode estimular as moléculas de água para emitir maser, ou seja, micro-ondas de laser.

maser de metanol

© Spitzer (maser de metanol)

A imagem acima, obtida pelo telescópio espacial no infravermelho Spitzer da NASA mostra uma estrela jovem escoando jatos de gás (em verde). Os masers de metanol brilhantes, muitas vezes são vistos em regiões de formação estelar podendo indicar que apenas ocorrem em estrelas jovens, mas também são encontrados em torno de estrelas mais velhas.

O termo maser se originou como um acrônimo de Microwave Amplification by Stimulated Emission of Radiation. Masers funcionam da mesma maneira como lasers, exceto que eles emitem micro-ondas em vez de luz visível.

As linhas de emissão dessas regiões maser são tão nítidas e fortes, e os ângulos mensuráveis ​​por interferometria, da ordem de milliarcseconds, que é possível medir velocidades orbitais do maser com uma fração de um parsec do buraco negro.

Estes masers estão orbitando tão rapidamente, aproximadamente 1.000 km/s, que depois de alguns anos é possível medir acelerações orbitais e movimentos próprios. Tais medidas podem ser utilizadas para obter distâncias muito diretas de suas galáxias hospedeiras, livres dos erros sistemáticos e calibração que assolam o método convencional de determinar distâncias extragalácticas.
Os astrônomos a meio século atrás ficaram surpresos ao descobrir que as regiões de formação estelar, por vezes, produzem maser natural (o brilho, análogo ao comprimento de onda de rádio em lasers). Nuvens de vapor de água ou vapor de metanol em regiões de formação estelar geram alguns dos maser mais espetaculares.

galáxia NGC 4258

© R Jay GaBany (galáxia NGC 4258)

Cerca de 15 anos atrás, os astrônomos usaram o Very Long Baseline Array do NRAO (National Radio Astronomy Observatory) para obter a primeira distância extragaláctica utilizando maser, para a galáxia NGC 4258. Este esforço levou à descoberta da primeira evidência direta de um buraco negro supermassivo em um núcleo galáctico, bem como a distância extragalática mais preciso, em torno de 7,2 Mpc (Megaparsec) com uma incerteza total de 7%.

Desde os anos 1990, o número de masers conhecidos mais que duplicou, e cerca de dez das fontes recém-descobertas são candidatas promissoras pelo menos para medição de distância como a NGC 4258. As novas pesquisas procuram  mais masers de água em núcleos galácticos ativos (SAMBA Survey) e o NRAO e o MPIfR (Max Planck Institute for Radio Astronomy) executam um projeto de 5 anos, o WMCP (Water Maser Cosmology Project), para medir a taxa de expansão do Universo (a constante de Hubble) com uma pequena porcentagem de precisão através da obtenção de "distâncias maser" e velocidades de recessão para um número significativo de galáxias externas.

Em 2011, três masers de água foram descobertos na Via Láctea, incluindo o que poderia ser um dos mais rápidos já encontrado, alcançando velocidades de até 350 km/s. As moléculas de água em regiões de formação estelar de elevada massa e em torno de estrelas moribundas absorvem a energia ao redor e reemitem como radiação na faixa de frequência de micro-ondas.

Usando o Telescope Array Compact Australian perto de Narrabri em New South Wales, Glenn Rees da Commonwealth Scientific and Industrial Research Organisation (CSIRO), encontrou os três masers de água na Via Láctea usando dados coletados pela H2O Southern Galactic Plane Survey (HOPS). Os masers de água emitem na frequência de 22 GHz (Gigahertz).

Um dos masers de água que Rees descobriu foi encontrado em torno de uma estrela AGB (post-Asymptotic Giant Branch), uma estrela próxima do final de sua vida, jorrando jatos de moléculas de água. Apenas 12 fontes de água já foram detectadas até agora.

Estas fontes estelares são verdadeiros gêiseres cósmicos!

Elas podem ajudar os cientistas a descobrir como estrelas AGB esféricas evoluem para nebulosas planetárias, que apresenta um escudo brilhante, colorido de gás e poeira em torno de uma estrela nos últimos estágios de vida, exibindo uma variedade de formas e tamanhos.

Fonte: CfA e CSIRO

Revisitando a superbolha N44

Esta nova imagem colorida mostra a região de formação estelar LHA 120-N44 na Grande Nuvem de Magalhães, uma pequena galáxia satélite da Via Láctea.

LHA 120-N44

© ESO/Chandra/Spitzer (LHA 120-N44)

Esta imagem combina dados no visível do telescópio MPG/ESO de 2,2 metros, instalado no Observatório de La Silla do ESO, no Chile, com dados no infravermelho e nos raios-X obtidos com observatórios espaciais situados em órbita da Terra.

No centro desta região muito rica em gás, poeira e estrelas jovens situa-se o aglomerado estelar NGC 1929. As suas estrelas de elevada massa emitem radiação intensa, expelem matéria a altas velocidades sob a forma de ventos estelares e correm ao longo das suas curtas mas brilhantes vidas, explodindo no final como supernovas. Os ventos e as ondas de choque das supernovas esculpem uma enorme cavidade, chamada uma superbolha, no gás circundante.

Observações com o Observatório de Raios-X da NASA, o Chandra (em azul na imagem) revelam regiões quentes criadas por estes ventos e choques, enquanto os dados infravermelhos do Telescópio Espacial Spitzer, da NASA (em vermelho), delineiam as regiões onde se encontram a poeira e o gás mais frio. Os dados no visível do telescópio MPG/ESO de 2,2 metros (em amarelo) completam a imagem, mostrando as estrelas quentes jovens propriamente ditas, assim como as brilhantes nuvens de gás e poeira que as rodeiam.

Combinando dados da região em diferentes comprimentos de onda permitiu aos astrônomos resolver um mistério: porque é que a N44, e outras superbolhas semelhantes, emitem raios-X tão intensos? A resposta parece residir no fato de existirem duas fontes extra de emissão de raios-X brilhantes: as ondas de choque das supernovas que atingem as paredes das cavidades e a matéria quente que se evapora das paredes das cavidades. Esta emissão de raios-X vinda da periferia da superbolha é claramente visível na imagem.

A designação LHA 120-N44 deste objeto indica que foi incluído no catálogo de estrelas e nebulosas com emissão H-alfa nas Nuvens de Magalhães, compilado e publicado em 1956 pelo astrônomo e astronauta americano Karl Henize (1926-1993). A letra "N" indica que é uma nebulosa. O objeto é normalmente chamado apenas de N44.

Fonte: ESO

sexta-feira, 8 de novembro de 2013

Asteroide com seis caudas

Um estranho asteroide que parece ter múltiplas caudas giratórias foi detectado entre Marte e Júpiter pelo telescópio espacial Hubble.

asteroide com seis caudas

© Hubble (asteroide com seis caudas)

Ao invés de se parecer com um pequeno ponto de luz, como a maioria dos asteroides, este possui seis caudas de poeira parecidas com as dos cometas, similares aos raios de uma roda.

Surpreendentemente, as estruturas de sua cauda mudaram dramaticamente em apenas 13 dias à medida que libera poeira.

O objeto foi denominado P/2013 P5, e acredita-se que ele esteja ejetando poeira por pelo menos cinco meses. O asteroide pode ter girado tão rápido que começou a se desintegrar. As caudas são resultantes de um impacto porque um evento assim faria a poeira se espalhar de uma vez.

Cientistas usando o telescópio de rastreio Pan-STARRS no Havaí anunciaram a descoberta do asteróide P/2013 P5 em 27 de agosto, onde parecia como um objeto extraordinariamente difuso. As múltiplas caudas foram descobertas quando o telescópio Hubble foi usado para dar uma imagem mais detalhada em 10 de setembro passado. Quando Hubble olhou para o asteroide novamente 23 de setembro, a sua aparência tinha mudado totalmente.

Uma modelagem cuidadosa foi executada por Jessica Agarwal, membro da equipe do Max Planck Institute for Solar System Research, em Lindau, na Alemanha, mostrando que as caudas poderiam ter sido formadas por uma série de eventos de ejeção de poeira impulsivas. Ela calculou que os eventos de ejeção de poeira ocorreram em 15 de abril, 18 de julho, 24 de julho, 08 de agosto, 26 de agosto e 04 de setembro.

A pressão de radiação do Sol possivelmente pode ter girado o asteroide. A taxa de rotação pode ter aumentado o suficiente para que a fraca gravidade do asteroide já não possa prendê-lo juntos. Se isso aconteceusse, a poeira poderia deslizar em direção ao equador do asteróide, despejando-se para o espaço para formar uma cauda. Até agora, apenas cerca de 100 a 1.000 toneladas de poeira, uma pequena fração da massa principal do P/2013 P5, foi perdida. O núcleo do asteroide, que mede 427 metros de largura, é milhares de vezes mais massivo do que o valor observado de poeira ejetada.
Os astrônomos continuarão observando o P/2013 P5 para ver se a poeira deixa o asteroide no plano equatorial. Se isso acontecer, esta seria uma forte evidência para um rompimento da rotação, que talvez deva ser um fenômeno comum no cinturão de asteroides, podendo até ser a principal maneira de pequenos asteroides se desintegrarem.

Um artigo foi reportado no periódico Astrophysical Journal Letters, pelo principal pesquisador, David Jewitt, professor do Departamento de Ciências da Terra e do Espaço na Universidade da Califórnia em Los Angeles.

Fonte: NASA

Encontrado sistema solar com sete planetas

Duas equipes diferentes de pesquisadores indicam a descoberta de um sétimo planeta ao redor da estrela anã KIC 11442793.

ilustração de um sistema planetário

© Discovery (ilustração de um sistema planetário)

O sistema tem similaridades com o nosso Sistema Solar, que tem oito planetas. Porém, todos os planetas que orbitam a estrela anã, que está localizada a cerca de 2.500 anos luz da Terra, estão muito mais próximos de sua estrela.

Uma das identificações foi feita por voluntários usando o site Planet Hunters. O site foi criado para permitir que voluntários tivessem acesso a dados públicos enviados pelo telescópio espacial Kepler da NASA, que foi lançado para procurar os exoplanetas. O Kepler usa o método de "trânsito" para descobrir novos planetas, o que significa procurar pelas curvas de luz deixadas por um planeta quando este passa em frente de sua estrela hospedeira. Mas a grande quantidade de dados existentes não permite que os cientistas examinem cada curva de luz, e por isso eles desenvolveram programas de computador para procurar a assinatura de um trânsito planetário.

Todos os sete planetas estão bem mais próximo da estrela anã em uma comparação com as distâncias dos planetas do Sistema Solar. Na verdade, todos caberiam dentro da distância entra a Terra e o Sol.

Esta é uma das razões pelas quais eles são fáceis de serem vistos, porque quanto mais perto eles estão de sua estrela, mais frequentemente eles giram ao seu redor.

O novo planeta é o quinto mais distante de sua estrela progenitora, e leva quase 125 dias para completar uma órbita.

Com um raio 2,8 vezes maior que o da Terra, ele faz parte de um grupo que inclui dois planetas com praticamente o mesmo porte da Terra, três "super-Terras" e dois corpos maiores.

Este sistema planetário realmente se parece com o nosso Sistema Solar, com todos os pequenos planetas no interior e os grandes planetas na parte de fora. E isso não é necessariamente o que normalmente é observado.

Acredita-se que outra estrela, a HD 10180, tenha sete ou nove sinais planetários. Um sol distante chamado GJ 887C também pode ter uma família de sete planetas.

Fonte: BBC

quinta-feira, 7 de novembro de 2013

Uma nebulosa planetária em Cassiopeia

O fraco objeto HFG1, também conhecido como PK 136+05, é uma nebulosa planetária muito velha de um ano-luz ou mais de diâmetro, localizada na constelação norte de Cassiopeia.

HFG1

© T.A. Rector e H. Schweiker (HFG1)

Foi descoberto em 1982 por Heckathorn, Fesen e Gull, daí o seu nome. Apesar do seu nome, nebulosas planetárias não têm nada a ver com planetas. O nome de nebulosas planetárias surgiu no século 18 por causa da semelhança visual entre algumas nebulosas planetárias circulares e os planetas Urano e Netuno, quando vistos através de pequenos telescópios ópticos.

As nebulosas planetárias representam o estágio final da vida de uma estrela de tamanho médio como o nosso Sol. Ao consumir o último do combustível em seu núcleo, a estrela que está morrendo (colapso de um gigante vermelho para uma anã branca) expele uma grande parte do seu envelope exterior. Este material , em seguida, torna-se aquecido pela radiação do remanescente estelar e irradia, produzindo nuvens brilhantes de gás que podem mostrar estruturas complexas, devido a ejeção desigual de massa da estrela ao longo do tempo e da direção.

A nebulosa planetária HFG1 foi produzida pela estrela central V664 Cas de magnitude 14,5. Esta não é uma única estrela, mas um sistema binário constituído por uma anã branca e uma estrela semelhante ao Sol, que estão apenas alguns milhões de quilômetros de distância entre si e estão orbitando uma à outra a cada 14 horas. Este sistema binário está se movendo rapidamente através da Via Láctea (e em direção ao canto superior direito da imagem).

Como a HFG1 trafega através do meio interestelar, um arco azulado é produzido. Uma longa trilha vermelha de gás é deixado para trás pela estrela V664 Cas com velocidade entre 29 e 59 quilômetros por segundo, dependendo de sua distância do Sol.

A HFG1 é definida como uma nebulosa planetária tipo F, significando que ela parece estar uniformemente preenchida. O estreito arco azulado é mais brilhante ao sul, sugerindo que ele interage com o meio interestelar. Ele não está completo, invisível na região noroeste. O núcleo tem três lóbulos brilhantes em direção ao sul e uma abertura central.

As nebulosas planetárias duram apenas cerca de 10 mil anos, um período muito curto comparado com os 10 bilhões de anos de vida de estrelas do tipo solar. Então, a HFG1 já é muito antiga, e gradualmente irá dispersar-se no espaço, enquanto a anã branca vai esfriar e desaparecer em bilhões de anos. Nosso próprio Sol deverá sofrer um destino semelhante, mas isso não irá ocorrer até cerca de 5 bilhões de anos, felizmente!

Esta imagem foi obtida com a visão de campo largo da câmera Mosaico no telescópio Mayall de 4 metros no Kitt Peak National Observatory. Ela foi gerada com filtros em observações do hidrogênio alfa (em vermelho) e do oxigênio [OIII] (em azul).

Fonte: National Optical Astronomy Observatory

Kepler encontrou inúmeros exoplanetas

Há pouco mais de duas décadas, nenhum planeta havia sido detectado fora do Sistema Solar.

vários planetas descobertos pelo Kepler

© Instituto SETI (vários planetas descobertos pelo Kepler)

Agora, mais de mil planetas extrassolares já foram confirmados, e a equipe do telescópio espacial Kepler anunciou um lote de mais 833 novos candidatos a planetas na na Conferência Científica Kepler em Moffett Field, Califórnia.
Essa vastidão de riquezas está muito além do que cientistas ousavam esperar antes de a NASA lançar a missão Kepler, em 2009. O telescópio, orbitando o Sol, identifica planetas ao observá-los passar na frente de suas estrelas reduzindo brevemente a luz das estrelas.

Na realidade, o Kepler descobriu mais de 3.500 candidatos a exoplanetas em seus três primeiros anos, incluindo planetas grandes e pequenos, mundos rochosos e gasosos, e um total de 647 possíveis planetas que parecem ter o tamanho da Terra.

Com base nas descobertas do Kepler, pesquisadores estimam que nossa Via Láctea, sozinha, poderia abrigar cerca de 140 bilhões de planetas. Algum deles abriga vida? A melhor aposta para encontrar vida como a conhecemos é procurar ambientes habitáveis que compartilhem as confortáveis ofertas terrestres: muita água líquida, atmosferas protetoras, e uma estrutura estável, rochosa, com a quantidade certa de luz solar. Astrônomos definiram “a zona habitável” como várias distâncias ao redor de estrelas, com base na temperatura, que tem maior probabilidade de oferecer essas amenidades. Até agora o Kepler encontrou 104 candidatos que parecem residir nas zonas habitáveis de suas estrelas, sendo que 10 deles têm menos de duas vezes o raio da Terra. Para saber se qualquer um desses mundos realmente tem as coisas certas para a vida, serão necessárias observações feitas com a próxima geração de telescópios.
Enquanto isso, as estatísticas do Kepler fornece uma ideia melhor a respeito das tendências gerais em relação ao zoológico planetário da galáxia. Entre estrelas semelhantes ao Sol, cerca de 22% devem abrigar um planeta com o tamanho da Terra na zona habitável.

Muitos dados do quarto ano de observações do Kepler estão sendo vasculhados para obtenção de mais sinais planetários. Os planetas mais parecidos com a Terra provavelmente serão descobertos nesse último lote de dados, porque suas órbitas lentas significam que o Kepler precisava de mais tempo para observar seus trânsitos repetidos. 
Apesar do Kepler ter observado 1/400 do céu, o observatório descobriu que cerca de 70% das estrelas têm planetas, o que significa que a Via Láctea é um lugar movimentado.

Fonte: Scientific American

terça-feira, 5 de novembro de 2013

Par de estrelas jovens brilha intensamente

Ao contrário de muitas galáxias, nossa Via Láctea produz grandes quantidades de estrelas novas. Para estudar essas estelares jovens, observadores frequentemente se concentram em locais  como a Nebulosa de Órion, uma nuvem de gás e poeira que fabrica estrelas a 1.350 anos-luz de distância.

ilustração de um par de estrelas vermelhas

© ESO/L. Calçada (ilustração de um par de estrelas vermelhas)

Agora astrônomos descobriram que um par de estrelas vermelhas próximas, chamadas de EQ Pegasi, é tão jovem que brilha principalmente devido ao calor de sua formação, e não de reações nucleares.
A descoberta pode dar a astrônomos a chance de vislumbrar o brilho de planetas recém-nascidos, já que as EQ Pegasi ficam a apenas 20 anos-luz da Terra, menos de cinco vezes a distância até Alpha Centauri, o sistema estelar mais próximo.
Para esclarecer, as EQ Pegasi não são tão jovens ao ponto de ainda ficarem imersas no gás e poeira que lhes deu vida. “Minha impressão é que elas têm algo entre 50 ou 100 milhões de anos”, estima Benjamin Zuckerman da University of California, Los Angeles, o astrônomo que descobriu as jovens estrelas. Se nosso Sol, com 4,6 bilhões de anos de idade fosse um adulto de 46, as EQ Pegasi não teriam mais de um ano de idade. 
A descoberta foi um acidente. Zuckerman estava estudando estrelas jovens mais distantes e percebeu que as EQ Pegasi poderiam estar se movendo junto com elas. Em seguida, notou que as duas estrelas tinham uma luminosidade anormal, um sinal de sua juventude.
Uma estrela se forma quando uma nuvem de gás e poeira interestelar colapsa sob seu próprio peso. Conforme a gravidade comprime o gás, ele se aquece, como faz o gás comprimido, até brilhar, assim nasce uma nova estrela, que deve a maior parte de sua luz à gravidade, e não às reações nucleares. Durante a fase da chamada pré-sequência-principal a estrela é maior e, portanto, mais brilhante do que seria se estivesse mais madura. A estrela encolhe lentamente e seu brilho diminui até atingir a sequência principal, o estágio em que o núcleo estelar converte hidrogênio em hélio e fornece toda a energia da estrela.
Nosso Sol brilhou durante 50 milhões de anos como uma estrela pré-sequência-principal. O sistema EQ Pegasi tem duas anãs-vermelhas, estrelas que são muito menores, mais frias e tênues que o Sol. Essas estrelas são muito mais numerosas que todos os outros tipos estelares juntos, mas são tão fracas que nenhuma delas é visível a olho nu. Uma anã-vermelha evolui lentamente e permanece na fase pré-sequência-principal, abastecida pela gravidade, por mais de 100 milhões de anos, com um brilho mais forte que o de estrelas da sequência-principal com a mesma cor. “As duas estrelas do sistema EQ Pegasi parecem ter uma luminosidade maior do que teriam se fossem apenas estrelas comuns da sequência principal”, explica Zuckerman. O sistema EQ Pegasi tem as duas estrelas pré-sequência-principal mais próximas da Terra.
Adric Riedel, astrônomo do Hunter College, acredita que Zuckerman esteja certo. Há dois anos, Riedel descobriu a recordista anterior, uma estrela pré-sequência-principal ao sul da constelação Órion chamada de AP Columbae, que fica a 27 anos-luz da Terra.
Riedel examinou espectros não publicados do sistema EQ Pegasi para verificar a gravidade de superfície de suas duas estrelas. A gravidade na superfície de uma estrela pré-sequência-principal é pequena, já que a estrela é mais extensa que uma da sequência principal. De acordo com Riedel: “As estrelas do sistema EQ Pegasi têm pouca gravidade, de maneira convincente. Então sim, eu diria que elas realmente são jovens.”
Estrelas recém-nascidas perto da Terra empolgam caçadores planetários: “Isso as torna alvos interessantes  para buscas de imageamento direto de planetas extrassolares”, observa Sascha Quanz, astrônomo do Instituto Federal Suíço de Tecnologia, em Zurique. Assim como estrelas jovens, planetas gigantes de pouca idade também brilham com o calor de seu nascimento; além disso, devido à sua proximidade com a Terra, os planetas devem aparecer mais longe do brilho de sua estrela, o que os torna mais fáceis de ver. Observar um planeta diretamente dá aos astrônomos a chance de estudar sua atmosfera. Quanz procurou planetas ao redor de AP Columbae, mas não conseguiu ver nenhuma. “Nós conseguiríamos ver um planeta gigante gasoso com a massa de Júpiter com uma separação de cinco UA (unidade astronômica, é a distância média do Sol à Terra), que é a separação de Júpiter em nosso Sistema Solar”, descreve Quanz.

O sistema EQ Pegasi fica sete anos-luz mais próximo de nosso planeta que AP Columbae, o que o torna um excelente alvo para caçadores de planetas. Como o EQ Pegasi é um sistema binário, porém, planetas não podem simplesmente existir em qualquer parte dele. As duas anãs-vermelhas ficam aproximadamente tão distantes uma da outra quanto Netuno do Sol. Planetas poderiam ter órbitas próximas de uma das estrelas, para que a gravidade da outra não os atraia. Ou poderiam ter órbitas bem vastas ao redor dos dois tênues sóis.
“Essa descoberta é mais uma prova de que ainda não conhecemos nossos vizinhos mais próximos muito bem”, observa Riedel. “Existem muitas surpresas na vizinhança”.

Fonte: The Astrophysical Journal e Scientific American

Exoplaneta com massa e tamanho da Terra

Um planeta localizado fora do Sistema Solar, a 700 anos-luz da Terra, na constelação do Cisne, não tem apenas o tamanho parecido com o nosso, mas também a massa e a densidade, com um núcleo de ferro e o interior rochoso.

ilustração da superfície do exoplaneta

© Jasiek Krzysztofiak (ilustração da superfície do exoplaneta)

As novas medições sugerem que o Kepler-78b é o menor exoplaneta do Universo a ter sua massa e seu raio conhecidos com precisão. Ele orbita uma estrela semelhante ao Sol chamada Kepler 78, mas está bem mais perto dela do que nós do Sol.

Para determinar a massa exata do Kepler-78b, dois grupos independentes de astrônomos (um liderado pelo Instituto de Astronomia da Universidade do Havaí, nos EUA, e outro pela Universidade de Genebra, na Suíça) mediram "oscilações" na luz da estrela hospedeira enquanto o planeta circulava em volta dela. Um grupo chegou à conclusão de que a massa desse planeta é 1,69 vez da massa da Terra, e o outro grupo calculou 1,86 vez, usando uma escala similar.

Esse corpo é, portanto, cerca de 20% maior que a Terra, com um diâmetro de 14,8 mil quilômetros. Já a densidade analisada variou de 5,3 a 5,57 gramas por centímetro cúbico, respectivamente, o que indica uma composição rochosa parecida com a do nosso planeta.

Apesar de ser muito semelhante à Terra, o Kepler-78b está próximo demais de sua estrela principal, razão pela qual ele tem seu período orbital muito curto, uma volta completa em torno do astro dura apenas 8,5 horas, e temperaturas altíssimas (2.300 a 3.100 Kelvin).

Embora hoje se acredite que não haja nenhuma possibilidade de vida na superfície desse planeta, ele "constitui um sinal animador para a busca de mundos habitáveis fora do nosso Sistema Solar", disse o astrônomo Drake Deming, da Universidade de Maryland, nos EUA.

Segundo Deming, a existência desse planeta hostil tem pelo menos o mérito de mostrar que planetas extrassolares com uma constituição semelhante à da Terra não são um fato extraordinário na Via Láctea, e que é possível encontrar outros com critérios compatíveis com alguma forma de vida.

Além das Universidades do Havaí e de Genebra, participaram das pesquisas cientistas do Instituto de Tecnologia de Massachusetts (MIT), da Universidade da Califórnia, em Berkeley e em Santa Cruz, e da Universidade Yale, todas nos EUA.

Fonte: Nature

Um quinteto de luas em Saturno

Cinco luas de Saturno posaram para a sonda Cassini para que fosse possível criar esse belo retrato com os anéis de Saturno.

quinteto de luas em Saturno

© Cassini (quinteto de luas em Saturno)

Essa imagem, de  29 de Julho de 2011, foi feita com a câmera da sonda Cassini apontada para a direção norte, do lado iluminado dos anéis logo acima dos planos dos anéis de Saturno. O planeta Saturno possui atualmente 61 luas catalogadas.

Bem à direita, e obscurecendo o próprio Saturno, está a segunda maior lua do planeta, Reia, que possui 1.528 km de diâmetro. Reia está mais próxima da sonda Cassini nessa composição, a uma distância de 1,1 milhões de quilômetros. Ela tem uma superfície repleta de crateras que são testemunhas da sua história violenta, com muitas crateras se sobrepondo ou apagando traços de eventos de impactos mais antigos.

Com aproximadamente 400 km de largura, Mimas, localiza-se logo além, e parece levitar um pouco acima dos anéis mais internos de Saturno. A delimitação da grande e distinta cratera Herschel da lua Mimas é parcialmente coberta por Reia, mas pode ser observada juntamente com numerosas crateras menores.

O brilhante Encelado aparece acima do centro da imagem e localiza-se além dos anéis, a uma distância de 1,8 milhões de quilômetros da sonda Cassini. Embora não seja visível nessa imagem, o congelado Encelado é coberto por uma rede de cadeias congeladas e vales, com plumas de partículas de gelo sendo expelidas pelas fissuras presentes no seu hemisfério sul.

Para a parte inferior esquerda, a pequena Pandora, com apenas 81 km de diâmetro, aparece marcada pelos anéis externos de Saturno; de fato, essa lua orbita o planeta entre os anéis A e F.

Por último, mas não menos importante, a irregular Janus, localiza-se na parte mais a esquerda da imagem, algumas marcas de sombras na sua superfície correspondem à grandes crateras de impacto.

Fonte: ESA

domingo, 3 de novembro de 2013

O Universo foi semeado com ferro

Um novo estudo americano demonstra como o Universo, ainda "jovem", foi semeado com ferro.

centro do aglomerado de galáxias Perseus

© Hubble (centro do aglomerado de galáxias Perseus)

Para isso, os pesquisadores da Universidade de Stanford analisaram a distribuição uniforme desse elemento metálico em um enorme aglomerado de galáxias, algo que teria ocorrido durante a explosão de estrelas e buracos negros há cerca de 10 bilhões de anos, quando o Cosmos tinha "apenas" 3,7 bilhões de anos, aproximadamente.

A pesquisa foi feita pelo Laboratório de Acelerador Linear de Stanford (SLAC) em parceria com o Instituto Kavli de Cosmologia e Astrofísica de Partículas (KIPAC), a Agência Japonesa de Exploração Aeroespacial (JAXA) e o Departamento de Energia dos EUA (DOE). A equipe verificou 84 conjuntos de observações feitas por um telescópio de raios X do satélite japonês Suzaku.

Foi analisada a distribuição de ferro em todo o aglomerado de galáxias Perseu, localizado a 250 milhões de anos-luz de distância da Terra. Segundo o astrofísico e principal autor do artigo Norbert Werner, do KIPAC, os resultados encontrados apontam que esse composto deveria estar presente no gás intergaláctico existente antes dessa região ter se formado.

A distribuição uniforme do elemento também apoia a ideia de que ele foi criado pelo menos entre 10 e 12 bilhões de anos atrás. Nessa época, o Universo passava por um período turbulento de sua evolução, e os buracos negros estavam em sua fase mais "energética".

"A energia combinada desses fenômenos cósmicos deve ter sido forte o suficiente para expulsar a maioria dos metais das galáxias no início dos tempos e para enriquecer e misturar o gás intergaláctico", disse o coautor do trabalho Ondrej Urbano.

Para entender se os elementos pesados permaneciam em suas galáxias de origem ou se espalhavam pelo espaço, os cientistas avaliaram oito direções diferentes do aglomerado Perseu. O estudo se concentrou no gás quente de milhões de graus, que preenche os espaços entre as galáxias e encontrou ferro por todo o caminho, até nas bordas do aglomerado.

Segundo os pesquisadores, a quantidade de ferro vista nessa região equivale à massa de cerca de 50 bilhões de sóis como o nosso.

"Acreditamos que a maior parte do ferro veio de um único tipo de supernova chamado Ia", disse a astrofísica e coautora do estudo Aurora Simionescu, que atualmente trabalha na JAXA.

Em uma supernova Ia, uma estrela explode e libera todo o seu material para o espaço. De acordo com os cientistas, pelo menos 40 bilhões de astros desse tipo devem ter explodido em um período relativamente "curto" para liberar toda essa quantidade de ferro com força para conduzi-lo para fora das galáxias.

Os resultados também sugerem que o aglomerado Perseu provavelmente não é único com esse perfil e que o ferro, junto com outros elementos pesados, pode ser uniformemente distribuído em todos os grandes aglomerados de galáxias, destacou Steven Allen, professor associado do KIPAC e chefe da equipe de pesquisa.

Os pesquisadores estão agora à procura de ferro em outros aglomerados e esperam ansiosamente por uma missão espacial capaz de medir com maior precisão as concentrações de elementos como esse no gás quente das estrelas. Assim, será possível entender melhor como as grandes estruturas do Universo se desenvolveram.

Fonte: Nature

sábado, 2 de novembro de 2013

Por que o Universo está se desintegrando?

Por que o Universo está se desintegrando? Essa é uma pergunta que assombra astrônomos desde a descoberta, nos anos 90, que a expansão do Universo está acelerando.

imagem do céu profundo

© Hubble Ultra Deep Field (imagem do céu profundo)

A complexidade cresce com novas observações de explosões estelares distantes que lançam dúvidas sobre a principal explicação, chamada de constante cosmológica.
O que quer que esteja provocando a aceleração do Universo foi batizado de energia escura, mas suas origens continuam misteriosas. No passado, quando Albert Einstein estava formulando sua teoria geral da relatividade, ele adicionou uma força repulsiva nas suas equações, chamada de constante cosmológica, que devia, na época, fazer com que a teoria previsse um Universo estático. Sem ela, seus cálculos mostravam que a gravidade não resultaria em um Universo estável, mas que ele colapsaria sobre si mesmo. Quando, mais tarde, descobriu-se que o Universo não era estático, mas que estava em expansão, Einstein abandonou a constante, que qualificou como seu maior erro. Décadas depois, porém, quando foi revelado que o Universo não estava simplesmente se expandindo, mas que sua dilatação estava acelerando, cientistas recuperaram a constante descartada e a adicionaram de volta às equações da teoria da relatividade para prever um Universo que está se desintegrando cada vez mais rápido. Atualmente, a constante cosmológica é a principal ideia para explicar a energia escura, mas ela só funciona se o que é conhecido como parâmetro da equação de estado da energia escura (relacionando pressão e densidade), chamado de w, for igual a -1.
Não foi isso, porém, que o Pan-STARRS (Telescópio de Pesquisa Panorâmica e Sistema de Resposta Rápida, literalmente), descobriu.
Com base na combinação de medidas cosmológicas de diversos projetos com registros do Pan-STARRS de um tipo especial de explosão estelar chamada de supernova do tipo Ia usada como régua cósmica para medir distâncias astronômicas, pesquisadores calcularam o valor de w em -1,186. “Esse valor para w significa que o modelo mais simples para explicar a energia escura não é verdadeiro”, declara Armin Rest do Instituto de Ciências do Telescópio Espacial (STScI) em Baltimore, principal autor de um artigo relatando os resultados.
Entretanto, é preciso levar em conta que os resultados são preliminares, não devendo colocar a constante cosmológica seriamente em dúvida. “No momento, não podemos dizer que realmente encontramos uma discrepância. Nós ainda temos que verificar se isso se deve a algum problema com algum desses projetos”.
O cálculo é baseado em observações de aproximadamente 150 supernovas do tipo Ia feitas entre 2009 e 2011 pelo telescópio PS1 do Pan-STARRS, no Havaí. Essa classe de supernova ocorre quando um tipo específico de estrela, chamado de anã branca, atinge seu limite máximo de massa, que é do mesmo tipo para todas as anãs brancas, e explode com um brilho padrão. Ao comparar o brilho aparente de uma supernova com seu brilho intrínseco conhecido, astrônomos podem deduzir sua distância. Observações espectroscópicas da supernova, que dividem a luz em suas cores constituintes, revelam quanto o comprimento de onda da luz foi esticado pela expansão do Universo.
Com esses parâmetros em mãos, os pesquisadores do Pan-STARRS combinaram seus dados com as descobertas de outras sondas de energia escura, como as observações da radiação cósmica de fundo em micro-ondas feitas pelo satélite europeu Planck, para calcular o parâmetro de estado da equação da energia escura.
O quanto se concluir dos cálculos depende de seu nível de incerteza, e de saber se erros sistemáticos associados ao telescópio e à análise alteraram o resultado. “Sabemos que a calibragem de telescópios, a física de supernovas e as propriedades de galáxias são grandes fontes de incertezas, então todo mundo está tentando descobrir isso de maneiras diferentes”, observa Daniel Scolnic da Johns Hopkins University, que publicou um artigo com estimavas de incertezas dos dados.
“Dan fez um excelente trabalho caracterizando as sistemáticas”, elogia Alexander Conley da University of Colorado em Boulder, envolvido em tipo diferente de estudo de supernova chamado de Supernova Legacy Survey que obteve resultados semelhantes. No entanto, outro pesquisador do projeto, Julien Guy da Universidade Pierre e Marie Curie em Paris, aponta que a equipe pode ter subestimado seu erro sistemático ao ignorar uma fonte adicional de incerteza dos modelos de curva luminosa de supernovas. Ele está em contato com os pesquisadores do Pan-STARRS, que estão analisando esse fator. No fim das contas, a maioria dos especialistas declara que os novos resultados são impressionantes, mas que não provam a existência de uma nova física. “O artigo do Pan-STARRS apresenta uma análise muito profunda e cuidadosa, e um resultado sólido, mas não muda qualitativamente nossa visão dos parâmetros cosmológicos”, declara Joshua Frieman, astrofísico do Fermilab em Batavia, no estado de Illinois, não envolvido na pesquisa.
O fato de vários experimentos cosmológicos estarem produzindo valores de w diferentes de -1, porém, está chamando a atenção de muitos. “Essa já é a terceira pesquisa de supernovas distantes que chega a essa conclusão”, observa o astrônomo do STScI Adam Riess, membro da equipe do Pan-STARRS que recebeu o Prêmio Nobel de Física de 2011 pela descoberta da energia escura. “Nós não podemos simplesmente dizer que essa ou aquela pesquisa estão erradas. Isso pode ser algo fundamental de uma dessas medidas. Ou talvez a energia escura seja mais intrigante do que o esperado”. Ainda que a constante cosmológica explique a energia escura matematicamente, ela não elucida os motivos de essa força existir. Um valor alternativo de w pode indicar que a energia escura não é constante no tempo, mas variável, uma ideia chamada de quintessência. De qualquer forma, o Pan-STARRS e de outras pesquisas produzirão novos dados em breve, seja para apoiar ou refutar o valor mais recente de w. “Acredito que dentro de um ou dois anos, isso provavelmente se tornará definitivo, ou desaparecerá”, conclui Riess.

Fonte: Scientific American

sexta-feira, 1 de novembro de 2013

O crescimento das galáxias

Os biólogos observam uma árvore crescer através da evolução dos seus anéis. Começando no núcleo denso do tronco de uma árvore e movendo-se para fora, a passagem do tempo é marcada por anéis concêntricos, revelando assim capítulos de sua história.

galáxia NGC 3377

© GALEX/WISE (galáxia NGC 3377)

As galáxias superam as árvores em bilhões de anos, fazendo seu crescimento ser algo impossível de se ver. Mas como os biólogos, os astrônomos podem ler os anéis no disco de uma galáxia para revelar seus passados. Usando dados do Wide-field Infrared Survey Explorer (WISE) e do Galaxy Evolution Explorer (GALEX), os cientistas têm obtido mais evidências para a teoria do crescimento das galáxias de dentro para fora, mostrando que explosões de formação de estrelas nas regiões centrais foram seguidas de um a dois bilhões de anos depois pelo nascimento nas franjas externas.

“Inicialmente, um rápido período de formação de estrelas formou a massa no centro dessas galáxias, seguido posteriormente de uma fase de formação de estrelas nas regiões externas. Eventualmente, as galáxias param de formar estrelas e tornam-se tranquilas”,  disse Sara Petty, da Virginia Tech, em Blacksburg, principal autor da pesquisa. “Essa última fase de formação de estrelas poderia ter sido causada por fusões menores com vizinhas ricas em gás  que fornecem o combustível para novas estrelas”.

A descoberta pode também resolver um mistério das galáxias idosas. As galáxias no estudo, conhecidas como vermelhas e mortas, devido à sua coloração avermelhadas e à falta de novos nascimentos de estrelas, têm uma quantidade surpreendente de luz ultravioleta emanada de suas regiões externas. Frequentemente a luz ultravioleta é gerada por estrelas jovens e quentes, mas essas galáxias foram consideradas muito velhas para abrigar esse tipo de população.

A solução para esse quebra-cabeça é provavelmente estrelas velhas e quentes. Petty e seus colegas usaram uma nova abordagem em vários comprimentos de onda para mostrar que a luz ultravioleta sem explicação parece vir de uma fase final na vida das estrelas mais velhas, quando elas expelem suas camadas externas e se aquecem.

O GALEX e o WISE se tornaram a dupla ideal para o estudo. O GALEX era sensível à luz ultravioleta enquanto que o WISE observa a luz infravermelha vindo de estrelas mais velhas. O GALEX não está mais em operação, e o WISE recentemente foi reativado para caçar asteroides, num projeto denominado de NEOWISE. Ambos os telescópios têm grandes campos de visão, permitindo que eles facilmente capturem imagens de galáxias inteiras.

A sinergia entre o GALEX e o WISE produz medidas super sensíveis de onde as estrelas mais velhas e quentes residem nessas galáxias vermelhas e mortas”, disse Don Neill, do Instituto de Tecnologia da Califórnia, em Pasadena. “Isso nos permite mapear o progresso da formação de estrelas dentro de cada galáxia”.

Ned Wright da Universidade da Califórnia, em Los Angeles, um co-autor do estudo e principal pesquisador do WISE antes dele ter sido reativado, compara o intervalo dos vários comprimentos de onda dos dois telescópios a notas musicais, “o WISE por si só cobre o equivalente ao intervalo de três oitavas, enquanto que o WISE e o GALEX juntos cobrem um intervalo de sete oitavas”.

Um artigo foi publicado na edição de Outubro de 2013 do Astronomical Journal.

Fonte: Jet Propulsion Laboratory

quinta-feira, 31 de outubro de 2013

O Fantasma de Júpiter

Essa imagem fantasmagórica do telescópio espacial Spitzer da NASA mostra os restos mortais de uma estrela moribunda, chamada de nebulosa planetária.

NGC 3242

© Spitzer (NGC 3242)

As nebulosas planetárias são consideradas como o último estágio da vida de uma estrela parecida com o Sol, quando suas camadas externas foram descartadas e iluminadas pela luz ultravioleta da estrela central. O Fantasma de Júpiter, também conhecido como NGC 3242, está localizado a aproximadamente 1.400 anos-luz de distância da Terra na direção da constelação de Hydra. A visão infravermelha do Spitzer mostra o halo externo mais frio da estrela moribunda, colorido aqui em vermelho. Também evidente são os anéis concêntricos ao redor do objeto, o resultado do material que está sendo periodicamente lançado pelos suspiros mortais finais da estrela. Nessa imagem, a luz infravermelha no comprimento de onda de 3,6 mícron é mostrada em azul, a luz de 4,5 mícron é mostrada em verde e a de 8,0 mícron em vermelho.

Fonte: NASA

terça-feira, 29 de outubro de 2013

Lugar mais frio conhecido no Universo

Astrônomos do Observatório ALMA, no Chile, enxergaram um novo formato da Nebulosa do Bumerangue, nuvem de gás e poeira que é o lugar conhecido mais frio no Universo, com temperatura de -272° C.

Nebulosa Bumerangue

© NRAO/ALMA (Nebulosa do Bumerangue)

Segundo os pesquisadores, o que se vê nas novas imagens do Alma é um truque de luz. Nebulosas planetárias, como a Bumerangue, são estrelas no final de sua existência. Ao centro, é possível observar estrelas anãs brancas, que emitem uma intensa radiação ultravioleta que faz com que o gás ao seu redor brilhe e emita luz com cores vibrantes.

As primeiras imagens da nebulosa, feitas com telescópios terrestres, mostravam uma forma curvada, que deu origem ao seu nome. Outras fotografias, registradas pelo telescópio espacial Hubble em 2003, exibiam um perfil mais semelhante a uma gravata borboleta.

Nebulosa Bumerangue

© Hubble (Nebulosa do Bumerangue)

"Esse objeto ultrafrio é extremamente intrigante, e estamos aprendendo muito sobre sua verdadeira natureza", disse Raghvendra Sahai, pesquisador e principal cientista do Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia, em nota divulgada pelo Observatório Nacional de Radioastronomia dos Estados Unidos. "O que parecia um lóbulo duplo ou a forma de bumerangue é, na verdade, uma estrutura muito mais ampla que está se expandindo rapidamente para o espaço."

A Nebulosa do Bumerangue fica a 5 mil anos-luz de distância da Terra, na constelação do Centauro. Segundo os astrônomos do ALMA, trata-se de uma nebulosa pré-planetária, na qual a estrela central ainda não está quente o suficiente para emitir a radiação ultravioleta que produz seu brilho característico.

A nuvem de gás e poeira dessa estrela está se expandindo e esfriando rapidamente, num processo semelhante ao dos refrigeradores que usam gás expandido para produzir temperaturas frias. Os cientistas mediram a temperatura do gás na nebulosa ao observar como ela absorve a radiação cósmica de micro-ondas, que têm temperatura de -270°C.

A pesquisa também revela que as franjas exteriores da Nebulosa do Bumerangue começam a se aquecer, apesar de ainda serem mais frias que a radiação cósmica. Segundo os cientistas, o aquecimento deve acontecer por conta do efeito fotoelétrico, em que a luz é absorvida pelo material sólido, que por sua vez reemite elétrons.

Um artigo foi publicado no jornal Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

As Nebulosas Cabeça de Cavalo e de Órion

A escura Nebulosa Cabeça de Cavalo e a brilhante Nebulosa de Órion são contrastantes paisagens cósmicas.

Nebulosas Cabeça de Cavalo e Órion

© R. Colombari & F. Pelliccia (Nebulosas Cabeça de Cavalo e Órion)

Localizadas a 1.500 anos-luz em uma das constelações mais conhecidas do céu noturno, elas aparecem em cantos opostos do mosaico impressionante acima.

A familiar Nebulosa Cabeça de Cavalo aparece como uma nuvem escura, uma pequena silhueta marcou contra o brilho vermelho longo no canto inferior esquerdo. Alnitak é a estrela oriental no cinturão de Órion e é vista como a estrela mais brilhante à esquerda da Nebulosa Cabeça de Cavalo. Abaixo da estrela Alnitak está a Nebulosa da Chama, com nuvens de emissão brilhante e faixas de poeira escura dramáticas. A região de emissão magnífica, a Nebulosa de Órion (também conhecida como M42), encontra-se no canto superior direito. Imediatamente à sua esquerda está uma nebulosa de reflexão proeminente às vezes chamada de Running Man (Homem Correndo). Estruturas delgadas invasivas de gás hidrogênio brilhante são facilmente rastreadas em toda a região.

Fonte: NASA

sábado, 26 de outubro de 2013

O Aglomerado da Borboleta

O Aglomerado da Borboleta é um aglomerado de estrelas aberto brilhante com cerca de 12 anos-luz de diâmetro, localizado a 1.600 anos-luz de distância da Terra, na constelação austral de Scorpius (o Escorpião).

M6

© N.A.Sharp/Mark Hanna (M6)

Seu nome deriva da vaga semelhança de sua forma de uma borboleta, e também ele é conhecido como NGC 6405 ou Messier 6 (M6).

O aglomerado fica perto da fronteira da constelação de Sagitário, o que o torna o objeto Messier mais próximo do centro da Via Láctea. Os membros deste grupo foram formados na mesma nuvem molecular gigante e ainda estão gravitacionalmente ligados uns aos outros.

O Aglomerado da Borboleta contém, provavelmente, um pouco mais de 300 estrelas, embora apenas 80 tenham sido identificados. A maioria delas são jovens e quentes estrelas azuis, mas o membro mais brilhante (na borda da asa esquerda da borboleta) é uma estrela gigante laranja, chamada BM Scorpii (HD 160371), que contrasta com os seus vizinhos azuis na imagem. A estrela BM Scorpii, é classificada como uma estrela variável, cujo brilho varia de 5,5 a 7,0 de magnitude em um ciclo de cerca de dois anos. O aglomerado possui em torno de 100 milhões de anos de existência.

Você pode encontrar este conjunto de cerca de 4 graus ao norte da estrela brilhante Shaula na cauda do Escorpião, e apenas cinco graus a sudeste de Messier 7, um outro aglomerado aberto. Um olhar através de um telescópio pequeno revela por que ele é chamado de Aglomerado da Borboleta: com um aumento de 40 a 50 vezes, o aglomerado apresenta três estrelas brilhantes que atravessam o centro (o corpo da borboleta), com duas alças irregulares de estrelas de cada lado (as asas). Um pouco de imaginação revela as "antenas" da borboleta, a nordeste. Você verá apenas algumas dezenas de estrelas com binóculos e, talvez, 100 estrelas em um telescópio de 6 polegadas.

Fonte: National Optical Astronomy Observatory

A Rosa de Caroline

Encontrado entre os ricos campos de estrelas da Via Láctea na direção da constelação da Cassiopeia, o aglomerado estelar NGC 7789 localiza-se a aproximadamente a 8.000 anos-luz de distância da Terra.

NGC 7789

© Albert Barr (NGC 7789)

Sendo descoberto no final do século 18 pela astrônoma Caroline Lucretia Herschel, o aglomerado também é conhecido como a Rosa de Caroline. Sua aparência sugestiva é criada pelo imbricamento complexo de estrelas e vazios do aglomerado. Agora estimado como tendo 1,6 bilhões de anos, os aglomerados abertos de estrelas ou galácticos também mostram sua idade. Todas as estrelas no aglomerado provavelmente nasceram no mesmo momento, mas as mais brilhantes e mais massivas exaurem de forma mais rápida seus combustíveis de hidrogênio em seus núcleos. Essas têm se desenvolvido das estrelas da sequência principal como o Sol nas muitas estrelas gigantes vermelhas mostradas com um brilho amarelado nessa bela composição colorida. Usando as medidas de cor e brilho, os astrônomos podem modelar a massa e então a idade do aglomerado de estrelas, começando pelo desligamento das estrelas da sequência principal que se tornaram gigantes vermelhas. Com mais de 50 anos-luz de diâmetro, a Rosa de Caroline se espalha por quase meio grau (o tamanho angular da Lua Cheia) perto do centro da imagem telescópica de campo vasto acima.

Fonte: NASA

sexta-feira, 25 de outubro de 2013

A descoberta da galáxia mais distante

Embora as observações com o telescópio espacial Hubble da NASA identificaram muitos outros candidatos a galáxias no Universo primordial, incluindo alguns que talvez seja ainda mais distante.

ilustração da galáxia z8_GND_5296

© V. Tilvi e C. Papovich (ilustração da galáxia z8_GND_5296)

Esta galáxia é a mais distante e mais antiga, cuja distância pode ser definitivamente confirmada com observações do telescópio Keck I, um de um par dos maiores telescópios da Terra.

"Queremos estudar galáxias muito distantes para aprender como as galáxias mudam com o tempo, o que possibilita compreender como a Via Láctea evolui", disse Steve Finkelstein, autor principal do estudo.

"Isso é o que faz com que essa distante galáxia seja tão excitante, porque temos um vislumbre das condições de quando o Universo tinha apenas cerca de 5 por cento de sua idade atual de 13,8 bilhões anos", disse Casey Papovich da Universidade do Texas, segundo autor do estudo.

Os astrônomos podem estudar como as galáxias evoluem porque a luz viaja a uma certa velocidade, cerca de 300 mil quilômetros por segundo. Assim, quando olhamos para objetos distantes, nós os vemos como eles apareceram no passado.

Antes de obtermos conclusões fortes sobre como as galáxias evoluíram, temos que ter certeza que estamos olhando para as galáxias certas.

Isto significa que os astrônomos devem empregar os métodos mais rigorosos para medir a distância até essas galáxias, para entender em que época do Universo está sendo observada.
A equipe de Finkelstein selecionou esta galáxia, e dezenas de outras, para o acompanhamento das cerca de 100.000 galáxias descobertas na Hubble Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), de que Finkelstein é um membro da equipe. O maior projeto da história do Hubble, o CANDELS utilizou mais de um mês do tempo de observação do telescópio espacial Hubble.

a galáxia mais distante do Universo

© CANDELS (a galáxia mais distante do Universo)

A equipe observou tais galáxias que podem ser extremamente distantes, com base em suas cores das imagens captadas pelo Hubble. Este método é bom, mas não infalível. Usando cores para classificar galáxias é complicado porque objetos mais próximos podem se disfarçar como galáxias distantes.

Assim, para medir a distância até essas galáxias potencialmente no início de Universo de uma forma definitiva, os astrônomos usam espectroscopia; mais especificamente, analisando o redshift, ou seja, os deslocamentos dos comprimentos de onda de luz de uma galáxia ao mudar para a extremidade vermelha do espectro.

A equipe usou o telescópio Keck I, no Havaí, um dos maiores telescópios óptico/infravermelho do mundo, para medir o desvio para o vermelho da galáxia z8_GND_5296 em 7,51, o mais alto redshift de uma galáxia já confirmado. Isso significa que esta galáxia surgiu apenas 700 milhões de anos após o Big Bang.

O telescópio Keck I foi equipado com o novo instrumento MOSFIRE, que pode olhar para vários objetos ao mesmo tempo, e tornou a medição possível.

Os pesquisadores são capazes de medir com precisão as distâncias de galáxias medindo uma característica do hidrogênio através da transição Lyman-alfa, que emite intensamente em galáxias distantes. Ela é detectada em quase todas as galáxias que são vistas a partir de um tempo maior de 1 bilhão de anos a partir do Big Bang, mas chegando mais perto do que isso, a linha de emissão de hidrogênio, por alguma razão, torna-se cada vez mais difícil de notar.
Das 43 galáxias observadas com o MOSFIRE, a equipe de Finkelstein detectou esta transião Lyman-alpha em apenas uma.

Os pesquisadores suspeitam que possam ter alcançado a época em que o Universo fez a sua transição de um estado opaco, em que a maior parte do gás de hidrogênio entre as galáxias era neutro para um estado translúcido em que a maior parte do hidrogênio era ionizado (chamado de Era da Reionização). Portanto, não é necessariamente que as galáxias distantes não estão lá. Pode ser que elas estão escondidas atrás de uma parede de detecção de hidrogênio neutro, que bloqueia o sinal de Lyman-alfa,

Além de sua grande distância, as observações da equipe mostrou que a galáxia z8_GND_5296 está formando estrelas de forma extremamente rápida, produzindo estrelas a uma taxa 150 vezes mais rápido que a nossa própria galáxia, a Via Láctea. Esta nova distância recordista reside na mesma parte do céu onde está a recordista anterior (redshift 7,2), a galáxia UDFy-38135539 que também possui uma elevada taxa de formação de estrelas.

Além de seus estudos com Keck I, a equipe também observou a galáxia z8_GND_5296 no infravermelho com o telescópio espacial Spitzer da NASA. Com o Spitzer foi medida a quantidade de oxigênio ionizado contido na galáxia, o que ajuda a fixar para baixo a taxa de formação de estrelas. As observações do Spitzer também ajudou a descartar outros tipos de objetos que possam se disfarçar de uma galáxia muito distante, como uma galáxia mais próxima, que é particularmente empoeirada.

Em breve, telescópios terrestres maiores, como o telescópio Thirty Meter Telescope (TMT) no Havaí e o telescópio Giant Magellan Telescope, além do telescópio espacial James Webb, devem possibilitar a descoberta de mais dessas galáxias distantes. A Universidade do Texas é um dos sócios fundadores do Giant Magellan Telescope (GMT) de 25 metros de diâmetro, que em breve começará a construção nas montanhas do Chile. Este telescópio terá cerca de cinco vezes o poder de captação de luz do Keck I e será sensível às linhas de emissão muito mais fracas, buscando as galáxias ainda mais distantes. Embora as observações atuais estão começando a alcançar a Era da Reionização, é necessário mais trabalho.

"O processo de reionização é improvável que seja muito repentino ", disse Finkelstein. "Com o GMT, vamos detectar muito mais galáxias, empurrando nosso estudo do Universo distante ainda mais perto do Big Bang."

O resultado foi publicado na edição desta semana da revista Nature.

Fonte: Observatório McDonald – Universidade do Texas

terça-feira, 22 de outubro de 2013

Supernovas são energizadas por magnetars?

A descoberta recente de supernovas de tipo II anormalmente luminosas e muito distantes induziram pesquisadores a pensar que poderiam estar presenciando a explosão de estrelas por um processo, proposto por teóricos em finais dos anos 60, designado de par instável.

The Hibernating Stellar Magnet (artist's impression)

© ESO/L.Calçada (magnetar)

A luminosidade de uma supernova, mais concretamente, o tempo que demora a atingir o brilho máximo e o intervalo de tempo durante o qual consegue manter um brilho elevado, depende quase exclusivamente da quantidade de um isótopo radioativo de Níquel, o 56Ni, que é formado durante a fase inicial da explosão. Nas semanas e meses seguintes a supernova brilha em resultado dos raios gama produzidos pelos decaimentos do 56Ni num isótopo de Cobalto, o 56Co, e deste último num isótopo estável do Ferro, o 56Fe. Uma supernova de tipo II normal produz aproximadamente uma massa solar de 56Ni. Supernovas muito luminosas têm de produzir uma grande quantidade de 56Ni durante a explosão; cada uma das supernovas estudadas foi tão luminosa que deveria ter produzido algumas dezenas de massas solares deste isótopo.

Só estrelas muito maciças, estrelas com massas superiores a aproximadamente 150 vezes a massa do Sol, e com baixo teor em “metais”, elementos mais pesados do que o hidrogênio e hélio, conseguiriam produzir tal quantidade de 56Ni. Estrelas como estas são muito raras no Universo atual pois a maior parte do material interestelar, a partir do qual se formam as estrelas, está contaminado com “metais” produzidos por gerações sucessivas de estrelas; por outro lado, seriam mais abundantes quando o Universo era mais jovem. Estrelas tão maciças não explodem pelo mecanismo de colapso gravitacional, como é o caso das supernovas de tipo II (com linhas de hidrogênio no espectro), mas antes pelo referido processo de par instável. O interior destas estrelas é extremamente quente devido à enorme massa e à compressão resultante. Num determinado momento a energia dos fótons de raios gama no interior da estrela, que sustentam o peso das camadas exteriores, pode tornar-se tão elevada que os fótons se transformam espontaneamente em pares de elétron-pósitron, daí a palavra par. Esta reação absorve uma fração importante da energia disponível para manter a estrela em equilíbrio, daí a palavra instável, e a zona nuclear começa a contrair-se rapidamente. Ao contrário do que acontece num colapso gravitacional clássico, no entanto, esta contração aumenta as temperaturas no interior até um nível que deflagra uma cadeia de reações de fusão nuclear de forma descontrolada, as quais libertam energia suficiente para vencer a gravidade e destruir por completo a estrela. Trata-se de um mecanismo semelhante ao de uma bomba termonuclear, a bomba de hidrogênio.

Ao observar estas supernovas tão luminosas a bilhões de anos no passado, os astrônomos sugeriram, naturalmente, que poderiam tratar-se dos primeiros exemplos de supernovas de par instável. Entretanto, um artigo agora propõe um cenário alternativo para explicar a luminosidade destas supernovas. Matt Nicholl, do Astrophysics Research Centre, Queen’s School of Mathematics and Physics, e os seus colaboradores, realizaram cálculos que sugerem que estas supernovas podem ser mais normais, resultantes do colapso gravitacional de estrelas progenitoras com características menos extremas do que as avançadas pelo cenário anterior; no novo cenário, a energia suplementar que permitiria uma tal supernova atingir um pico de brilho acima do normal e manter-se brilhante durante mais tempo teria origem numa magnetar, uma estrela de nêutrons com um campo magnético extraordinariamente intenso. As magnetars, formam-se em supernovas de colapso gravitacional em circunstâncias ainda mal compreendidas. São conhecidas apenas 20 destas estrelas de nêutrons em toda a Via Láctea. Estima-se que, no instante em que são criadas, girem em torno do seu eixo de rotação 300 vezes por segundo e tenham um campo magnético mil vezes mas intenso do que o de uma estrela de nêutrons normal e quadrilhões de vezes mais intenso do que o campo magnético terrestre. No cenário apresentado por Nicholl e co-autores, uma magnetar formada numa supernova, perde energia rotacional através do seu campo magnético que, por sua vez, transfere essa energia para o plasma de partículas e núcleos atômicos que forma o remanescente da supernova. Os cálculos realizados pela equipe mostram que a quantidade de energia transferida por este processo de frenagem da magnetar permite explicar de forma quase perfeita as observações existentes das supernovas de luminosidade anormalmente elevada. Este cenário pode também explicar uma outra característica das magnetars: o fato de terem períodos de rotação anormalmente longos (entre 1 e 10 segundos) quando comparadas com outras estrelas de nêutrons, como se, no seu caso, algum mecanismo tivesse sugado essa energia rotacional precocemente.

Fonte: Nature