De acordo com os astrônomos, a excitante descoberta de um sistema estelar quádruplo extremamente raro poderá fazer avançar significativamente a nossa compreensão das anãs marrons.
© J. Zhong & Z. Zhang (sistema UPM J1040-3551)
A ilustração mostra o sistema UPM J1040-3551 contra o pano de fundo da Via Láctea, tal como observado pelo Gaia. À esquerda, UPM J1040-3551 Aa e Ab aparece como um distante ponto laranja brilhante, com uma inserção revelando estas duas estrelas do tipo M em órbita. À direita, em primeiro plano, um par de anãs marrons frias, UPM J1040-3551 Ba e Bb, orbitam-se mutuamente ao longo de um período de décadas, enquanto coletivamente orbitam UPM J1040-3551 Aab.
Estes objetos misteriosos são demasiado grandes para serem considerados planetas, mas também demasiado pequenos para serem estrelas, porque não têm massa suficiente para continuar a fundir átomos e para se transformarem em sóis de pleno direito.
Numa nova descoberta, os astrônomos identificaram um sistema estelar quádruplo hierárquico extremamente raro, constituído por um par de anãs marrons frias em órbita de um par de jovens estrelas anãs vermelhas, localizado a 82 anos-luz da Terra, na direção da constelação austral da Máquina Pneumática. O sistema, denominado UPM J1040-3551 AabBab, foi identificado por uma equipe internacional liderada pelo professor Zenghua Zhang, da Universidade de Nanjing, China.
Os pesquisadores fizeram a sua descoberta utilizando a velocidade angular medida pelo Gaia da ESA e pelo WISE (Wide-field Infrared Survey Explorer) da NASA, seguida de observações e análises espectroscópicas exaustivas. Isto porque este largo par binário precisa de mais de 100.000 anos para completar uma órbita em volta um do outro, pelo que o seu movimento orbital não pode ser visto em termos de anos. Por isso, tiveram de analisar como se movem na mesma direção e com a mesma velocidade angular. Neste sistema, Aab refere-se ao par estelar mais brilhante Aa e Ab, enquanto Bab se refere ao par subestelar mais fraco Ba e Bb.
Os dois pares estão separados por 1,656 UA (unidades astronômicas), em que 1 UA é igual à distância Terra-Sol. O par mais brilhante, UPM J1040-3551 Aab, é constituído por duas estrelas anãs vermelhas de massa quase igual, que parecem cor de laranja quando observadas em comprimentos de onda visíveis. Com uma magnitude visual de 14,6, este par é aproximadamente 100.000 vezes mais fraco do que a Estrela Polar em comprimentos de onda ópticos. Nenhuma estrela anã vermelha é suficientemente brilhante para ser vista a olho nu, nem mesmo Proxima Centauri, a nossa vizinha estelar mais próxima, a 4,2 anos-luz de distância.
Para tornar UPM J1040-3551 Aab visível sem ajuda óptica, este par binário teria de ser colocado a uma distância de 1,5 anos-luz da Terra, o que o colocaria mais perto do que qualquer outra estrela da nossa atual vizinhança cósmica. O par mais fraco, UPM J1040-3551 Bab, é composto por duas anãs marrons muito mais frias que não emitem praticamente nenhuma luz visível e aparecem cerca de 1.000 vezes mais fracas do que o par Aab quando observadas nos comprimentos de onda do infravermelho próximo, onde são mais facilmente detectadas.
A natureza binária e íntima de UPM J1040-3551 Aab foi inicialmente suspeitada devido a sua imagem central oscilante durante as observações do Gaia e confirmada pelo seu brilho incomum, cerca de 0,7 magnitudes mais brilhante do que uma única estrela com a mesma temperatura à mesma distância, uma vez que a luz combinada do par de massas quase iguais duplica efetivamente a emissão. Da mesma forma, UPM J1040-3551 Bab foi identificado como outro binário próximo através das suas medições infravermelhas anormalmente brilhantes em comparação com as anãs marrons típicas do seu tipo espectral.
A análise do ajuste espectral apoiou fortemente esta conclusão, com os modelos binários fornecendo uma correspondência significativamente melhor do que os modelos de um único objeto. O Dr. Felipe Navarete, do Laboratório Nacional de Astrofísica do Brasil, liderou as observações espectroscópicas críticas que ajudaram a caracterizar os componentes do sistema. Usando o espectrógrafo Goodman no Telescópio SOAR (Southern Astrophysical Research) no Observatório Interamericano de Cerro Tololo no Chile, ele obteve espectros ópticos do par mais brilhante, enquanto também captava espectros no infravermelho próximo do par mais fraco com o instrumento TripleSpec do SOAR.
A sua análise revelou que ambos os componentes do par mais brilhante são anãs vermelhas do tipo M, com temperaturas de aproximadamente 3.200 K (cerca de 2900° C) e massas de cerca de 17% da do Sol. O par mais fraco são objetos mais exóticos: duas anãs marrons do tipo T com temperaturas de 820 K (550° C) e 690 K (420° C), respectivamente.
As anãs marrons são objetos pequenos e densos de baixa massa, sendo que as deste sistema têm tamanhos semelhantes ao planeta Júpiter, mas massas estimadas em 10 a 30 vezes superiores. Realmente, no limite inferior deste intervalo, estes objetos poderiam ser considerados objetos de "massa planetária".
Ao contrário das estrelas, as anãs marrons arrefecem continuamente ao longo da sua vida, o que altera as suas propriedades observáveis, como a temperatura, a luminosidade e as características espectrais. Este processo de arrefecimento cria um desafio fundamental na exploração das anãs marrons, conhecido como o "problema da degenerescência idade-massa".
Uma anã marrom isolada com uma determinada temperatura pode ser um objeto mais jovem e menos massivo ou um objeto mais velho e mais massivo, os astrônomos não conseguem distinguir entre estas possibilidades sem informação adicional. As anãs marrons com grandes companheiras estelares, cujas idades podem ser determinadas de forma independente, são de valor inestimável para quebrar esta degenerescência como referências de idade. O sistema UPM J1040-3551 é particularmente valioso porque a emissão H-alfa do par mais brilhante indica que é relativamente jovem, entre 300 milhões e 2 bilhões de anos.
Pensa-se que o par de anãs marrons (UPM J1040-3551 Bab) pode, potencialmente, ser resolvido no futuro com técnicas de imagem de alta resolução, permitindo medições precisas do seu movimento orbital e massas dinâmicas. Este sistema pode servir como referência de idade para calibrar modelos de atmosfera de baixa temperatura, e como referência de massa para testar modelos evolutivos através da resolução do binário das anãs marrons e seguir a sua órbita. A descoberta do sistema UPM J1040-3551 representa um avanço significativo na compreensão destes objetos elusivos e dos diversos percursos de formação de sistemas estelares na vizinhança do Sol.
Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.
Fonte: Royal Astronomical Society