sexta-feira, 13 de novembro de 2015

Os girinos cósmicos da IC 410

A vista telescópica abaixo mostra a esmaecida nebulosa de emissão IC 410.

nebulosa de emissão IC 410

© Steven Coates (nebulosa de emissão IC 410)

A imagem também destaca dois habitantes notáveis da lagoa cósmica de gás e poeira, abaixo e à direita do centro da imagem, os “girinos cósmicos” da IC 410.

Parcialmente obscurecida pela poeira cósmica em primeiro plano, a própria nebulosa rodeia o NGC 1893, um jovem aglomerado galáctico de estrelas.

Formadas dentro da nuvem interestelar há uns meros 4 milhões de anos, as intensamente quentes e brilhantes estrelas do aglomerado energizam o gás brilhante. Composta de poeira e gás mais denso e gelado, os “girinos cósmicos” têm cerca de 10 anos-luz de comprimento e são regiões prováveis de formação de estrelas em andamento. Esculpida pelos ventos e pela radiação emanados das estrelas do aglomerado, suas “cabeças” são delineadas por cristas brilhantes de gás ionizado, enquanto suas “caudas” se estendem para longe da região central do aglomerado.

A nebulosa IC 410 está localizada a cerca de 10.000 anos-luz de distância da Terra, na direção da constelação Auriga que é repleta de nebulosas.

Fonte: NASA

quinta-feira, 12 de novembro de 2015

Exoplaneta rochoso com atmosfera é detectado próximo do Sistema Solar

Uma equipe internacional, da qual faz parte o pesquisador do Instituto de Astrofísica e Ciências do Espaço (IA) Nuno Cardoso Santos, anunciou a descoberta do exoplaneta GJ 1132b, que parece ser semelhante a Vênus, a apenas 39,14 anos-luz de distância.

ilustração do exoplaneta e sua estrela anã vermelha

© CfA/Dana Berry (ilustração do exoplaneta e sua estrela anã vermelha)

O planeta GJ 1132b recebe 19 vezes mais radiação da sua estrela do que a Terra recebe do Sol, mas a estrela GJ 1132 é uma anã vermelha (também designadas anãs M), com 20% do tamanho do Sol, e por isso calcula-se que a temperatura do planeta estará apenas entre 135ºC e 305ºC. Esta temperatura é muito mais baixa do que a de qualquer outro exoplaneta rochoso conhecido.

Apesar da temperatura ser demasiado elevada para que exista água líquida neste “exoVênus”, permite ainda a presença de uma atmosfera. Devido à sua proximidade, se existir uma atmosfera, será possível para telescópios atuais e da próxima geração (como o telescópio espacial James Webb, ou o E-ELT do ESO), observarem e caracterizarem a atmosfera deste planeta.

Desta forma será possível saber a influência que as forças de maré e a intensa atividade estelar das anãs vermelhas têm sobre a evolução de atmosferas do tipo terrestre, algo que terá impacto a longo prazo na procura de vida em planetas que orbitam este tipo de estrelas.

O GJ 1132b foi descoberto através do método dos trânsitos, com observações do observatório MEarth-South. O método dos trânsitos consiste na medição da diminuição da luz de uma estrela, provocada pela passagem de um exoplaneta à frente dessa estrela, algo semelhante a um micro-eclipse. Através de um trânsito é possível determinar apenas o diâmetro do planeta. Este método é complicado de usar, porque exige que o exoplaneta e a estrela estejam exatamente alinhados com a linha de visão do observador. Desta forma a equipe determinou o diâmetro do planeta, que mais tarde foi confirmado com observações do TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) e do PISCO (Parallel Imager for Southern Cosmology Observations).

Para determinar a massa do planeta, que em conjunto com o diâmetro permite calcular a densidade e com isso determinar a sua composição rochosa, a equipe aplicou o método das velocidades radiais nas observações efetuadas com o espectrógrafo HARPS (High Accuracy Radial velocity Planet Searcher) do ESO. O método das velocidades radiais detecta exoplanetas medindo pequenas variações na velocidade radial da estrela, devidas ao movimento que a órbita desses planetas imprime na estrela. A título de exemplo, a variação de velocidade que o movimento da Terra imprime ao Sol é de apenas 10 cm/s (cerca de 0,36 km/h). Com este método é possível determinar o valor mínimo da massa do planeta. No entanto, em conjunto com o método dos trânsitos, é possível determinar a massa real.

“Esta descoberta mostra a importância de ter a capacidade para complementar observações de trânsitos com medidas de velocidades radiais, uma complementaridade que será fundamental para o sucesso de missões futuras como o PLATO 2.0, da ESA,” disse Nuno Santos, do IA e da Universidade do Porto.

Todas estas observações permitiram determinar que o planeta tem 1,6 vezes a massa e 1,2 vezes o diâmetro da Terra, e orbita a sua estrela em apenas 1,6 dias, a uma distância de 2,25 milhões de quilômetros; por comparação, Mercúrio orbita o Sol a cerca de 55 milhões de quilômetros.

Dada a sua proximidade, “Este planeta será um alvo favorito dos astrônomos durante anos”, acrescenta o primeiro autor do artigo, Zachory Berta-Thompson do Massachusetts Institute of Technology (MIT).

A descoberta foi relatada no artigo “A rocky planet transiting a nearby low-mass star” na revista Nature.

Fonte: Instituto de Astrofísica e Ciências do Espaço

Descoberta a morte misteriosa de radiogaláxia gigante

Uma equipe de astrônomos do National Centre for Radio Astrophysics (NCRA), usando o Giant Metrewave Radio Telescope (GMRT), descobriram uma galáxia extremamente rara de tamanho gigantesco. Este estudo possibilita a previsão de como será o futuro distante do Sistema Solar.

radiogaláxia com lóbulos de rádio

© Prathamesh Tamhane/Yogesh Wadadekar (radiogaláxia com lóbulos de rádio)

Esta é uma imagem óptica da radiogaláxia com lóbulos de rádio (em amarelo-vermelho) supimposed. O buraco negro supermassivo da galáxia vermelho no centro levou à formação dos lóbulos de rádio gigantes.

Esta radiogaláxia gigantesca, localizada a cerca de 9 bilhões de anos-luz de distância da Terra, na direção da constelação de Cetus, emite poderosas ondas de rádio que têm uma extensão de 4 milhões de anos-luz.

Como galáxias com um tamanho óptico de centenas de milhares de anos-luz, produzem emissões de rádio, com alguns milhões de anos-luz de extensão? É dito que a presença de um buraco negro supermassivo no centro de uma galáxia cria jatos de plasma quente de grande escala em direções diametralmente opostas, que eventualmente dão origem a grande lóbulos de onda de rádio. Enquanto que radiogaláxias com tamanho menor que um milhão de anos-luz são bem comuns, radiogaláxias gigantes são extremamente raras, ainda mais em grandes distâncias cósmicas onde somente poucas têm sido descobertas. Esta radiogaláxia recém-descoberta, conhecida cientificamente pelo nome J021659-044920, é o mais novo membro desse grupo de elite.

Sob algumas condições especiais, o buraco negro central pode parar de produzir jatos de ondas de rádio, e então os lóbulos brilhantes em rádio podem se apagar, dentro de poucos milhões de anos, devido à falta de reposição. O que faz a J021659-044920 especial é que ela tem sido registrada na sua fase de morte, onde o jatos de rádio parecem terem sido desligados e os lóbulos estão começando a se apagar. O apagamento dos lóbulos é causado pela perda de energia de duas maneiras: primeira, pela emissão das ondas de rádio que se mostram como gigantescos lóbulos de rádio e, segunda, pela transferência de energia para os fótons da radiação de micro-ondas cósmica de fundo através de um processo conhecido como Espalhamento Comptom Inverso.

Este último mecanismo levou a uma fraca emissão de raios X, que é vista sendo emanada dos lóbulos de rádio dessa galáxia. Esses objetos de rádio morrendo são estudados da melhor forma usando um radiotelescópio de baixa frequência como o GMRT. O GMRT, o maior radiotelescópio do mundo operando nas baixas frequências de rádio é um conjunto de 30 antenas com 45 metros de diâmetro, espalhadas por uma região de mais de 30 quilômetros ao redor de Kodad, perto da cidade de Narayangaon, na parte oeste da Índia. O GMRT foi construído e é operado pelo National Centre for Radio Astrophysics, do Tata Institute of Fundamental Research.

Para suas análises, a equipe combinou as observações feitas pelo GMRT com observações prévias feitas com uma pequena frota de telescópios terrestres e espaciais de todas as partes do mundo, como o XMM-Newton Space Telescope em raios X, o telescópio japonês Subaru na luz óptica, o telescópio infravermelho do Reino Unido no infravermelho próximo, o telescópio espacial Spitzer da NASA no infravermelho médio, e o Jansky Very Large Array dos EUA nas faixas de ondas de rádio de alta frequência. Usando os dados de múltiplos observatórios de forma integrada, foi possível varrer todo o espectro eletromagnético, proporcionando uma análise compreensiva e incrivelmente detalhada das condições físicas ao redor da galáxia. As propriedades do campo magnético na região entre as galáxias no Universo distante podem ser entendidas com essas observações.

Prathamesh Tamhane, um estudante do Indian Institute of Science Education and Research, e seus colegas publicaram suas descobertas no periódico Monthly Notices da Royal Astronomical Society.

Fonte: National Centre for Radio Astrophysics

quarta-feira, 11 de novembro de 2015

O halo resplandecente de uma estrela zumbi

Os restos de uma interação fatal entre uma estrela morta e um asteroide foram estudados pela primeira vez em detalhes por astrônomos que utilizou o Very Large Telescope (VLT) situado no Observatório do Paranal do ESO, no Chile.

ilustração do disco de material resplandescente em torno de anã branca

© U. Warwick/Mark Garlick (ilustração do disco de material resplandescente em torno de anã branca)

Este estudo ajuda-nos a prever como será o futuro distante do Sistema Solar.

Uma equipe de pesquisadores liderada por Christopher Manser, um estudante de doutorado da Universidade de Warwick no Reino Unido, utilizou dados do VLT e outros observatórios para estudar os restos destruídos de um asteroide em torno de uma estrela morta, uma anã branca chamada SDSS J122859.93+104032.9, ou simplesmente SDSS J1228+1040.
Usando vários instrumentos, incluindo o Ultraviolet and Visual Echelle Spectrograph (UVES) e o X-shooter, ambos montados no VLT, a equipe obteve observações detalhadas da radiação emitida pela anã branca e pelo material que a rodeia durante um período de 12 anos, entre 2003 e 2015. Foram necessárias observações de longa duração para estudar o sistema sob vários aspectos. Foi identificada a assinatura espectral inconfundível em forma de tridente do cálcio ionizado, o chamado tripleto de cálcio (Ca II). A diferença entre os comprimentos de onda observados e os conhecidos destas três linhas permite determinar a velocidade do gás com elevada precisão.
“A imagem que criamos a partir dos dados processados mostra-nos que estes sistemas são claramente do tipo de discos e revela muitas estruturas que não poderiam ter sido detectadas com uma única observação,” explica o autor principal do trabalho Christopher Manser.
A equipe utilizou uma técnica chamada tomografia Doppler,  semelhante à tomografia médica que é utilizada para observar o corpo humano, a qual permitiu mapear em detalhe, e pela primeira vez, a estrutura gasosa resplandescente que resta da "refeição" da anã branca e que a orbita.
Enquanto as estrelas grandes, mais massivas do que dez vezes a massa do Sol, sofrem no final das suas vidas um clímax espetacularmente violento sob a forma de explosão de supernova, as estrelas menores não têm um fim tão dramático. Quando as estrelas como o Sol chegam ao final das suas vidas, consomem todo o seu combustível, expandem-se nas chamadas gigantes vermelhas e mais tarde expelem as suas camadas exteriores para o espaço. Os seus núcleos quentes e muito densos, uma anã branca, é tudo o que resta do objeto.
Mas poderão os planetas, asteroides e outros corpos do sistema sobreviver a tal provação? O que restará? As novas observações ajudam a responder a estas questões.
É raro as anãs brancas terem em órbita discos de material gasoso, até hoje foram encontradas apenas sete nestas condições. A equipe concluiu que um asteroide se aproximou perigosamente da estrela morta, tendo sido desfeito pelas enormes forças de maré a que foi sujeito, formando por isso o disco de matéria que vemos agora.

movimento do material em torno da anã branca SDSS J1228 1040

© U. Warwick/C. Manser (movimento do material em torno da anã branca SDSS J1228+1040)

Este gráfico obtido através da tomografia Doppler é um tipo incomum de imagem que mostra as velocidades do gás no disco que orbita a anã branca SDSS J1228+1040. Os círculos tracejados correspondem a material em órbitas circulares a duas distâncias diferentes da estrela. O gráfico parece “virado ao contrário” porque a matéria desloca-se mais rapidamente em órbitas mais interiores.

O disco que orbita a estrela formou-se de maneira semelhante aos fotogênicos anéis que vemos em torno de planetas próximo de nós, como Saturno. No entanto, apesar da SDSS J1228+1040 ter um diâmetro sete vezes menor que o de Saturno, tem uma massa 2.500 vezes superior. A equipe descobriu que a distância entre a anã branca e o seu disco é também muito diferente; Saturno e os seus anéis caberiam confortavelmente no espaço entre eles. Embora o disco em torno desta anã branca seja muito maior que o sistema de anéis de Saturno, é ainda assim minúsculo quando comparado com os discos de detritos situados em torno de estrelas jovens onde se formam planetas. O novo estudo de longa duração efetuado com o VLT permitiu à equipe observar a precessão do disco sob a influência do forte campo gravitacional da anã branca. A equipe descobriu ainda que o disco está ligeiramente torto e não se tornou ainda circular.
“Quando descobrimos este disco de detritos em órbita da anã branca em 2006, não podíamos imaginar os detalhes extraordinários que vemos agora nesta imagem, criada a partir de 12 anos de dados, valeu definitivamente a pena esperar,” acrescentou Boris Gänsicke, co-autor do estudo.
Restos como a SDSS J1228+1040 dão-nos pistas importantes para compreender o meio que se forma quando as estrelas chegam ao fim das suas vidas. Este fato ajuda os astrônomos a perceber melhor os processos que ocorrem em sistemas exoplanetários e até a prever o destino do Sistema Solar quando o Sol chegar ao fim dos seus dias daqui a cerca de sete bilhões de anos.

Este trabalho foi descrito no artigo científico intitulado “Doppler-imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9”, de C. Manser et al., que será publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

Observada a 1000ª explosão de raios gama detectada pelo satélite Swift

No dia 27 de outubro de 2015 às 22:40, o satélite Swift da NASA/ASI/UKSA detectou a sua 1000ª explosão de raios gama.

explosão de raios gama GRB 151027B

© ESO/GROND (explosão de raios gama GRB 151027B)

Este evento marcante foi subsequentemente observado e caracterizado pelos telescópios do ESO no Observatório La Silla Paranal, situado no norte do Chile, que revelaram que esta explosão de raios gama é um objeto particularmente interessante.

As explosões de raios gama ocorrem de forma aleatória em todo o Universo distante. Pensa-se que sejam causadas por uma explosão estelar extremamente energética e que anunciem o nascimento de um novo buraco negro.
O Swift dedica-se a procurar no céu estes misteriosos e fascinantes eventos. Agora, e após mais de dez anos de vigília constante, o satélite detectou a sua 1000ª explosão de raios gama. A GRB 151027B ocorreu a 27 de outubro de 2015, na direção da constelação do Erídano. O número indica a data da detecção e a letra “B” diz-nos que esta foi a segunda das duas explosões de raios gama detectadas nesse dia.
Os telescópios do ESO possuem uma longa tradição em fazer observações em seguida de eventos de explosões de raios gama, não tendo portanto falhado este importante marco. O instrumento Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) montado no telescópio MPG/ESO de 2,2 metros no Observatório de La Silla e o espectrógrafo X-shooter montado no Very Large Telescope (VLT) no Observatório do Paranal do ESO começaram as observações assim que a explosão de raios gama se tornou visível no Chile, cerca de 5 horas após a sua detecção.
Ao separar a tênue radiação que desvanece rapidamente emitida pela explosão de raios gama nas suas componentes de cor, o espectrógrafo X-shooter revela-se uma das ferramentas mais poderosas que existem para investigar a natureza deste fenômeno. Desde que o X-shooter existe, mais de metade das medições de distância de explosões de raios gama foram obtidas com este instrumento.
As observações do ESO revelaram que a explosão GRB 151027B ocorreu quando o Universo tinha apenas 1,5 bilhões de anos (10% da sua idade atual) e a sua luz viajou durante 12,3 bilhões de anos até chegar à Terra. Este resultado foi anunciado apenas 3 horas depois dos dados terem sido coletados e 8 horas depois da primeira detecção feita pelo Swift. Análises posteriores permitiram aos astrônomos determinar que a galáxia onde a GRB 151027B ocorreu tem uma abundância de elementos químicos pesados estranhamente elevada.
Estas intrigantes conclusões sobre a GRB 151027B demonstram bem o sucesso da parceria entre a missão Swift e os telescópios do ESO, que forneceram observações de seguimento cruciais para centenas de explosões de raios gama. Os instrumentos X-shooter e GROND têm observado de forma sistemática estes eventos elusivos a partir do deserto do Atacama desde 2009 e 2007, respectivamente, fornecendo pistas importantes sobre as explosões mais potentes que acontecem no Universo.

Fonte: ESO

Os primeiros passos de uma estrela bebê

O Atacama Large Millimeter/submillimeter Array (ALMA) revelou dois enormes jatos ondulados de gás denso com uma simetria quase perfeita que estão sendo lançados a partir de uma única fonte situada no centro desta imagem.

os primeiros passos de uma estrela bebê

© ESO/A. Plunkett (os primeiros passos de uma estrela bebê)

A sua origem é uma estrela extremamente jovem, uma protoestrela que começa a sua longa jornada para se tornar uma estrela parecida com o Sol.
A estrela bebê, conhecida por CARMA-7, e os seus jatos situam-se a aproximadamente 1.400 anos-luz de distância da Terra no centro do aglomerado estelar Serpente do Sul. Este aglomerado denso, encontrado na constelação da Serpente, abriga pelo menos mais 30 protoestrelas que estão começando a brilhar como estrelas na proximidade umas das outras, dando aos astrônomos um laboratório perfeito onde estudar as interações entre as estrelas e o seu meio.
Os primeiros passos da vida de uma estrela ainda não são bem compreendidos, mas os astrônomos concluíram que estes jatos são causados por lançamentos periódicos de gás, ejetados a enormes velocidades da CARMA-7 para o meio que a rodeia. Estes lançamentos de gás são causados pelo material que cai na estrela vindo do disco que a orbita. À medida que os jatos se afastam da estrela bebê, o material colide com o meio interestelar fazendo com que o jato diminua de velocidade e se espalhe. No futuro, este material colapsará para formar mais uma geração de estrelas.

Fonte: ESO

terça-feira, 10 de novembro de 2015

A estrela AE Aurigae e a Nebulosa da Estrela Flamejante

Esta a estrela AE Aurigae em chamas? Não.

a estrela AE Aurigae e a Nebulosa da Estrela Flamejante

© Jesús Vargas/Maritxu Poyal (a estrela AE Aurigae e a Nebulosa da Estrela Flamejante)

Embora a estrela AE Aurigae seja nomeada de estrela flamejante, que a nebulosa circundante IC 405 seja chamada de Nebulosa da Estrela Flamejante, e que a região parece ter a cor do fogo, não há fogo algum. O fogo necessita da aquisição rápida de oxigênio molecular para combustão, e acontece apenas quando o oxigênio suficiente está presente juntamente com combustível e alguma energia suficiente para permitir a ignição. Contudo, não sendo imprescindível em ambientes altamente energéticos, com baixo teor de oxigênio que é encontrado no interior das estrelas. O material que se parece com fumaça é composto basicamente de hidrogênio interstelar, completado com filamentos enegrecidos de grãos de poeira cósmica ricos em carbono.  A estrela brilhante AE Aurigae, visível à direita próxima ao centro da nebulosa é tão quente que é azul, emitindo uma radiação tão energética que retira os elétrons do gás envolvente. Quando um próton recaptura um elétron, a luz é emitida através da nebulosa de emissão. Na imagem acima, a Nebulosa da Estrela Flamejante está localizada a cerca de 1.500 anos-luz de distância, se estende por cerca de 5 anos-luz, e é visível com um pequeno telescópio na direção da constelação do Cocheiro (Auriga).

Fonte: NASA

domingo, 8 de novembro de 2015

Descoberto um aglomerado de galáxias colossal

Astrônomos descobriram um aglomerado gigante de galáxias numa parte muito remota do Universo, graças ao telescópio espacial Spitzer e ao WISE (Wide-field Infrared Survey Explorer).

aglomerado de galáxias MOO J1142 1527

© NASA/JPL-Caltech/Gemini/CARMA (aglomerado de galáxias MOO J1142+1527)

O aglomerado de galáxias, localizado a 8,5 bilhões de anos-luz, é a estrutura mais massiva já encontrada a estas grandes distâncias. As galáxias avermelhadas no centro da imagem constituem o núcleo do aglomerado.

Os aglomerados de galáxias são grupos, gravitacionalmente ligados de milhares de galáxias, que por sua vez contêm centenas de bilhões de estrelas. Os aglomerados de galáxias ficam maiores ao longo do tempo pois adquirem novos membros.

Como é que estes aglomerados de galáxias evoluíram com o passar do tempo? Qual teria sido o seu aspecto há bilhões de anos atrás? Para responder a estas questões, os astrônomos olharam para trás no tempo, para o nosso jovem Universo. Dado que a luz leva tempo até chegar até nós, podemos ver como objetos muito distantes eram no passado. Por exemplo, estamos vendo o recém-descoberto aglomerados de galáxias, chamado MOO (Massive Overdense Object) J1142+1527, tal como era há 8,5 bilhões de anos atrás, muito antes da formação da Terra.

À medida que a luz dessas galáxias remotas se desloca até nós, é esticada, devido à expansão do espaço, para comprimentos de onda infravermelhos. É aqui que o WISE e o Spitzer ajudam.

Nas imagens infravermelhas produzidas pelo Spitzer, estas galáxias distantes destacam-se como pontos vermelhos, enquanto as galáxias mais próximas têm tons esbranquiçados. Os astrônomos vasculharam primeiro o catálogo WISE em busca de candidatos para aglomerados de galáxias distantes. O WISE catalogou centenas de milhões de objetos em imagens de todo o céu obtidas em 2010 e 2011.

Seguidamente, usaram o Spitzer para observar 200 dos objetos mais interessantes, num projeto chamado MaDCoWS (Massive and Distant Clusters of WISE Survey). O Spitzer não observa todo o céu como o WISE, mas pode ver mais detalhes.

"É a combinação entre o Spitzer e o WISE que nos permite ir de 250 milhões de objetos até aos aglomerados de galáxias mais massivos no céu," afirma Anthony Gonzalez da Universidade da Flórida.

A partir destas observações, MOO J1142+1527 sobressaiu como uma das mais extremas.

Foram usados os observatórios W.M. Keck e Gemini em Mauna Kea, no Havaí, para medir a distância ao aglomerado. Usando dados dos telescópios CARMA (Combined Array for Research in Millimeter-wave Astronomy) perto de Owens Valley no estado americano da Califórnia, os cientistas foram capazes de determinar que a massa do aglomerado é quatrilhão de vezes a do nosso Sol, o que o torna no aglomerado mais massivo conhecido, a esta distância.

De acordo com as estimativas dos cientistas, o MOO J1142+1527 pode ser um de apenas um punhado de aglomerados de galáxias deste tamanho do Universo jovem.

"Com base na nossa compreensão de como os aglomerados de galáxias crescem desde o início do nosso Universo, este aglomerado poderá ser um dos cinco mais massivos em existência naquele momento," afirma Peter Eisenhardt, cientista de projeto para o WISE no Jet Propulsion Laboratory (JPL) da NASA em Pasadena, Califórnia.

No próximo ano, a equipe planeja vasculhar mais de 1.700 candidatos adicionais a aglomerado de galáxias com o Spitzer, procurando os maiores do grupo.

"Assim que encontrarmos os aglomerados mais massivos, podemos começar a investigar como as galáxias evoluíram nestes ambientes extremos," conclui Gonzalez.

O novo estudo foi publicado na revista Astrophysical Journal Letters.

Fonte: NASA

sábado, 7 de novembro de 2015

A desintegração aparente da galáxia espiral NGC 3169

A galáxia espiral NGC 3169 parece estar se desintegrando nesta cena cósmica, localizada a cerca de 70 milhões de anos-luz de distância, logo abaixo da brilhante estrela Regulus na tênue constelação Sextante.

galáxia NGC 3169 e a vizinha NGC 3166

© Warren Keller (galáxia NGC 3169 e a vizinha NGC 3166)

Seus belos braços espirais são distorcidos em caudas de maré arrebatadoras como NGC 3169 (no topo) e a vizinha NGC 3166 interagem gravitacionalmente, um destino comum mesmo para as galáxias brilhantes no Universo local. Na verdade, os extensos arcos estelares e plumas, indicações de interações gravitacionais, parecem exuberantes na fotografia profunda e colorida do grupo de galáxias. A imagem se estende por 20 minutos de arco, ou cerca de 400.000 anos-luz da distância estimada do grupo, e inclui a galáxia menor e ofuscada NGC 3165 no canto inferior direito. A NGC 3169 também é conhecida por brilhar em todo o espectro do rádio aos raios X, abrigando um núcleo galáctico ativo que é provavelmente o local de um buraco negro supermassivo.

Fonte: NASA

A velocidade do vento solar que retira a atmosfera de Marte

A sonda MAVEN (Mars Atmosphere and Volatile Evolution) da NASA identificou o processo que parece ter desempenhado um papel fundamental na alteração do clima marciano: de um ambiente ameno e molhado, que pode ter suportado vida, para o Planeta Vermelho frio e árido que é hoje.

ilustração de tempestade solar que atinge Marte e retira íons da atmosfera superior

© NASA/GSFC (ilustração de tempestade solar que atinge Marte e retira íons da atmosfera superior)

Os dados da MAVEN permitiram com que os pesquisadores determinassem a taxa atual da perda da atmosfera marciana, o gás emanado para o espaço devido à influência do vento solar. Os resultados revelam que a erosão da atmosfera de Marte aumenta significativamente durante as tempestades solares.

"Marte parece ter tido uma atmosfera espessa e quente o suficiente para suportar água líquida, um ingrediente fundamental e um meio para a vida como a conhecemos," afirma John Grunsfeld, astronauta e administrador do Diretorado de Missões Científicas da NASA em Washington, EUA. "Compreender o que aconteceu à atmosfera de Marte vai informar o nosso conhecimento acerca da dinâmica e evolução de qualquer atmosfera planetária. É importante aprender o que pode provocar alterações no ambiente de um planeta, desde um que pode hospedar micróbios à superfície, para um que não suporta, e é uma questão fundamental que está sendo abordada na jornada da NASA a Marte."

As medições da MAVEN indicam que o vento solar retira gás a uma velocidade correspondente a cerca de 100 gramas por segundo. "Vimos que a erosão atmosférica aumenta drasticamente durante as tempestades solares, assim que pensamos que a taxa de perda foi muito maior há bilhões de anos atrás quando o Sol era jovem e mais ativo," disse Bruce Jakosky, pesquisador principal da MAVEN da Universidade do Colorado, em Boulder.

Em adição, uma série de tempestades solares dramáticas atingiram a atmosfera de Marte em março de 2015 e a MAVEN descobriu que a perda foi acelerada. A combinação de uma taxa de perda mais elevada com tempestades solares mais poderosas no passado sugere que a perda da atmosfera para o espaço foi provavelmente um importante processo na mudança do clima marciano.

O vento solar é uma corrente de partículas, principalmente prótons e elétrons, que flui da atmosfera do Sol a uma velocidade de mais ou menos 400 km/s. O campo magnético transportado pelo vento solar, ao passar por Marte, pode gerar um campo elétrico, tal como uma turbina na Terra pode ser usada para gerar eletricidade. Este campo elétrico acelera átomos de gás eletricamente carregados na atmosfera superior de Marte e lançando íons para o espaço.

A MAVEN tem examinado como o vento solar e a radiação ultravioleta retira gás do topo da atmosfera do planeta. Os novos resultados indicam que a perda é efetuada em três regiões diferentes do Planeta Vermelho: na "cauda", onde o vento solar flui para trás de Marte, por cima dos polos marcianos numa "pluma polar", e a partir de uma nuvem grande de gás que rodeia Marte. A equipe científica determinou que quase 75% dos íons que escapam vêm da região da cauda, e quase 25% são da região da pluma, com apenas uma pequena contribuição da nuvem grande.

As regiões antigas de Marte contêm sinais de água abundante, como por exemplo características semelhantes a vales esculpidos por rios e depósitos minerais que só se formam na presença de água líquida. Estas características levaram os cientistas a pensar que há bilhões de anos, a atmosfera de Marte era muito mais densa e quente o suficiente para formar rios, lagos e talvez até mesmo oceanos de água líquida.

Recentemente, pesquisadores que usavam a sonda MRO (Mars Reconnaissance Orbiter) da NASA observaram o aparecimento sazonal de sais hidratados, indicando água líquida salgada em Marte. No entanto, a atmosfera atual de Marte é demasiado fria e fina para suportar água líquida a longo prazo à superfície do planeta.

"A erosão pelo vento solar é um mecanismo importante para a perda atmosférica, e é importante o suficiente para explicar a mudança dramática no clima marciano," afirma Joe Greboswsky, cientista do projeto MAVEN do Goddard Space Flight Center da NASA. "A MAVEN também está estudando outros processos de perda, como a provocada pelo impacto de íons ou o escape de átomos de hidrogênio, e estes só vão aumentar a importância do escape atmosférico."

O objetivo da missão MAVEN, lançada para Marte em novembro de 2013, é determinar quanto da atmosfera e da água do planeta foram perdidos para o espaço. É a primeira missão dedicada à compreensão de como o Sol pode ter influenciado mudanças atmosféricas no Planeta Vermelho. A MAVEN opera em Marte há pouco mais de um ano e terminará a sua principal missão científica no dia 16 de novembro.

Os resultados científicos da missão foram publicados nas revistas Science e Geophysical Research Letters.

Fonte: UC Berkeley

Revelado um mapa climático de exoplaneta distante

Padrões climáticos num misterioso mundo além do nosso Sistema Solar tem sido revelado pela primeira vez, sugere um estudo.

ilustração do exoplaneta distante

© MPIA/V. Quetz (ilustração do exoplaneta distante)

Camadas de nuvens, feitas de poeira quente e gotículas de ferro derretido, foram detectadas num objeto parecido com um planeta descoberto a 75 anos-luz de distância da Terra.

As descobertas poderiam melhorar a habilidade dos cientistas de descobrir se condições em planetas distantes seriam capazes de sustentar a vida.

Uma equipe de pesquisadores liderada pela Universidade de Edimburgo, usou um telescópio no Chile para estudar o sistema climático de um mundo distante, conhecido como PSO J318.5-22, que possui uma idade estimada de cerca de 20 milhões de anos.

Os pesquisadores captaram centenas de imagens infravermelhas do objeto enquanto ele rotacionava em torno do seu próprio eixo num período de 5 horas. Comparando o brilho do PSO J318.5-22, com corpos vizinhos, a equipe descobriu que ele era coberto por múltiplas camadas de nuvens finas e espessas. Essas nuvens causaram as mudanças no brilho do exoplaneta enquanto ele executava o seu movimento de rotação.

Esse exoplaneta tem o tamanho aproximado de Júpiter, o maior planeta no nosso Sistema Solar, mas é aproximadamente 8 vezes mais massivo. As temperaturas dentro das nuvens do PSO J318.5-22, excedem os 800 graus Celsius.

A equipe foi capaz de medir precisamente as mudanças no brilho do objeto, pois ele não orbita uma estrela. Estrelas como o nosso Sol, emitem grandes quantidades de luz, que poderiam complicar as medidas feitas do brilho dos objetos que as orbitam.

A equipe espera adaptar a técnica de modo que eles possam estudar planetas que orbitam estrelas. Essas técnicas podem eventualmente serem aplicadas a planetas mais frios e com massa menor, que são mais provavelmente capazes de sustentar a vida.

“Essa descoberta mostra apenas o quão onipresente as nuvens são em planetas e em objetos parecidos com planetas. Nós estamos trabalhando para estender essa técnica para planetas gigantes ao redor de estrelas jovens, e eventualmente esperamos detectar o clima em exoplanetas parecidos com a Terra que possam sustentar a vida”, disse a Dra. Beth Biller, da Escola de Física e Astronomia da Universidade de Edimburgo, que liderou o estudo.

O estudo foi publicado no periódico The Astrophysical Journal.

Fonte: The University of Edinburgh

sexta-feira, 6 de novembro de 2015

Simulação de nuvens 3D no exoplaneta GJ 1214b

Uma equipe de cientistas da Universidade de Washington e da Universidade de Toronto foram os primeiros a simular nuvens exóticas em 3D na atmosfera de um exoplaneta.

ilustração do exoplaneta GJ 1214b

© Wikimedia Commons (ilustração do exoplaneta GJ 1214b)

O objeto em questão, é o GJ 1214b, um exoplaneta chamado de mini-Netuno que foi descoberto, seis anos atrás pelos astrônomos no Harvard-Smithsonian Center for Astrophysics.

Também conhecido como Gliese 1214b, esse mundo tem cerca de 2,7 vezes o diâmetro da Terra e uma massa quase 7 vezes maior que a massa do nosso planeta. Ele está localizado a cerca de 52 anos-luz de distância na constelação de Ophiuchus.

O planeta orbita a estrela anã vermelha, GJ 1214, a cada 38 horas, a uma distância de 1,3 milhões de milhas.

De acordo com estudos prévios, o planeta tem uma atmosfera rica em água ou hidrogênio com extensas nuvens.

“Deve existir altas nuvens ou uma névoa orgânica na atmosfera, como nós observamos em Titã. Sua temperatura atmosférica excede o ponto de fusão da água”, disse o Dr. Benjamin Charnay, um dos membros da equipe da Universidade de Washington.

“Como resultado, se o GJ 1214b suportar nuvens, elas provavelmente são formadas de sal. Mas essas nuvens deveriam se formar em regiões profundas da atmosfera, muito mais baixo do que a altitude onde elas são observadas”.

O Dr. Charnay e seus colegas modelaram como as nuvens poderiam se formar na baixa atmosfera do GJ 1214b e então subir para a atmosfera superior com circulação suficiente. Para realizar isso, a equipe usou um modelo climático chamado de 3D General Circulation Model.

Ele mostrou como o GJ 1214b poderia criar, sustentar e erguer nuvens de sal na atmosfera superior.

O modelo também faz previsões específicas sobre os efeitos que essas nuvens terão no clima do planeta e os tipos de informação que os futuros telescópios como James Webb serão capazes de adquirir.

Os resultados foram reportados num artigo publicado online no Astrophysical Journal Letters.

Fonte: University of Washington

quinta-feira, 5 de novembro de 2015

A Grande Nebulosa de Órion

A Grande Nebulosa de Órion, também conhecida como M42, é uma das mais famosas nebulosas no céu.

M42

© Terry Hancock (M42)

As nuvens de gás brilhante e as estrelas jovens e quentes da região de formação de estrelas estão na parte direita dessa imagem espetacular que inclui a nebulosa de reflexão azulada NGC 1977 e companheiras na parte esquerda. Localizada na borda do outrora invisível gigantesco complexo de nuvens moleculares, essas nebulosas representam somente uma fração da riqueza do material interestelar presente nessa vizinhança galáctica. Dentro do berçário estelar bem conhecido, os astrônomos têm também identificado o que parece ser numerosos sistemas protoplanetários. A bela e impressionante paisagem cósmica mostrada acima se espalha por quase dois graus ou cerca de 45 anos-luz da Nebulosa de Órion com distância estimada de 1.500 anos-luz da Terra.

Fonte: NASA

terça-feira, 3 de novembro de 2015

Descobrindo mundos novos com um jogo de luz e sombra

Os astrônomos usam muitos métodos diferentes para descobrir planetas para além do Sistema Solar, mas o mais bem-sucedido é a fotometria de trânsito, que mede mudanças no brilho da estrela provocadas por um mini-eclipse.

ilustração de um exoplaneta transitando em frente da sua estrela progenitora

© NASA (ilustração de um exoplaneta transitando em frente da sua estrela progenitora)

Quando um planeta, da nossa perspetiva, passa em frente da sua estrela, bloqueia parte da luz da estrela. Se a diminuição dura um determinado período de tempo e ocorre em intervalos regulares, provavelmente é um planeta que passa em frente, ou transita, a estrela uma vez a cada período orbital.

O telescópio espacial Kepler da NASA usou esta técnica, sendo o melhor caçador exoplanetário até à data, com mais de mil descobertas estabelecidas e muitas mais aguardando confirmação. Missões que transportam tecnologia melhorada estão agora previstas, mas será que nos podem dizer mais sobre os sistemas planetários alienígenas semelhantes ao nosso?

Sim, de acordo com estudos recentemente publicados por Michael Hippke do Institute for Data Analysis em Neukirchen-Vluyn, na Alemanha, e Daniel Angerhausen, pesquisador de pós-doutorado do Goddard Space Flight Center da NASA em Greenbelt, no estado americano de Marylan. Eles mostram que, nos cenários mais favoráveis, as missões futuras podem descobrir luas planetárias, mundos com anéis parecidos com os de Saturno e até mesmo grandes coleções de asteroides.

"Destas novas missões, esperamos uma avalanche de descobertas, por isso queremos ter uma ideia das possibilidades, para que os cientistas possam aproveitar ao máximo os dados," afirma Angerhausen.

Tanto a NASA como a ESA apoiam-se no sucesso do Kepler. O TESS (Transiting Exoplanet Survey Satellite) da NASA, com lançamento previsto o mais tardar para 2018, será o primeiro levantamento espacial de trânsitos a englobar todo o céu. Ao longo de dois anos, o TESS irá acompanhar cerca de 200.000 estrelas vizinhas em busca de sinais. O satélite PLATO (Planetary Transits and Oscillations of stars) da ESA, uma missão de seis anos prevista para 2024, irá procurar planetas em torno de cerca de um milhão de estrelas espalhadas por mais de metade do céu.

A quantidade de escurecimento estelar provocado por um planeta em trânsito evidencia quão grande é o planeta em relação à sua estrela, enquanto eventos recorrentes podem indicar em quanto tempo o objeto orbita a sua estrela. Trânsitos adicionais aumentam a confiança que a diminuição de brilho não é provocada por um outro objeto cósmico (como uma estrela tênue), manchas solares na estrela hospedeira, ou ruído no detector. Ao longo do tempo de vida operacional de um satélite, os sinais mais fortes vêm sempre de planetas maiores que orbitam perto das suas estrelas, porque produzem tanto uma diminuição de brilho mais profunda como trânsitos mais frequentes.

"Planetas com tamanhos e órbitas parecidas com as de Marte ou Mercúrio permanecerão fora de alcance, mesmo quando os seis anos dos dados PLATO forem combinados," afirma Hippke. "Mas mundos parecidos com Vênus e a Terra serão detectados rapidamente." O Kepler demonstrou a presença de planetas mais pequenos que a Terra em órbitas muito próximas de estrelas mais pequenas que o Sol, mas estes mundos escaldantes não são susceptíveis de suportar vida. O TESS e o PLATO vão revelar mundos do tamanho da Terra em órbitas semelhantes à da Terra e em torno de estrelas parecidas com o Sol.

Júpiter e Saturno demoram mais de uma década para orbitar o Sol. Mundos similares poderão transitar apenas uma vez durante as missões do TESS e do PLATO, mas produzirão eventos fortes. Se, como Júpiter, o planeta tiver luas grandes, os seus trânsitos também poderão aparecer nos dados. "Nós não teríamos uma detecção nítida e não seríamos capazes de dizer se o planeta tinha uma única lua grande ou um conjunto de luas pequenas, mas a observação forneceria um forte candidato a lua para acompanhamento por outros observatórios futuros," explicou Angerhausen.

Atualmente, só foram detectados anéis em torno de um único planeta, chamado J1407b. O sistema de anéis é 200 vezes maior que o de Saturno. Tendo em conta o modo como um planeta parecido com Saturno apareceria nos dados do PLATO, os pesquisadores mostram que o sistema de anéis em trânsito produz um sinal claro que antecede e segue a passagem do planeta em frente da estrela. Estes resultados foram publicados na edição de 1 setembro da revista The Astrophysical Journal.

Num segundo estudo, publicado na edição de 20 setembro da mesma revista, os pesquisadores exploraram a possibilidade de detecção de asteroides presos em zonas orbitais chamadas pontos de Lagrange, posições onde a força gravitacional de um planeta é igual à força gravitacional da sua estrela. Estas áreas lideram e seguem o planeta na sua órbita por cerca de 60 graus. No nosso Sistema Solar, o exemplo mais proeminente ocorre perto de Júpiter, onde pelo menos 6.000 objetos conhecidos se reuniram em dois grupos coletivamente chamados asteroides Troianos. Menos conhecido, é que a Terra, Marte, Urano e Netuno, à semelhança de Júpiter, também capturaram um ou mais asteroides ao longo das suas órbitas, sendo que todos os objetos presos desta forma são caracterizados como corpos Troianos.

O mesmo fenômeno também ocorrerá em outros sistemas planetários, sendo que Hippke e Angerhausen combinaram mais de 1.000 observações de estrelas com planetas pelo Kepler à procura de uma diminuição média na luz estelar que indicasse corpos Troianos. Eles descobriram um sinal sutil correspondente às posições esperadas de objetos presos em dois pontos de Lagrange.

"Os dados do Kepler são bons, mas este é um resultado muito preliminar," comenta Hippke. "Nós mostramos, cautelosamente, que é possível detectar asteroides Troianos, mas vamos ter de esperar por melhores dados do TESS, do PLATO e de outras missões para realmente termos a certeza."

Fonte: Goddard Space Flight Center

segunda-feira, 2 de novembro de 2015

O nascimento do Universo é modelado através de simulação cosmológica

Pesquisadores estão debruçados sobre uma avalanche de dados produzidos pela maior simulação cosmológica já realizada, liderada por cientistas do Laboratório Nacional de Argonne do Departamento de Energia (DOE) dos EUA.

as galáxias têm halos em torno delas

© Katrin Heitmann (as galáxias têm halos em torno delas)

Esta imagem mostra uma subestrutura dentro de um halo na simulação Q Continuum, com "subhalos" marcados em cores diferentes. As galáxias têm halos em torno delas, que podem ser compostas de matéria escura e regular.

A simulação realizada no supercomputador Titan, do Laboratório Nacional de Oak Ridge do DOE, modelou a evolução do Universo, de um período de somente 50 milhões de anos depois do Big Bang, até os dias de hoje, ou seja, desde a infância do Universo, até o seu estado adulto atual. No decorrer de 13,8 bilhões de anos, a matéria no Universo, se agrupou formando galáxias, estrelas e planetas, mas nós não sabemos exatamente como isso aconteceu.

Estas simulações ajudam os cientistas a entenderem a energia escura, uma forma de energia que afeta a taxa de expansão do Universo, incluindo a distribuição das galáxias compostas de matéria ordinária, bem como de matéria escura, um tipo misterioso de matéria que nenhum instrumento pode medir diretamente.

Intensivas pesquisas do céu realizadas com poderosos telescópios, como o Sloan Digital Sky Survey, e novo e mais detalhado, Dark Energy Survey, mostra onde as galáxias e as estrelas estavam quando a sua luz foi emitida pela primeira vez. E pesquisas da Cosmic Microwave Background, a luz remanescente do Universo quando ele tinha somente 300.000 anos de existência, nos mostra como o Universo começou, “muito uniforme, com aglomeração de matéria no decorrer do tempo”, disse Katrin Heitmann, física do Laboratório Nacional de Argonne que liderou a simulação.

A simulação preenche o vazio temporal para mostrar como o Universo pode ter se desenvolvido nestes intervalos.

a evolução do Universo na simulação Q Continuum

© Katrin Heitmann (a evolução do Universo na simulação Q Continuum)

Estas imagens dão uma impressão do detalhe na distribuição da matéria na simulação. Na primeira, a matéria é muito uniforme, mas com o tempo a gravidade age sobre a matéria escura, que começa a se aglutinar mais e mais, e nos aglomerados, as galáxias se formam.

A simulação Q Continuum envolve meio trilhão de partículas, dividindo o Universo em cubos com lados de 100.000 quilômetros de comprimento. Isto faz com que ela seja uma das maiores simulações cosmológicas com esta alta resolução. Ela rodou usando mais de 90% de capacidade do supercomputador. Para se ter uma perspectiva, normalmente menos de 1% do trabalho usa 90% do supercomputador Mira em Argone, disse os oficiais na Argone Leadership Computing Facility. As equipes, nas instalações de computação de Argonne e de Oak Ridge, ajudaram a adaptar o código para esta simulação em Titan.

“Nós podemos usar esses dados para procurar por que as galáxias se aglutinam dessa maneira, bem como sobre a física fundamental da formação das suas estruturas”, disse Heitamnn.

As análises já começaram com de dois e meio petabytes de dados que foram gerados, e continuarão pelos próximos anos. Os cientistas podem obter informações sobre fenômenos astrofísicos, como lentes gravitacionais fortes, fracas de cisalhamento, de aglomeração e de galáxia-galáxia.

O código para rodar as simulações é chamado de Hardware/Hybrid Accelerated Cosmology Code (HACC), que foi escrito pela primeira vez em 2008, no momento em que os supercomputadores científicos quebravam a barreira dos petaflops (um quadrilhão de operações por segundo). O HACC é desenhado com uma flexibilidade inerente que permite rodar supercomputadores com diferentes arquiteturas.

Um artigo sobre a simulação foi publicado no The Astrophysical Journal Supplement Series.

Fonte: Argonne National Laboratory

sexta-feira, 30 de outubro de 2015

A Nebulosa Cabeça da Bruxa

A Nebulosa Cabeça da Bruxa, também denominada IC 2118, é uma nebulosa de reflexão, ou seja, reflete a luz de estrelas vizinhas.

Nebulosa Cabeça da Bruxa

© Jeff Signorelli (Nebulosa Cabeça da Bruxa)

As nebulosas de reflexão são nuvens de poeira que refletem a luz de apenas uma ou várias estrelas próximas. A estrela Rigel é a responsável pela reflexão que inunda a poeira de luz de radiação da Nebulosa Cabeça da Bruxa. Rigel é a sétima estrela mais brilhante no céu e encontra-se na constelação de Órion a 773 anos-luz do Sol. A estrela supergigante azul Rigel é 55.000 vezes mais brilhante que o Sol, sendo a estimativa da magnitude absoluta de aproximadamente -6,7. Com um diâmetro de cerca de 116 milhões de quilômetros, é 84 vezes maior do que o Sol. Como muitas estrelas supergigantes, o brilho de Rigel varia de 3 a 30%, de forma irregular ao longo de um período de 25 dias em média. Essa variabilidade pode ser explicada pelas pulsações da superfície da estrela.

A nuvem interestelar de poeira e gás IC 2118 tem cerca de 70 anos-luz de diâmetro. A cor da nebulosa não é causada apenas por uma intensa luz azulada da estrela, mas porque os grãos de poeira dispersam a luz azul mais eficientemente do que vermelho. O mesmo processo físico ocorre no céu diurno da Terra aparecendo azul, apesar de os dispersores na atmosfera serem moléculas de nitrogênio e oxigênio.

Fonte: NASA

Buraco negro emite gigantesca labareda

Os comportamentos estranhos e desconcertantes dos buracos negros tornam-se cada dia menos misteriosos, com as novas observações feitas com as missões Swift e NuSTAR da NASA.

ilustração de um buraco negro spermassivo emitindo enorme explosão

© NASA/JPL-Caltech (ilustração de um buraco negro spermassivo emitindo enorme explosão)

Os dois telescópios espaciais registraram um buraco negro supermassivo no meio de uma gigantesca explosão de raios X, ajudando os astrônomos a tentarem resolver um grande quebra-cabeça: Como os buracos negros supermassivos emitem flares (protuberâncias)?

Os resultados sugerem que os buracos negros supermassivos emitem explosões de raios X, quando suas coroas circundantes, fontes de partículas extremamente energéticas, são atiradas ou lançadas para fora dos buracos negros.

“Essa é a primeira vez que nós somos capazes de concatenar o lançamento da coroa com uma flare”, disse Dan Wilkins, da Universidade de Saint Mary em Halifax, no Canadá. “Isso nos ajudará a entender como os buracos negros supermassivos alimentam alguns dos objetos mais brilhantes do Universo”.

Os buracos negros supermassivos não emitem luz por si só, mas eles as vezes são circundados por discos de material quente e brilhante. A gravidade do buraco negro puxa o gás ao redor, aquecendo esse material e fazendo com que ele brilhe com diferentes tipos de luz. Outra fonte da radiação perto do buraco negro é a coroa. As coroas são feitas de partículas altamente energéticas que geram raios X, mas os detalhes sobre sua aparência, ou como elas se formam, ainda não são óbvios.

Os astrônomos acreditam que as coroas possuem duas prováveis configurações. O modelo do poste de luz, diz que elas são fontes compactas de luz, similar às lâmpadas, que localizam-se acima e abaixo do buraco negro, ao longo do seu eixo de rotação. O outro modelo propõem que as coroas são espalhadas de forma mais difusa, como uma nuvem maior ao redor do buraco negro, ou como um sanduíche que envelopa o disco circundante de material como fatias de pão. É possível que as coroas possam variar entre as duas configurações.

Os novos dados suportam o modelo do poste de luz, e demonstram com detalhes nítidos, como as coroas em forma de lâmpada se movem. As observações começaram quando o Swift, que monitora o céu por explosões cósmicas de raios X e de raios gama, registrou a flare vindo de um buraco negro supermassivo, chamado de Markarian 335 (Mrk 335), localizado a cerca de 324 milhões de anos-luz de distância da Terra, na direção da constelação de Pegasus. Esse buraco negro supermassivo, que localiza-se no centro de uma galáxia, foi uma das fontes de raios X mais brilhantes no céu.

“Algo muito estranho aconteceu em 2007, quando o Mrk 335 apagou por um fator de 30. O que nós descobrimos é que ele continuou expelindo flares mas não com a mesma intensidade de brilho e com tanta estabilidade como antes”, disse Luigi Gallo, o principal pesquisador para o projeto na Universidade Saint Mary.

Em Setembro de 2014, o Swift registrou uma grande flare no Mrk 335. Uma vez que Gallo descobriu, ele enviou um pedido para a equipe do NuSTAR para rapidamente seguir o objeto como parte do programa de oportunidade de alvo, onde as observações previamente planejadas são interrompidas por eventos importantes. Oito dias depois, o NuSTAR virou seus olhos de raios X para o alvo e testemunhou a metade final do evento de flare.

Após uma análise cuidadosa dos dados, os astrônomos perceberam que eles estavam vendo uma ejeção e um colapso eventual da coroa do buraco negro.

“A coroa se encolheu num primeiro momento e então se lançou para fora do buraco negro como um jato”, disse Wilkins. “Nós ainda não sabemos como os jatos nos buracos negros se formam, mas é interessante a possibilidade de que a coroa do buraco negro estava começando a formar a base do jato antes dela colapsar”.

Como os pesquisadores puderam dizer que a coroa se moveu? A coroa emitiu raios X que tem um espectro levemente diferente do espectro proveniente do disco ao redor de um buraco negro. Analisando um espectro de luz de raios X do Mrk 335, através de um intervalo de comprimentos de onda observado tanto pelo Swift como pelo NuSTAR, os pesquisadores puderam dizer que a coroa tinha brilhado em raios X, e que esse brilho foi devido ao movimento da coroa.

As coroas podem se mover rapidamente. A coroa associada com o Mrk 335 estava viajando a cerca de 20% da velocidade da luz. Quando isso acontece, e a coroa é lançada em nossa direção, sua luz brilha num efeito denominado de Explosão Relativística Doppler.

Colocando tudo isso junto, os resultados mostraram que o flare de raios X desse buraco negro foi causado pela ejeção da coroa.

“A natureza da fonte energética de raios X que nós chamamos de coroa é misteriosa, mas agora com a habilidade de ver as mudanças como essa, nós pudemos obter pistas sobre seu tamanho e sua estrutura”, disse Fiona Harrison, a principal pesquisadora do NuSTAR no Instituto de Tecnologia da Califórnia, em Pasadena, que não estava afiliada com o estudo.

Muitos outros mistérios dos buracos negros permanecem sem resposta ainda. Por exemplo, os astrônomos querem entender o que causa a ejeção da coroa em primeiro lugar.

Um artigo que descreve os resultados foi publicado na revista Monthly Notices of The Royal Astronomical Society.

Fonte: Jet Propulsion Laboratory

quinta-feira, 29 de outubro de 2015

No interior da Nebulosa da Alma

A paisagem cósmica abaixo mira profundamente dentro da Nebulosa da Alma.

IC 1871

© Sara Wager (IC 1871)

As nuvens de poeira escura delineadas pelos cumes brilhantes de gás incandescente são catalogadas como IC 1871, que tem cerca de 25 anos-luz de diâmetro, o campo de vista telescópico abrange apenas uma pequena parte das nebulosas do Coração (IC 1805) e da Alma (IC 1848). A IC 1871 constitui uma parte da grande Nebulosa da Alma, também conhecida como W5. A uma distância estimada de 6.500 anos-luz, o complexo de formação de estrelas encontra-se dentro do braço espiral de Perseus na Via Láctea, visto nos céus do planeta Terra na direção da constelação de Cassiopeia. As nuvens densas de formação estelar da IC 1871, um exemplo de formação de estrelas desencadeada, estão sendo esculpidas pelos ventos intensos e pela radiação de estrelas jovens e massivas da região. Esta imagem colorida adota uma paleta que se tornou popular em imagens do Hubble de regiões de formação estelar.

Fonte: NASA

quarta-feira, 28 de outubro de 2015

Descoberto um novo componente da Via Láctea

Com o auxílio do telescópio VISTA do European Southern Observatory (ESO), astrônomos descobriram uma componente anteriormente desconhecida da Via Láctea.

estrutura escondida da Via Láctea

© ESO/VISTA/Microsoft Worldwide Telescope (estrutura escondida da Via Láctea)

Ao mapear a localização de uma classe de estrelas que variam em brilho chamadas Cefeidas, foi descoberto um disco de estrelas jovens enterradas por trás de espessas nuvens de poeira no bojo central.

O rastreio público VISTA Variables in the Vía Láctea (VVV) usa o telescópio VISTA instalado no Observatório do Paranal para obter imagens múltiplas em épocas diferentes das regiões centrais da nossa Galáxia nos comprimentos de onda do infravermelho. As nuvens de poeira no espaço interestelar absorvem e dispersam a luz visível de forma muito eficaz, tornando-se opacas a este tipo de radiação. No entanto, para comprimentos de onda maiores, tais como os observados pelo VISTA, as nuvens são muito mais transparentes, permitindo observar regiões que se encontram depois da poeira. O rastreio VVV está observando as regiões centrais da nossa Galáxia em cinco bandas do infravermelho próximo. A área total observada pelo rastreio é de 520 graus quadrados, contendo pelo menos 355 aglomerados abertos e 33 aglomerados globulares. O VVV é um rastreio multi-época, podendo assim detectar um grande número de objetos variáveis e fornecendo mais de 100 observações cuidadosamente espaçadas em tempos diferentes para cada uma das regiões do céu observadas. Espera-se obter um catálogo com cerca de um bilhão de fontes pontuais, incluindo cerca de um milhão de objetos variáveis. Estes objetos serão depois utilizados para criar um mapa tridimensional do bojo da Via Láctea. O rastreio VVV está descobrindo uma enorme quantidade de novos objetos, incluindo estrelas variáveis, aglomerados e estrelas em explosão.
Uma equipe de astrônomos, liderada por Istvan Dékány da Pontificia Universidad Católica de Chile, utilizou dados deste rastreio, obtidos entre 2010 e 2014, para fazer uma descoberta notável, um componente anteriormente desconhecido da Via Láctea.
“Acredita-se que o bojo central da Via Láctea é constituído por imensas estrelas velhas. No entanto, os dados VISTA revelaram algo novo, e muito jovem em termos astronômicos!” diz Istvan Dékány, autor principal deste novo estudo.
Ao analisar os dados do rastreio, os astrônomos descobriram 655 candidatos a estrelas variáveis do tipo Cefeidas. Estas estrelas expandem-se e contraem-se periodicamente, levando entre alguns dias a meses a completar um ciclo e apresentando variações significativas de brilho durante o ciclo.
O tempo que uma Cefeida leva a tornar-se muito brilhante e depois a apagar-se outra vez é maior para as estrelas que são mais brilhantes e menor para as que são mais fracas. Esta relação precisa notável, descoberta em 1908 pela astrônoma americana Henrietta Swan Leavitt, faz do estudo das Cefeidas um dos meios mais eficazes de medir distâncias e mapear as posições de objetos distantes na Via Láctea e além dela.
No entanto, há um senão, as Cefeidas não são todas iguais, pertencem a duas classes diferentes, uma muito mais jovem que a outra. Da amostra de 655 objetos observados, a equipe identificou 35 estrelas pertencentes ao sub-grupo das Cefeidas clássicas, estrelas brilhantes e jovens, muito diferentes das mais velhas normalmente residentes no bojo central da Via Láctea.
A equipe recolheu informação sobre o brilho e período de pulsação destes objetos e deduziu as distâncias a estas 35 Cefeidas clássicas. Os períodos de pulsação, que estão intimamente ligadas à idade, revelaram a juventude surpreendente destas Cefeidas.
“As 35 Cefeidas clássicas descobertas têm menos de 100 milhões de anos de idade. As Cefeidas mais jovens podem ter apenas cerca de 25 milhões de anos, embora não possamos excluir a presença de Cefeidas ainda mais jovens e brilhantes,” explica o segundo autor do estudo Dante Minniti, da Universidad Andres Bello, Santiago, Chile.
As idades destas Cefeidas clássicas fornecem evidências sólidas de que tem havido um reabastecimento contínuo, não confirmado anteriormente, de estrelas recém-formadas na região central da Via Láctea nos últimos 100 milhões de anos. Esta não foi, no entanto, a única descoberta notável feita a partir desta base de dados do rastreio.
Ao mapear as Cefeidas descobertas, a equipe traçou uma estrutura completamente nova na Via Láctea, um disco fino de estrelas jovens que se estende ao longo do bojo galáctico. Esta nova componente da nossa Galáxia tinha permanecido desconhecida e invisível em rastreios anteriores, uma vez que está enterrada por trás de espessas nuvens de poeira. A sua descoberta demonstra o poder único do VISTA, que foi precisamente concebido para estudar as estruturas profundas da Via Láctea através de imagens de grande angular de alta resolução nos comprimentos de onda do infravermelho.
“Este estudo é uma demonstração poderosa das capacidades inigualáveis do telescópio VISTA para investigar as regiões galácticas extremamente obscuras que não podem ser observadas por outros rastreios atuais ou planejados.” comenta Dékány.
“Esta parte da Galáxia era completamente desconhecida até o rastreio VVV a ter encontrado!” acrescenta Minniti.
Pesquisas subsequentes são agora necessárias para determinar se estas Cefeidas nasceram próximo do local onde se encontram atualmente ou se tiveram origem em outro local. Compreender as suas propriedades fundamentais, interações e evolução é crucial para entender a evolução da Via Láctea e os processos da evolução galáctica como um todo.

Este trabalho foi descrito no artigo científico intitulado “The VVV Survey reveals classical Cepheids tracing a young and thin stellar disk across the Galaxy’s bulge”, de I. Dékány et al., que foi publicado na revista especialiazada Astrophysical Journal Letters.

Fonte: ESO

terça-feira, 27 de outubro de 2015

O brilho da Nebulosa do Coração

O que existe dentro da Nebulosa do Coração?

Nebulosa do Coração

© Simon Addis (Nebulosa do Coração)

Primeiro, a grande nebulosa de emissão, chamada de IC 1805, parece com um coração humano. A nebulosa brilha intensamente na luz vermelha que é emitida pelo seu elemento mais proeminente, o hidrogênio. O brilho vermelho e a forma maior são criados por um grupo pequeno de estrelas perto do centro da nebulosa. No centro da Nebulosa do Coração estão estrelas jovens que pertencem ao aglomerado estelar Melotte 15 e que estão erodindo alguns pitorescos pilares de poeira com sua luz energética e seus ventos. O aglomerado aberto de estrelas contém algumas estrelas brilhantes, com aproximadamente 50 vezes a massa do Sol, muitas estrelas apagadas com somente uma fração da massa do Sol e um microquasar ausente que foi expelido a milhões de anos atrás. A parte mais brilhante da nebulosa é classificada separadamente como NGC 896, pois foi a primeira parte da nebulosa a ser descoberta. A Nebulosa do Coração localiza-se a cerca de 7.500 anos-luz de distância da Terra, na direção da constelação da Cassiopeia. Na parte superior direita da imagem está a sua companheira, a Nebulosa da Cabeça de Peixe.

Fonte: NASA

Hubble espia fronteiras do Big Bang

Observações pelo telescópio espacial Hubble da NASA/ESA aproveitaram o efeito das lentes gravitacionais para revelar a maior amostra de galáxias mais tênues e antigas do Universo.

aglomerado galáctico MACSJ0717.5 3745

© STScI (aglomerado galáctico MACSJ0717.5+3745)

A imagem acima mostra o aglomerado galáctico MACSJ0717.5+3745. É um dos aglomerados galácticos mais massivos que se conhece e o que tem a maior lente gravitacional.

Algumas destas galáxias formaram-se apenas 600 milhões de anos após o Big Bang e são mais tênues do que qualquer outra galáxia já descoberta pelo Hubble. Foi determinado, pela primeira vez e com alguma confiança, que estas galáxias pequenas foram vitais para a formação do Universo que vemos hoje.

Uma equipe internacional de astrônomos, liderada por Hakim Atek da Ecole Polytechnique Fédérale de Lausanne, na Suíça, descobriu mais de 250 pequenas galáxias que existiram apenas 600 a 900 milhões de anos após o Big Bang, uma das maiores amostras de galáxias anãs já descobertas nestas épocas. A luz destas galáxias demorou mais de 12 bilhões de anos até chegar ao telescópio, permitindo com que os astrônomos olhassem para trás no tempo, quando o Universo ainda era muito jovem.

Apesar de impressionante, o número de galáxias descobertas nesta época antiga não é o único avanço notável da equipe, como Johan Richard do Observatório de Lion, na França, salienta: "as galáxias mais tênues detectadas nestas observações do Hubble são mais fracas do que qualquer outra já descoberta nas mais profundas observações do Hubble."

Ao observar a luz vinda das galáxias, a equipe descobriu que a luz acumulada emitida por estas galáxias pode ter desempenhado um papel importante num dos mais misteriosos períodos do início da história do Universo, a época da reionização. A reionização teve início quando o espesso nevoeiro de hidrogênio gasoso que camuflava o Universo jovem começou a clarear. A luz ultravioleta era agora capaz de viajar distâncias maiores sem ser bloqueada e o Universo tornou-se transparente à luz ultravioleta.

Ao observar a luz ultravioleta das galáxias descobertas neste estudo, foi possível calcular se algumas estiveram envolvidas no processo. Foi observado que as galáxias mais pequenas e abundantes no estudo podem ter desempenhado um papel principal em manter o Universo transparente. Ao fazê-lo, determinaram que a época da reionização, que termina no momento em que o Universo fica totalmente transparente, chegou ao fim cerca de 700 milhões de anos após o Big Bang.

Atek, o autor principal, explica: "Se tivermos em conta apenas as contribuições das galáxias gigantes e brilhantes, descobrimos que estas eram insuficientes para reionizar o Universo. Também precisamos de acrescentar a contribuição de uma população mais abundante de tênues galáxias anãs."

Para fazer estas descobertas, a equipe utilizou as imagens mais profundas de lentes gravitacionais, obtidas até agora, em três aglomerados galácticos, parte do programa Fontier Fields do Hubble. Estes aglomerados geram imensos campos gravitacionais capazes de ampliar a luz das galáxias mais tênues situadas muito atrás dos próprios aglomerados. Isto torna possível a pesquisa e o estudo da primeira geração de galáxias no Universo.

Jean-Paul Kneib da Ecole Polytechnique Fédérale de Lausanne, na Suíça, explica: "os aglomerados do programa Frontier Fields atuam como poderosos telescópios naturais e desvendam estas galáxias tênues e pequenas que, caso contrário, seriam invisíveis."

Mathilde Jauzac da Universidade de Durham, no Reino Unido, e da Universidade de KwaZulu-Natal, na África do Sul, realça a importância da descoberta e a função do Hubble: "O Hubble permanece inigualável na sua capacidade de observar as galáxias mais distantes. A enorme profundidade dos dados do Frontier Fields garante uma compreensão muito precisa do efeito de ampliação do aglomerado, permitindo-nos fazer descobertas como estas."

Estes resultados evidenciam as possibilidades impressionantes do programa Frontier Fields com mais galáxias, até num momento ainda mais antigo, que provavelmente serão reveladas quando o Hubble examinar três outros destes aglomerados galácticos no futuro próximo.

Fonte: ESA

sábado, 24 de outubro de 2015

Estrela é destruída por buraco negro gerando chuva de detritos

Um trio de telescópios de raios X em órbita recolheram novos detalhes sobre o que acontece quando um buraco negro despedaça uma estrela, dando aos cientistas uma oportunidade extraordinária para compreender o ambiente extremo em torno de um buraco negro.

ilustração de uma ruptura de maré

© NASA/CXC/U. Michigan/J. Miller/M. Weiss (ilustração de uma ruptura de maré)

Quando uma estrela passa demasiado perto de um buraco negro, a gravidade intensa do buraco negro resulta em forças de maré que podem rasgar a estrela. Nestes eventos, denominados "rupturas de maré", alguns dos detritos estelares são arremessados para fora a altas velocidades, enquanto o resto cai na direção do buraco negro. Isto provoca uma erupção distinta em raios X que pode durar alguns anos.

O observatório de raios X Chandra da NASA, o Swift e o XMM-Newton da ESA/NASA recolheram peças diferentes deste quebra-cabeça astronômico numa ruptura de maré chamada ASASSN-14li, originalmente descoberta numa pesquisa óptica pelo All-Sky Automated Survey for Supernovae (ASAS-SN) em novembro de 2014.

O evento ocorreu perto de um buraco negro supermassivo com uma massa estimada em algumas milhões de vezes a massa do Sol. O buraco negro está localizado no centro de PGC 043234, uma galáxia a cerca de 290 milhões de anos-luz da Terra. Isto torna este evento de ruptura de maré o mais próximo da última década.

"Nós observamos evidências de um punhado de rupturas de maré ao longo dos anos e desenvolvemos uma série de ideias sobre o que se passa," afirma Jon Miller da Universidade de Michigan em Ann Arbor, EUA, que liderou o estudo. "Esta é a melhor ocasião que tivemos, até agora, para realmente entender o que acontece quando um buraco negro despedaça uma estrela."

Depois da estrela ser destruída, a forte força gravitacional do buraco negro puxa a maioria dos restos estelares na sua direção. Estes detritos são aquecidos até milhões de graus e geram uma grande quantidade de raios X. Pouco depois deste aumento súbito de raios X, a quantidade de luz diminui à medida que o material cai além do horizonte de eventos do buraco negro, o ponto além do qual nenhuma luz pode escapar.

O gás cai muitas vezes em direção aos buracos negros espiralando num disco. Mas o modo como este processo começa tem permanecido um mistério. Em ASASSN-14li, os astrônomos foram capazes de testemunhar a formação de tal disco ao observar os raios X em diferentes comprimentos de onda (espectro de raios X) e de acompanhar como mudou ao longo do tempo.

Os pesquisadores determinaram que os raios X produzidos vêm do material que ou está muito perto ou está mesmo na órbita estável mais pequena possível ao redor do buraco negro.

"O buraco negro rasga a estrela e começa a engolir material muito rapidamente, mas não é esse o fim da história," afirma Jelle Kaastra do Instituto para Pesquisa Espacial nos Países Baixos. "O buraco negro não pode manter esse ritmo, por isso expele algum do material para fora."

Os dados de raios X sugerem também a presença de um vento que se afasta do buraco negro. O vento não é rápido o suficiente para escapar à gravidade do buraco negro. Uma explicação alternativa para a relativamente baixa velocidade é que o gás da estrela despedaçada segue uma órbita elíptica em torno do buraco negro e que está à distância máxima do buraco negro onde pode viajar o mais lento possível.

"Estes resultados suportam algumas das nossas ideias mais recentes para a estrutura e evolução dos eventos de ruptura de maré," afirma Cole Miler da Universidade de Maryland em College Park. "No futuro, as rupturas de maré podem fornecer-nos laboratórios para estudar os efeitos da gravidade extrema."

Os astrônomos esperam encontrar mais eventos como ASASSN-14li, que podem usar para continuar testando modelos teóricos sobre como os buracos negros afetam os seus ambientes e qualquer coisa que possa passar demasiado perto deles.

Um artigo foi publicado na última edição da revista Nature.

Fonte: Marshall Space Flight Center & Chandra X-ray Center

sexta-feira, 23 de outubro de 2015

Descoberta estrela moribunda vaporizando um mini “planeta”

Cientistas usando o reaproveitado telescópio espacial Kepler da NASA, conhecido como missão K2, descobriram fortes evidências de um pequeno objeto rochoso sendo dilacerado à medida que espirala em torno de uma estrela anã branca.

ilustração de pequeno rochoso sendo vaporizado por estrela anã branca

© CfA/Mark A. Garlick (ilustração de objeto rochoso sendo vaporizado por estrela anã branca)

Esta descoberta confirma uma teoria de longa data que afirma que as anãs brancas são capazes de canibalizar possíveis planetas remanescentes dentro do seu Sistema Solar.

"Estamos, pela primeira vez, assistindo à destruição de um “planeta” em miniatura devido à intensa gravidade, vaporizado por luz estelar e devido à chuva de material rochoso para a sua estrela," afirma Andrew Vanderburg, estudante do Harvard-Smithsonian Center for Astrophysics em Cambridge, no estado americano de Massachusetts, autor principal do estudo.

À medida que estrelas como o nosso Sol envelhecem, incham para gigantes vermelhas e, em seguida, perdem gradualmente cerca de metade da sua massa, encolhendo até 1/100 do seu tamanho original, aproximadamente do tamanho da Terra. Este remanescente estelar moribundo e denso tem o nome de anã branca.

O planetesimal devastado, ou objeto cósmico formado a partir de poeira, rocha e outros materiais, tem um tamanho estimado de um grande asteroide e é o primeiro objeto planetário confirmado que transita uma anã branca. Orbita a anã branca WD 1145+017 uma vez a cada 4,5 horas. Este período orbital coloca-o extremamente perto da anã branca, do seu calor abrasador e da sua grande força gravitacional.

Durante a sua primeira campanha de observação entre 30 de maio e 21 de agosto de 2014, a missão K2 treinou o seu olhar numa zona do céu na direção da constelação de Virgem, medindo a minúscula mudança no brilho da anã branca distante. Quando um objeto transita ou passa em frente da estrela, a partir do ponto de vista do telescópio espacial, é registada uma diminuição no brilho estelar. O escurecimento periódico da luz estelar indica a presença de um objeto em órbita da estrela.

Uma equipe de pesquisa liderada por Vanderburg descobriu um padrão invulgar nos dados, mas vagamente familiar. Embora houvesse um mergulho proeminente no brilho a cada 4,5 horas, que bloqueava até 40% da luz da anã branca, o sinal do trânsito do planeta minúsculo não exibia o padrão típico e simétrico em forma de U. Exibia, na verdade, uma inclinação alongada e assimétrica que poderia indicar a presença de uma cauda parecida com a de um cometa. Estas características indicavam um anel de escombros empoeirados ao redor da anã branca, o que poderia ser a assinatura da destruição de um pequeno planeta.

diagrama mostrando um modelo da curva de luz

© CfA/A. Vanderburg (diagrama mostrando um modelo da curva de luz)

O diagrama acima mostra um modelo da curva de luz. A linha vermelha indica a forma simétrica de um trânsito de um hipotético planeta do tipo da Terra e a linha azul a forma assimétrica do pequeno planeta que se desintegra e da sua cauda de poeira parecida com a de um cometa. Os pontos negros são as medições de WD 1145+017 registadas pela missão K2.

"O momento crucial da descoberta surgiu na última noite de observações, com a súbita percepção do que estava acontecendo em torno da anã branca. A forma e a mudança de profundidade do trânsito foram assinaturas inegáveis," afirma Vanderburg.

Além dos trânsitos com forma estranha, Vanderburg e a sua equipe descobriram sinais de elementos mais pesados que poluíam a atmosfera de WD 1145+017, como previsto pela teoria.

Devido à intensa gravidade, pensa-se que as anãs brancas têm superfícies quimicamente puras, cobertas apenas por elementos leves como o hélio e hidrogênio. Durante anos, os pesquisadores encontraram evidências de que as atmosferas de algumas anãs brancas estão poluídas com traços de elementos mais pesados como o cálcio, silício, magnésio e ferro. Os cientistas já suspeitavam que a fonte desta poluição era a destruição de um asteroide ou pequeno planeta devido à intensa gravidade.

A análise da composição atmosférica da estrela foi realizada utilizando observações feitas pelo Observatório MMT da Universidade do Arizona.

"Durante a última década temos suspeitado que as anãs brancas estavam alimentando-se de restos de objetos rochosos, e este resultado pode ser a prova cabal que procurávamos," comenta Fergal Mullally, cientista da equipe K2 no SETI (Search for Extraterrestrial Intelligence) e no Ames Research Center da NASA em Moffett Field, Califórnia. "No entanto, ainda há muito mais trabalho a ser feito para descobrir a história deste sistema."

"Esta descoberta destaca o poder e a natureza fortuita do K2. A comunidade científica tem acesso total às observações K2 e está usando estes dados para fazer uma grande variedade de descobertas únicas em toda a gama de fenômenos astrofísicos," afirma Steve Howell, cientista do projeto K2 no Ames.

Esta descoberta foi publicada ontem num artigo da revista Nature.

Fonte: Ames Research Center & Harvard-Smithsonian Center for Astrophysics

A maioria dos planetas parecidos com a Terra ainda nem nasceram

A Terra chegou cedo para a festa no Universo em evolução. De acordo com um novo estudo teórico, quando o nosso Sistema Solar nasceu a 4,6 bilhões de anos atrás, somente 8% dos planetas possivelmente habitáveis que serão formados existiam no Universo.

ilustração dos inumeráveis planetas parecidos com a Terra

© NASA/ESA/G. Bacon (ilustração dos inumeráveis planetas parecidos com a Terra)

E, a festa não terminaria até quando o Sol queimasse por outros 6 bilhões de anos. A totalidade desses planetas, em torno de 92%, não tinham nascido.

Esta conclusão é baseada no acesso dos dados coletados pelo telescópio espacial Hubble e o prolífico caçador de exoplanetas, o observatório espacial Kepler.

“Nossa principal motivação foi entender o lugar da Terra no contexto do resto do Universo”, disse o autor do estudo Peter Behroozi do Space Telescope Science Institute (STScI), em Baltimore, Maryland. “Comparado a todos os planetas que irão se formar no Universo, a Terra, na verdade chegou cedo”.

Olhando distante no espaço e no tempo, o Hubble tem fornecido aos astrônomos um verdadeiro “álbum de família”, das observações da galáxia que mostra a história da formação do Universo à medida que as galáxias cresciam. Os dados mostram que o Universo estava gerando estrelas numa taxa elevada a 10 bilhões de anos atrás, mas a fração do gás hidrogênio e hélio que estava envolvida era muito baixa. Hoje, o nascimento de estrelas está acontecendo numa taxa muito mais lenta do que a muito tempo atrás, mas existe muito gás deixado para trás disponível que o Universo continuará gerando estrelas e planetas por muito tempo ainda.

“Existe material suficiente restante, após o Big Bang, para produzir até mesmo mais planetas no futuro, na Via Láctea e além”, adicionou Molly Peeples também do STScI.

A pesquisa de planetas do Kepler, indica que os exoplanetas do tamanho da Terra, na zona habitável de estrelas, a distância perfeita que poderia permitir que a água existisse de forma líquida na superfície, são onipresentes na nossa galáxia. Com base na pesquisa era previsto que deveria haver atualmente 1 bilhão de mundos do tamanho da Terra na Via Láctea, uma boa porção deles presumidamente rochosos. Esta estimativa dispara, quando você inclui as outras 100 bilhões de galáxias no Universo observável.

Isto conduz à grande oportunidade da existência de incontáveis planetas do tamanho da Terra na zona habitável surgirem no futuro. Espera-se que a última estrela exista até 100 trilhões de anos a partir de hoje. Isso é muito tempo para literalmente qualquer coisa acontecer em um planeta.

Os pesquisadores disseram que as futuras Terras muito provavelmente aparecerão dentro de gigantescos aglomerados de galáxias e também em galáxias anãs, que ainda não usaram todo o seu gás para gerar estrelas e sistemas planetários. Em contraste, a nossa Via Láctea usou muito mais do seu gás disponível para futuras formações estelares.

Um grande avanço para o surgimento da nossa civilização na evolução do Universo é o fato de sermos capazes de usar o poder de telescópios como o Hubble para delinear a nossa história desde o Big Bang através da evolução inicial das galáxias. A evidência observacional para o Big Bang e para a evolução cósmica, registrada na região luminosa e em outros tipos de radiação eletromagnética, será apagada daqui a 1 trilhão de anos devido à expansão do espaço. Qualquer civilização que venha a existir não terá pista quase que nenhuma sobre como ou se o Universo começou e se desenvolveu.

Um artigo que descreve os resultados foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Space Telescope Science Institute