terça-feira, 26 de agosto de 2025

Estrutura poeirenta explica o desaparecimento de uma estrela distante

As estrelas morrem e desaparecem de vista a toda a hora, mas os astrônomos ficaram intrigados quando uma estrela que se tinha mantido estável durante mais de uma década quase desapareceu durante oito meses.

© ChatGPT 5 (ilustração do sistema ASASSN-24fw)

Entre o final de 2024 e o início de 2025, uma estrela da nossa Galáxia, designada por ASASSN-24fw, diminuiu o seu brilho em cerca de 97%, antes de aumentar novamente. Desde então, os cientistas têm vindo a trocar teorias sobre o que estará por detrás deste acontecimento raro. A ASASSN-24fw é uma estrela de classe F, uma estrela um pouco mais massiva do que o nosso Sol e com cerca do dobro do tamanho, e está localizada a cerca de 3.000 anos-luz da Terra.

Agora, uma equipe internacional liderada por cientistas da Universidade do Estado do Ohio, EUA, poderá ter encontrado uma resposta para o mistério. Num novo estudo, os astrônomos sugerem que, uma vez que a cor da luz da estrela permaneceu inalterada durante o seu escurecimento, o evento não foi causado por uma qualquer evolução da estrela, mas sim por uma grande nuvem de poeira e gás em torno da estrela que ocultou a visão da Terra.

Os pesquisadores estimam que a nuvem em forma de disco que a rodeia tem cerca de 1,3 unidades astronômicas (UA) de diâmetro, uma distância ainda maior do que a que separa o Sol do nosso planeta (1 UA é a distância entre o centro da Terra e o centro do Sol).

Este disco também é provavelmente constituído por grandes aglomerados de carbono ou água gelada, com dimensões próximas das de um grande grão de poeira encontrado na Terra. Este material é suficientemente semelhante aos discos de formação planetária para que o seu estudo possa fornecer novos conhecimentos sobre a formação e evolução estelar.

No entanto, estas descobertas por si só não explicam todas as anomalias do sistema. Ao invés, os pesquisadores pensam que uma estrela menor e mais fria pode também orbitar ASASSN-24fw, o que faria dele um sistema binário oculto. A segunda estrela, que é muito mais fraca e menos massiva, pode estar provocando as mudanças na geometria que levam aos eclipses.

O sistema foi descoberto no âmbito do projeto ASAS-SN (All-Sky Automated Survey for Supernovae), uma rede de pequenos telescópios que monitoram todo o céu noturno visível. Desde a sua criação, há mais de uma década, que o ASAS-SN já recolheu cerca de 14 milhões de imagens do cosmos.

De acordo com a equipe, o sistema ASASSN-24fw deverá passar por um eclipse aproximadamente a cada 43,8 anos, sendo que o próximo só deverá ocorrer por volta de 2068. Serão utilizados telescópios maiores, como o telescópio espacial James Webb e o LBT (Large Binocular Telescope), para fazer observações mais completas do sistema à medida que este regressa ao brilho total.

Um artigo foi publicado no periódico The Open Journal of Astrophysics.

Fonte: The Ohio State University

A evolução de uma estrela moribunda durante mais de um século

Pela primeira vez, os cientistas seguiram diretamente a lenta transformação de uma estrela moribunda ao longo de mais de um século, revelando que está aquecendo mais depressa do que qualquer outra estrela típica alguma vez observada.

© Hubble (IC 418)

A imagem acima mostra a nebulosa planetária IC 418 em cores falsas, obtida pelo telescópio espacial Hubble em 1999.

A pesquisa rastreia 130 anos de mudanças na nebulosa planetária IC 418, uma concha brilhante de gás e poeira expelida por uma estrela moribunda a cerca de 4.000 anos-luz da Terra.

Reunindo observações que remontam a 1893, quando os astrônomos registaram pela primeira vez a nebulosa através de um telescópio, até aos dias de hoje, os cientistas descobriram que a característica luz verde da nebulosa, emitida pelos átomos de oxigênio, se tornou cerca de 2,5 vezes mais forte desde que os astrônomos vitorianos a estudaram pela primeira vez.

Esta mudança está sendo impulsionada pela subida da temperatura da estrela central, que aumentou cerca de 3.000° C desde 1893, ou seja, aproximadamente 1.000° C a cada 40 anos. Para comparação, o Sol aumentou o mesmo valor durante a sua formação, mas demorou 10 milhões de anos a fazê-lo.

No entanto, embora a estrela esteja aquecendo mais depressa, continua sendo mais lentamente do que os modelos mais recentes previam. Isto desafia as teorias atuais sobre a forma como as estrelas envelhecem e morrem, e pode forçar os astrônomos a repensar as massas das estrelas capazes de produzir carbono.

Uma nebulosa planetária assinala uma das fases finais da vida de uma estrela. À medida que o núcleo da estrela se torna instável, libera as suas camadas exteriores para o espaço. O núcleo remanescente aquece rapidamente, energizando o gás e a poeira circundantes para formar belas estruturas. No caso de IC 418, isto cria uma estrutura intrincada e rodopiante, que lhe valeu a alcunha de "Nebulosa do Espirógrafo". O nosso Sol terá o mesmo destino daqui a cerca de 5 bilhões de anos.

Ao passo que as nebulosas planetárias normalmente evoluem de forma lenta, os pesquisadores descobriram que IC 418 está evoluindo depressa o suficiente para ser seguida durante uma vida humana. Isto faz com que seja a transformação mais prolongada e rápida alguma vez registada numa nebulosa planetária, e possivelmente em qualquer estrela.

Os astrônomos verificaram, calibraram e combinaram os dados antes de os compararem com modelos detalhados de evolução estelar. Isto permitiu-lhes medir o ritmo de aquecimento da estrela, determinar a sua massa atual e até estimar a massa da estrela antes de começar a sua transformação.

As descobertas oferecem uma visão rara de como as nebulosas planetárias evoluem e sugerem que o céu noturno pode mudar muito mais depressa do que normalmente pensamos.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: The University of Manchester

sexta-feira, 22 de agosto de 2025

Descoberta uma nova lua em torno de Urano

Utilizando o telescópio espacial James Webb da NASA, uma equipe liderada pelo SwRI (Southwest Research Institute) identificou uma lua anteriormente desconhecida em órbita de Urano, elevando a família de satélites conhecidos do planeta para 29.

© NASA (nova lua de Urano)

Esta imagem mostra a lua, designada S/2025 U1, bem como 13 das outras 28 luas conhecidas que orbitam o planeta (a pequena lua Cordélia orbita mesmo no interior do anel mais exterior, mas não é visível nestas imagens devido ao brilho dos anéis). Devido às diferenças drásticas nos níveis de brilho, a imagem é uma composição de três tratamentos diferentes dos dados, permitindo ao observador ver detalhes da atmosfera planetária, dos anéis circundantes e das luas em órbita.

A detecção foi feita durante uma observação do Webb em 2 de fevereiro de 2025. Este objeto foi detectado numa série de 10 imagens de longa exposição com 40 minutos cada obtidas pelo instrumento NIRCam (Near-Infrared Camera). É uma lua pequena, mas uma descoberta significativa, que é algo que nem a nave espacial Voyager 2 da NASA, que passou por Urano no dia 24 de janeiro de 1986, viu durante o seu sobrevoo há quase 40 anos. 

Estima-se que a lua recém-descoberta tenha apenas 10 quilômetros de diâmetro, assumindo que tem uma refletividade (albedo) semelhante à dos outros pequenos satélites de Urano. Este tamanho minúsculo tornou-a provavelmente invisível à Voyager 2 e a outros telescópios.

Nenhum outro planeta tem tantas pequenas luas interiores como Urano, e as suas complexas inter-relações com os anéis sugerem uma história caótica que dilui a fronteira entre um sistema de anéis e um sistema de luas. Além disso, a nova lua é a menor e muito mais tênue do que a menor das luas interiores anteriormente conhecidas, o que torna provável que ainda haja mais complexidade por descobrir.

© SwRI (localização da nova lua de Urano)

Aimagem acima mostra a localização aproximada de S/2025 U 1, em amarelo. As elipses sólidas indicam anéis, enquanto as linhas em tracejado mostram as órbitas de muitas das luas interiores. A nova lua é o 14.º membro do intrincado sistema de pequenas luas que orbitam mais perto do que as maiores luas Miranda, Ariel, Umbriel, Titânia e Oberon (todas as luas de Urano têm nomes de personagens de Shakespeare e Alexander Pope).

A nova lua está localizada a cerca de 56.000 quilômetros do centro de Urano, orbitando o plano equatorial do planeta entre as órbitas de Ofélia (que está fora do sistema de anéis principal de Urano) e Bianca. A sua órbita quase circular sugere que pode ter sido formada perto da sua posição atual.

O nome da lua recém-descoberta terá de ser aprovado pela União Astronômica Internacional, a principal autoridade na atribuição de nomes e designações oficiais dos objetos astronômicos.

Fonte: Southwest Research Institute

Raro sistema quádruplo pode desvendar o mistério das anãs marrons

De acordo com os astrônomos, a excitante descoberta de um sistema estelar quádruplo extremamente raro poderá fazer avançar significativamente a nossa compreensão das anãs marrons.

© J. Zhong & Z. Zhang (sistema UPM J1040-3551)

A ilustração mostra o sistema UPM J1040-3551 contra o pano de fundo da Via Láctea, tal como observado pelo Gaia. À esquerda, UPM J1040-3551 Aa e Ab aparece como um distante ponto laranja brilhante, com uma inserção revelando estas duas estrelas do tipo M em órbita. À direita, em primeiro plano, um par de anãs marrons frias, UPM J1040-3551 Ba e Bb, orbitam-se mutuamente ao longo de um período de décadas, enquanto coletivamente orbitam UPM J1040-3551 Aab.

Estes objetos misteriosos são demasiado grandes para serem considerados planetas, mas também demasiado pequenos para serem estrelas, porque não têm massa suficiente para continuar a fundir átomos e para se transformarem em sóis de pleno direito.

Numa nova descoberta, os astrônomos identificaram um sistema estelar quádruplo hierárquico extremamente raro, constituído por um par de anãs marrons frias em órbita de um par de jovens estrelas anãs vermelhas, localizado a 82 anos-luz da Terra, na direção da constelação austral da Máquina Pneumática. O sistema, denominado UPM J1040-3551 AabBab, foi identificado por uma equipe internacional liderada pelo professor Zenghua Zhang, da Universidade de Nanjing, China.

Os pesquisadores fizeram a sua descoberta utilizando a velocidade angular medida pelo Gaia da ESA e pelo WISE (Wide-field Infrared Survey Explorer) da NASA, seguida de observações e análises espectroscópicas exaustivas. Isto porque este largo par binário precisa de mais de 100.000 anos para completar uma órbita em volta um do outro, pelo que o seu movimento orbital não pode ser visto em termos de anos. Por isso, tiveram de analisar como se movem na mesma direção e com a mesma velocidade angular. Neste sistema, Aab refere-se ao par estelar mais brilhante Aa e Ab, enquanto Bab se refere ao par subestelar mais fraco Ba e Bb.

Os dois pares estão separados por 1,656 UA (unidades astronômicas), em que 1 UA é igual à distância Terra-Sol. O par mais brilhante, UPM J1040-3551 Aab, é constituído por duas estrelas anãs vermelhas de massa quase igual, que parecem cor de laranja quando observadas em comprimentos de onda visíveis. Com uma magnitude visual de 14,6, este par é aproximadamente 100.000 vezes mais fraco do que a Estrela Polar em comprimentos de onda ópticos. Nenhuma estrela anã vermelha é suficientemente brilhante para ser vista a olho nu, nem mesmo Proxima Centauri, a nossa vizinha estelar mais próxima, a 4,2 anos-luz de distância.

Para tornar UPM J1040-3551 Aab visível sem ajuda óptica, este par binário teria de ser colocado a uma distância de 1,5 anos-luz da Terra, o que o colocaria mais perto do que qualquer outra estrela da nossa atual vizinhança cósmica. O par mais fraco, UPM J1040-3551 Bab, é composto por duas anãs marrons muito mais frias que não emitem praticamente nenhuma luz visível e aparecem cerca de 1.000 vezes mais fracas do que o par Aab quando observadas nos comprimentos de onda do infravermelho próximo, onde são mais facilmente detectadas.

A natureza binária e íntima de UPM J1040-3551 Aab foi inicialmente suspeitada devido a sua imagem central oscilante durante as observações do Gaia e confirmada pelo seu brilho incomum, cerca de 0,7 magnitudes mais brilhante do que uma única estrela com a mesma temperatura à mesma distância, uma vez que a luz combinada do par de massas quase iguais duplica efetivamente a emissão. Da mesma forma, UPM J1040-3551 Bab foi identificado como outro binário próximo através das suas medições infravermelhas anormalmente brilhantes em comparação com as anãs marrons típicas do seu tipo espectral.

A análise do ajuste espectral apoiou fortemente esta conclusão, com os modelos binários  fornecendo uma correspondência significativamente melhor do que os modelos de um único objeto. O Dr. Felipe Navarete, do Laboratório Nacional de Astrofísica do Brasil, liderou as observações espectroscópicas críticas que ajudaram a caracterizar os componentes do sistema. Usando o espectrógrafo Goodman no Telescópio SOAR (Southern Astrophysical Research) no Observatório Interamericano de Cerro Tololo no Chile, ele obteve espectros ópticos do par mais brilhante, enquanto também captava espectros no infravermelho próximo do par mais fraco com o instrumento TripleSpec do SOAR.

A sua análise revelou que ambos os componentes do par mais brilhante são anãs vermelhas do tipo M, com temperaturas de aproximadamente 3.200 K (cerca de 2900° C) e massas de cerca de 17% da do Sol. O par mais fraco são objetos mais exóticos: duas anãs marrons do tipo T com temperaturas de 820 K (550° C) e 690 K (420° C), respectivamente.

As anãs marrons são objetos pequenos e densos de baixa massa, sendo que as deste sistema têm tamanhos semelhantes ao planeta Júpiter, mas massas estimadas em 10 a 30 vezes superiores. Realmente, no limite inferior deste intervalo, estes objetos poderiam ser considerados objetos de "massa planetária".

Ao contrário das estrelas, as anãs marrons arrefecem continuamente ao longo da sua vida, o que altera as suas propriedades observáveis, como a temperatura, a luminosidade e as características espectrais. Este processo de arrefecimento cria um desafio fundamental na exploração das anãs marrons, conhecido como o "problema da degenerescência idade-massa".

Uma anã marrom isolada com uma determinada temperatura pode ser um objeto mais jovem e menos massivo ou um objeto mais velho e mais massivo, os astrônomos não conseguem distinguir entre estas possibilidades sem informação adicional. As anãs marrons com grandes companheiras estelares, cujas idades podem ser determinadas de forma independente, são de valor inestimável para quebrar esta degenerescência como referências de idade. O sistema UPM J1040-3551 é particularmente valioso porque a emissão H-alfa do par mais brilhante indica que é relativamente jovem, entre 300 milhões e 2 bilhões de anos. 

Pensa-se que o par de anãs marrons (UPM J1040-3551 Bab) pode, potencialmente, ser resolvido no futuro com técnicas de imagem de alta resolução, permitindo medições precisas do seu movimento orbital e massas dinâmicas. Este sistema pode servir como referência de idade para calibrar modelos de atmosfera de baixa temperatura, e como referência de massa para testar modelos evolutivos através da resolução do binário das anãs marrons e seguir a sua órbita. A descoberta do sistema UPM J1040-3551 representa um avanço significativo na compreensão destes objetos elusivos e dos diversos percursos de formação de sistemas estelares na vizinhança do Sol.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

IA ajuda na descoberta de um novo tipo de supernova

Os astrônomos descobriram o que poderá ser uma estrela massiva explodindo enquanto tenta engolir um buraco negro que a acompanha, oferecendo uma explicação para uma das mais estranhas explosões estelares alguma vez observadas.

© CfA (interação explosiva entre buraco negro e estrela massiva)

A descoberta foi feita por uma equipe liderada pelo Centro de Astrofísica do Harvard & Smithsonian e pelo MIT (Massachusetts Institute of Technology), no âmbito do levantamento YSE (Young Supernova Experiment).

A explosão, designada SN 2023zkd, foi descoberta pela primeira vez em julho de 2023 pelo ZTF (Zwicky Transient Facility). Um novo algoritmo de inteligência artificial concebido para detectar explosões incomuns em tempo real foi o primeiro a detectar a explosão, e esse alerta precoce permitiu que os astrônomos iniciassem imediatamente observações de acompanhamento, um passo essencial para captar a história completa da explosão. Quando a explosão terminou, já tinha sido observada por um grande conjunto de telescópios, tanto no solo como a partir do espaço.

Os cientistas pensam que a interpretação mais provável é que a estrela massiva estava presa numa órbita mortal com um buraco negro. À medida que a energia da órbita se perdia, a sua separação diminuiu até que a supernova foi desencadeada pelo stress gravitacional da estrela, que engoliu parcialmente o buraco negro.

Uma interpretação alternativa considerada pela equipe é que o buraco negro despedaçou completamente a estrela antes que esta pudesse explodir por si própria. Nesse caso, o buraco negro puxou rapidamente os detritos da estrela e a emissão da supernova foi gerada quando os detritos colidiram com o gás que os rodeava. Em ambos os casos, um único buraco negro, mais massivo, é deixado para trás.

Localizada a cerca de 730 milhões de anos-luz da Terra, SN 2023zkd parecia inicialmente uma supernova típica, com uma única explosão de luz. Mas quando os cientistas seguiram o seu declínio ao longo de vários meses, fez algo inesperado: voltou a brilhar. Para compreender este comportamento incomum, os cientistas analisaram dados de arquivo, que revelaram algo ainda mais estranho: o sistema aumentou lentamente de brilho ao longo de mais de quatro anos antes da explosão.

Este tipo de atividade a longo prazo, pré-explosão, é raramente visto em supernovas. Análises detalhadas revelaram que a luz da explosão foi moldada pelo material que a estrela tinha liberado nos anos anteriores à sua morte. O brilho inicial foi causado pela onda de explosão da supernova que atingiu gás de baixa densidade. O segundo pico, mais tardio, foi causado por uma colisão mais lenta, mas sustentada, com uma nuvem espessa, semelhante a um disco.

Esta estrutura e o comportamento errático da estrela antes da explosão sugerem que a estrela moribunda estava sob extrema tensão gravitacional, provavelmente de uma companheira compacta próxima, como um buraco negro. 

Esta descoberta mostra como é importante estudar a forma como as estrelas massivas interagem com as suas companheiras à medida que se aproximam do fim das suas vidas. Há já algum tempo que é conhecido que a maioria das estrelas massivas se encontram em binários, mas apanhar uma no ato de troca de massa pouco antes de explodir é incrivelmente raro. 

Com o Observatório Vera C. Rubin revelando recentemente as suas primeiras imagens e se preparando para observar todo o céu de poucas em poucas noites, esta descoberta marca um vislumbre do que está para vir. Novos e poderosos observatórios, combinados com sistemas de IA em tempo real, permitirão em breve que a descoberta de muitas mais explosões raras e complexas e comecem a mapear a forma como estrelas massivas vivem e morrem em sistemas binários.

O levantamento YSE continuará complementando o Rubin, utilizando os telescópios Pan-STARRS1 e Pan-STARRS2 para identificar supernovas pouco depois da explosão. Esta abordagem oferece uma forma econômica de estudar o Universo próximo e dinâmico.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics