quinta-feira, 30 de julho de 2015

Anãs marrons abrigam poderosas auroras

Uma equipe de astrônomos dos EUA, e da Europa descobriram que as estrelas anãs marrons, também chamadas de estrelas que falharam, abrigam poderosas auroras como na Terra.

ilustração de uma aurora numa anã marron

© Chuck Carter/Gregg Hallinan/Caltech (ilustração de uma aurora numa anã marron)

As anãs marrons são objetos apagados e relativamente frios, que são difíceis de serem detectados e mais difíceis ainda de serem classificados.

Esses objetos são muito massivos para serem planetas, mesmo que possuam características de planetas, mas são ao mesmo tempo muito pequenos para sustentarem reações de fusão de hidrogênio nos seus núcleos, uma característica que define as estrelas, mas elas possuem atributos parecidos com estrelas.

“As anãs marrons cobrem um intervalo entre as estrelas e os planetas. Nós já sabemos que elas possuem atmosferas nubladas, como planetas, embora as nuvens nas anãs marrons são feitas de minerais que formam as rochas na Terra. Agora nós sabemos que as anãs marrons abrigam poderosas auroras”, disse o Dr. Stuart Littlefair da Universidade de Sheffield, no Reino Unido.

O Dr. Littlefair e seus colegas conduziram uma extensa campanha de observação da LSRJ 1835+3259, uma anã marrom, localizada a 18,6 anos-luz de distância da Terra.

Usando o Very Large Array (VLA) do National Radio Astronomy Observatory (NRAO), eles detectaram um brilhante pulso de ondas de rádio que apareceram à medida que a anã marrom rotacionava. O objeto tem um movimento de rotação a cada 2,84 horas, assim, a equipe foi capaz de observar 3 rotações completas no decorrer de uma única noite de observação.

Depois disso, os cientistas usaram o telescópio Hale do Palomar, para observar que a anã marrom variava opticamente no mesmo período dos pulsos de rádio. Focando em uma das linhas espectrais associadas com o hidrogênio excitado, a linha de emissão H-alpha, eles encontraram que o brilho do objeto variava periodicamente.

Finalmente, eles usaram os telescópios do Observatório W. M. Keck, para medir com precisão o brilho da anã marrom no decorrer do tempo; o que não é uma tarefa simples, já que esses objetos são milhares de vezes mais apagados que o Sol.

A equipe foi capaz de estabelecer que a emissão de hidrogênio é uma assinatura das auroras, perto da superfície da LSRJ 1835+3259.

“Em ciência, novos conhecimentos as vezes desafiam o nosso entendimento. Nós sabemos o quão controverso a situação foi com Plutão, onde os astrônomos têm que observar de forma intensa para decidir se ele era um planeta, ou o primeiro objeto do Cinturão de Kuiper”, disse Garret Cotter da Universidade de Oxford no Reino Unido.

“Agora, nós estamos sendo desafiados a observar objetos que tradicionalmente eram classificados como estrelas, mas parecem mostrar mais e mais propriedades que fazem com que eles pareçam super-planetas”.

Um artigo científico foi publicado na revista Nature.

Fonte: National Radio Astronomy Observatory

A lagoa profunda

Cadeias de gás interestelar brilhantes e escuras nuvens de poeira habitam as turbulentas profundezas cósmicas da Nebulosa da Lagoa. Também conhecida como M8 (NGC 6523), esta região de formação estelar brilhante reside a cerca de 5.000 anos-luz daqui.

Nebulosa da Lagoa

© Adam Block (Nebulosa da Lagoa)

A Nebulosa da Lagoa é uma parada popular obrigatória nos passeios telescópicos através da constelação de Sagitário, na direção ao centro da Via Láctea.

Dominada pela emissão de luz avermelhada que revela a presença dos átomos de hidrogênio ionizado recombinando com os elétrons livres, esta deslumbrante e profunda visão das áreas da Nebulosa da Lagoa tem cerca de 40 anos-luz de diâmetro.

Perto do centro da imagem, a forma de ampulheta brilhante é composta de gás ionizado que foi esculpido pela radiação energética e os ventos estelares extremos de uma massiva estrela jovem.

Esta é região mais brilhante da nebulosa, descoberta por John Herschel e conhecida como a nebulosa da Ampulheta, é uma região onde ocorre intensa formação estelar. A forte emissão luminosa é causada pela excitação de estrelas jovens e quentes, principalmente pela estrela Herschel 36, de magnitude aparente 9,5. Bastante próxima à região brilhante da nebulosa encontra-se a mais brilhante estrela do objeto, 9 Sagittarii, de magnitude aparente 5,97, que é responsável por grande parte do brilho da nebulosa.

Fonte: NASA

Primeira detecção de lítio numa estrela em explosão

O elemento químico lítio foi encontrado pela primeira vez em material ejetado por uma nova.

Nova Centauri 2013

© ESO (Nova Centauri 2013)

Observações da Nova Centauri 2013 obtidas com o auxílio de telescópios no observatório de La Silla do ESO e perto de Santiago do Chile, ajudaram a explicar por que é que muitas estrelas jovens parecem ter mais quantidade deste elemento químico do que o esperado.

Esta nova descoberta acrescenta uma importante peça que faltava ao quebra-cabeças que representa a evolução química da nossa Galáxia e é um enorme passo em frente na compreensão das quantidades dos diferentes elementos químicos nas estrelas da Via Láctea.

O elemento químico leve lítio é um dos poucos elementos que se prevê ter sido criado pelo Big Bang, há 13,8 bilhões de anos atrás. No entanto, tentar compreender as quantidades de lítio observadas nas estrelas que nos rodeiam hoje tem sido um processo muito difícil. Estrelas mais velhas possuem menos lítio do que o esperado e algumas estrelas jovens têm dez vezes mais lítio do que o que pensávamos. A falta de lítio em estrelas mais velhas é um mistério de longa data. Mais precisamente, os termos “mais jovens” e “mais velhas” são usados para nos referirmos a estrelas de População I e População II. As estrelas de População I, que incluem o Sol, são estrelas ricas em elementos químicos mais pesados e formam o disco da Via Láctea. As estrelas de População II são mais velhas, com baixo conteúdo em elementos pesados e encontram-se no bojo e no halo da Via Láctea e nos aglomerados estelares globulares. As estrelas da População I “jovem” podem no entanto ter vários bilhões de anos!
Desde os anos 1970 que os astrônomos especulam que a enorme quantidade de lítio encontrado nas estrelas jovens poderá vir de novas, que são explosões estelares que libertam material para o espaço entre as estrelas, contribuindo assim para a matéria que forma a próxima geração de estrelas. No entanto, observações cuidadosas de várias novas não tinham, até agora, fornecido resultados claros.
Uma equipe liderada por Luca Izzo (Universidade Sapienza de Roma e ICRANet, Pescara, Itália) utilizou o instrumento FEROS montado no telescópio MPG/ESO de 2,2 metros instalado no Observatório de La Silla, assim como o espectrógrafo PUCHEROS montado no telescópio de 0,5 metro do ESO, no observatório da Pontificia Universidad Catolica de Chile em Santa Marina, perto de Santiago, para estudar a nova Nova Centauri 2013 (V1369 Centauri). Esta estrela explodiu no céu austral perto da estrela brilhante Beta Centauri em dezembro de 2013, tratando-se, até agora, da nova mais brilhante deste século, facilmente observada a olho nu. Os comparativamente pequenos telescópios equipados com espectrógrafos apropriados são ferramentas poderosas para este tipo de trabalho. Mesmo na era dos telescópios extremamente grandes, os telescópios mais pequenos dedicados a tarefas específicas permanecem imensamente valiosos.
Os novos dados extremamente detalhados revelaram uma assinatura clara de lítio a ser expelido da nova com uma velocidade de dois milhões de quilômetros por hora. Esta alta velocidade, da nova relativamente à Terra, significa que o comprimento de onda da linha de absorção relativa à presença de lítio se encontra significativamente deslocada para a parte azul do espectro. Trata-se da primeira detecção, até à data, de lítio sendo ejetado por uma nova.
O co-autor Massimo Della Valle (INAF, Osservatorio Astronomico di Capodimonte, Nápoles, e ICRANet, Pescara, Itália) explica a importância desta descoberta: “Trata-se de um importantíssimo passo em frente. Se imaginarmos a história da evolução química da Via Láctea como um enorme quebra-cabeças, então o lítio das novas corresponde de uma das peças mais importantes e difíceis de encontrar que faltavam. Adicionalmente, qualquer modelo do Big Bang é sempre questionável até este problema do lítio estar resolvido.”
Estima-se que a massa do lítio ejetado pela Nova Centauri 2013 é minúscula (menos de uma bilionésima parte da massa do Sol), no entanto, uma vez que existiram muitos bilhões de novas ao longo da história da Via Láctea, tal quantidade é suficiente para explicar as quantidades inesperadamente grandes de lítio observadas na nossa Galáxia.
Os autores Luca Pasquini (ESO, Garching, Alemanha) e Massimo Della Vella procuram evidências de lítio em novas desde há mais de um quarto de século. Esta é por isso uma conclusão muito satisfatória da sua longa busca. E para o jovem cientista líder do projeto existe outro tipo de satisfação:

“É muito excitante encontrar algo que foi previsto antes de eu nascer e que foi depois observado no dia do meu aniversário em 2013!” diz Luca Izzo.

Este trabalho foi descrito num artigo científico intitulado “Early optical spectra of Nova V1369 Cen show presence of lithium”, de L. Izzo et al., que foi publicado online na revista especializada Astrophysical Journal Letters.

Fonte: ESO

terça-feira, 28 de julho de 2015

O longo adeus de uma nebulosa planetária

Os momentos finais de uma estrela moribunda são captados na imagem abaixo pelo telescópio espacial Hubble.

nebulosa planetária NGC 6565

© Hubble (nebulosa planetária NGC 6565)

Os suspiros da morte dessa estrela podem durar meros momentos em escala cosmológica, mas o desaparecimento dessa estrela é ainda mais tranquilo, durando dezenas de milhares de anos.

A agonia da estrela tem culminado numa bela nebulosa planetária, conhecida como NGC 6565, uma nuvem de gás que foi ejetada da estrela depois que o violento vento estelar empurrou as camadas externas da estrela no espaço. Uma vez que material suficiente foi ejetado, o núcleo luminoso da estrela fica exposto e ela começa a produzir radiação ultravioleta, excitando o gás ao redor em graus variados fazendo com que ela irradie num atrativo conjunto de cores. Essas mesmas cores podem ser vistas na famosa e impressionante Nebulosa do Anel (M57), um exemplo proeminente de uma nebulosa como essa.

Nebulosa do Anel

© Hubble/C. Robert O’Dell (Nebulosa do Anel)

Nebulosas planetárias são iluminadas por cerca de 10.000 anos antes que a estrela central comece a esfriar e se encolher até tornar-se uma anã branca. Quando isso acontece, a luz da estrela diminui drasticamente e para de excitar o gás ao redor, assim a nebulosa se apaga e desaparece da nossa visão.

Fonte: ESA

Bacia brilhante na lua Tétis de Saturno

Com a grande variedade de cores visíveis com as câmeras da sonda, diferenças nos materiais se suas texturas tornam-se aparentes mesmo que sejam sutis ou invisíveis em imagens em cores de naturais.

lua Tétis de Saturno

© NASA/JPL-Caltech/Space Science Institute/Cassini (lua Tétis de Saturno)

Na imagem acima a gigantesca bacia de impacto Odysseus, na lua de Saturno, Tétis, se destaca de forma brilhante do resto da lua crescente congelada e iluminada. Essa distinta coloração pode resultar de diferenças tanto na composição ou na estrutura do terreno exposto pelo gigantesco impacto. A Odysseus, com 450 quilômetros de diâmetro, é uma das maiores crateras de impacto nas luas congeladas de Saturno, e pode ter alterado de forma significante a história geológica de Tétis.

O lado escuro de Tétis, na parte direita da imagem, é fracamente iluminada pela luz refletida de Saturno.

Imagens feitas usando filtros ultravioleta, verde e infravermelhos foram combinadas para criar essa imagem final colorida. O norte em Tétis, que tem cerca de 1062 quilômetros de diâmetro está na parte de cima nessa imagem.

A imagem acima foi adquirida no dia 9 de Maio de 2015, a uma distância aproximada de 300000 quilômetros de Tétis. A escala da imagem é de 1,8 quilômetros por pixel.

Fonte: NASA

domingo, 26 de julho de 2015

A galáxia do Sombrero vista pelo Hubble

Porque é que a galáxia do Sombrero parece um chapéu?

galáxia do Sombrero

© Hubble (galáxia do Sombrero)

As razões incluem bojo central de estrelas do Sombrero extraordinariamente grande e prolongado e faixas de poeira proeminentes escuras que aparecem em um disco que vemos quase de lado.

A galáxia do Sombreiro, também catalogada como NGC 4594 ou Messier 104 (M104), é uma galáxia espiral com núcleo brilhante rodeado por um disco achatado de material escuro. Ela foi descoberta em 1912 por Vesto Slipher no observatório Lowell.

Bilhões de estrelas velhas fazem com que o brilho difuso do bojo central seja estendido. A inspeção próxima da protuberância na imagem acima mostra muitos pontos de luz que são realmente aglomerados globulares. Espetaculares anéis de poeira da M104 abrigam muitas estrelas jovens e brilhantes, e mostram intrincados detalhes astrônomos ainda não compreendidos inteiramente. O centro do Sombrero brilha em todo o espectro eletromagnético, e possivelmente abriga um grande buraco negro. A luz de cinquenta milhões de anos a partir da galáxia do Sombrero pode ser vista com um telescópio pequeno na direção da constelação de Virgo (Virgem).

Fonte: NASA

A nebulosa Trífida em infravermelho

A nebulosa Trífida, também conhecida como NGC 6514 ou Messier 20 (M20), é fácil de encontrada com um telescópio pequeno, localizada na constelação de Sagitário.

Nebulosa Trífida_Spitzer e J. Rho

© Spitzer/J. Rho (nebulosa Trífida)

As imagens no espectro visível mostram a nebulosa dividida em três partes obscurecidas por trilhas de poeira, esta imagem infravermelha penetrante revela filamentos de nuvens de poeira de brilhantes e estrelas recém-nascidas. A espetacular vista em cores falsas é cortesia do telescópio espacial Spitzer.

Os astrônomos usaram os dados de imagem em infravermelho do Spitzer para contar estrelas recém-nascidas e embrionárias que de outra forma poderiam estar ocultas nas nuvens de poeira e gás deste berçário estelar intrigante. Como visto na imagem acima, nebulosa Trífida possui cerca de 30 anos-luz de diâmetro e está localizada a apenas 5.500 anos-luz de distância.

Fonte: NASA

Em busca das ondas gravitacionais

Há cem anos, Albert Einstein declarava que o universo é atravessado pelas chamadas 'ondas gravitacionais'.

ilustração de ondas gravitacionais

© Max Planck Institute for Gravitational Physics/W.Benger (ilustração de ondas gravitacionais)

As ondas gravitacionais são ecos produzidos pela expansão inicial do Universo, responsáveis por modulações no espaço e no tempo. Supostamente, essas ondas podem ajudar-nos a conhecer melhor fenômenos como os buracos negros. Mas tudo isto é ainda teórico, porque continuamos à procura de provas da sua existência.

No entanto, Paul McNamara da Agência Espacial Europeia (ESA), fala com convicção: "As ondas gravitacionais vêm de todo o Universo. Atravessam as estrelas, as galáxias, a Terra, tudo."E Michèle Heurs, professora na Universidade Leibniz, em Hanover, recorre a imagens para falar do assunto: "Se eu for atingida por uma onda gravitacional, posso tornar-me mais alta e estreita, ou mais larga e achatada, mas em proporções ínfimas."

A questão está em finalmente conseguir detectá-las e comprovar a teoria. Por isso, foram construídos sistemas de elevadíssima precisão para tentar identificar estas remotas modulações. Um deles encontra-se em Hanover, o GEO600. "Ele tem braços que se estendem ao longo de 600 metros para um lado e para o outro. Numa vala existe um tubo de vácuo onde se ativam feixes de laser de alta intensidade", explica Karsten Danzmann, diretor do "Instituto Albert Einstein", em Hanover.

A experiência consiste em medir a diferença relativa no comprimento dos dois feixes de laser. Uma onda gravitacional provocaria uma ligeira, mas mensurável, alteração nos dois raios. Nas expectativas, não há relatividade: se estas ondas forem identificadas, será uma revolução no mundo da astronomia.

Segundo Michèle Heurs, "é uma outra janela para o Universo. Até agora, as observações fazem-se através de ondas eletromagnéticas e neutrinos. As ondas gravitacionais representam uma forma completamente diferente de olhar para o Universo, que não assenta na emissão do que pensamos ser luz."

"A única forma de radiação que um buraco negro emite é gravitacional. Isto porque um buraco negro distorce o espaço e o tempo à sua volta, criando modulações que se propagam e nos vêm contar exatamente o que aconteceu", remata Karsten Danzmann.

Se quisermos multiplicar as possibilidades de detetar estas ondas, temos de ir rumo ao espaço. Por isso, a ESA está criando um módulo sem paralelo, o LISA Pathfinder, que será lançado por volta de outubro deste ano.

Paul McNamara, coordenador do projeto na ESA, conta que começou a trabalhar nos detectores espaciais de ondas gravitacionais há 21 anos.

Na verdade, o LISA Pathfinder não vai medir ondas gravitacionais. Vai sim testar a tecnologia para o fazer, que assenta em dois cubos de ouro platinado que flutuam livremente no interior do módulo para registar as mais pequenas alterações. Se funcionar, amplia-se a magnitude da missão, com três naves alinhadas através de lasers.

"Depois do LISA Pathfinder, lançamos as outras duas naves e iremos posicioná-las a 5 milhões de quilômetros de distância. Cada módulo terá um cubo e nós medimos a distância entre eles", complementa McNamara.

Karsten Danzmann não hesita em realçar que "todo o Universo interage através da gravidade. Nós esperamos que as ondas gravitacionais nos permitam descobrir o lado obscuro do cosmo. Ninguém sabe o que vamos encontrar."

Fonte: ESA

sábado, 25 de julho de 2015

Os anéis em ultravioleta da M31

A galáxia de Andrômeda, também conhecida como M31, está a apenas 2,5 milhões de anos-luz de distância, que é  realmente muito próxima em se tratando de grandes galáxias.

galáxia de Andrômeda em ultravioleta

© NASA/JPL-Caltech/GALEX (galáxia de Andrômeda em ultravioleta)

Tão perto e com uma extensão de cerca de 260.000 anos-luz, foram necessários 11 diferentes campos de imagem do telescópio do satélite Galaxy Evolution Explorer (GALEX) para produzir este deslumbrante retrato da galáxia espiral em luz ultravioleta. Enquanto seus braços espirais se destacam em imagens feitas em luz visível de Andrômeda, os braços se parecem mais com anéis na visão em ultravioleta do GALEX, dominada por estrelas maciças, jovens e quentes. Como são locais de intensa formação de estrelas, os anéis foram interpretados como evidência de que Andrômeda colidiu com sua vizinha, a galáxia elíptica menor M32, há mais de 200 milhões de anos. A grande galáxia Andrômeda e a nossa própria Via Láctea são os membros mais massivos do grupo local de galáxias.

Fonte: NASA

quinta-feira, 23 de julho de 2015

Kepler descobre primo maior e mais velho da Terra

A missão Kepler da NASA confirmou o primeiro planeta, quase do tamanho da Terra, na "zona habitável" em torno de uma estrela semelhante ao Sol.

ilustração do planeta Kepler-452b ao redor de sua estrela

© NASA/JPL-Caltech/T. Pyle (ilustração do planeta Kepler-452b ao redor de sua estrela)

Esta descoberta e a introdução de outros 11 pequenos candidatos a planeta nas zonas habitáveis assinalam mais um marco na jornada para encontrar uma outra "Terra".

O recém-descoberto Kepler-452b é o planeta mais pequeno, até à data, descoberto na zona habitável - a área em torno de uma estrela onde a água pode existir em estado líquido à superfície de um planeta - de uma estrela do tipo G2, como o nosso Sol. A confirmação de Kepler-452b avança o número de exoplanetas confirmados para 1.033, somente pelo Kepler, de um total de 1.879.

"No 20º aniversário da descoberta que provou a existência de outros planetas ao redor de outras estrelas, o explorador Kepler descobriu um planeta e uma estrela bastante parecidos com a Terra e com o Sol," afirma John Grunsfeld, administrador associado da NASA na sede da agência em Washington, EUA. "Este resultado emocionante traz-nos um passo mais perto de encontrar uma Terra 2.0."

O Kepler-452b é 60% maior, em diâmetro, que a Terra e é considerado uma super-Terra. Embora a sua massa e composição ainda estejam por determinar, as pesquisas anteriores sugerem que os planetas do tamanho de Kepler-452b têm uma boa hipótese de ser rochosos. O sistema Kepler-452 está localizado a 1.400 anos-luz de distância na direção da constelação de Cisne.

Apesar de Kepler-452b ser maior que a Terra, a sua órbita é de apenas 385 dias. O planeta está 5% mais longe da sua estrela progenitora, Kepler-452, que a Terra está do Sol. Kepler-452 tem 6 bilhões de anos, ou seja, 1,5 bilhões de anos mais velha que o nosso Sol, tem a mesma temperatura, é 20% mais brilhante e tem um diâmetro 10% maior.

"Podemos considerar Kepler-452b como um primo mais velho e maior da Terra, fornecendo uma oportunidade para compreender e refletir sobre o ambiente em evolução da Terra," afirma Jon Jenkins, líder da equipe de análise de dados do Centro de Pesquisa Ames da NASA em Moffett Field, no estado americano da Califórnia, que descobriu o Kepler-452b. "É inspirador considerar que este planeta passou 6 bilhões de anos na zona habitável da sua estrela; mais do que a Terra. É uma oportunidade substancial para o surgimento da vida, caso existam todos os ingredientes e condições necessárias."

Para ajudar a confirmar os resultados e a melhor determinar as propriedades do sistema Kepler-452, a equipe conduziu as observações terrestres no observatório McDonald da Universidade do Texas, no observatório Fred Lawrence Whipple no Monte Hopkins (Arizona) e no Observatório W. M. Keck em Mauna Kea (Havaí). Estas medições foram fundamentais para a confirmação da natureza planetária de Kepler-452b, para refinar o tamanho e brilho da estrela progenitora e para melhor determinar o tamanho do planeta e sua órbita.

Além de confirmar Kepler-452b, a equipe do Kepler aumentou em 521 o número de novos candidatos a exoplaneta, a partir da sua análise de observações realizadas entre maio de 2009 e maio de 2013, totalizando 4.696 candidatos a planeta detectados pela missão Kepler. Os candidatos necessitam de observações e análises de acompanhamento para verificar que são planetas reais.

doze dos novos candidatos a planeta na zona habitável

© NASA/N. Batalha/W. Stenzel (doze dos novos candidatos a planeta na zona habitável)

Doze dos novos candidatos a planeta têm diâmetros entre uma e duas vezes o da Terra e orbitam na zona habitável da sua estrela. Destes, nove orbitam estrelas parecidas com o Sol em tamanho e temperatura.

"Fomos capazes de automatizar completamente o nosso processo de identificação de candidatos a planeta, o que significa que podemos finalmente avaliar cada sinal de trânsito em todo o conjunto de dados do Kepler de forma rápida e uniforme," comenta Jeff Coughlin, cientista do Kepler e do Instituto SETI em Mountain View, Califórnia, que liderou a análise de um novo catálogo de candidatos. "Isto dá aos astrônomos uma população estatisticamente saudável de candidatos a exoplaneta a fim de determinar o número de planetas pequenos e possivelmente rochosos como a Terra na nossa Via Láctea."

Estes resultados, apresentados no Sétimo Catálogo de Candidatos do Kepler, são derivados de dados publicamente disponíveis no NASA Exoplanet Archive.

Os cientistas estão agora produzindo o último catálogo com base nos quatro anos de dados da missão original do Kepler. A análise final será realizada usando software sofisticado que é cada vez mais sensível às pequenas assinaturas reveladoras de planetas do tamanho da Terra.

O artigo científico que apresenta o resultado foi aceito para publicação na revista The Astronomical Journal.

Fonte: NASA

quarta-feira, 22 de julho de 2015

ALMA observa formação de galáxias no Universo primordial

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA) foram detectadas as nuvens de gás de formação estelar mais distantes observadas até hoje em galáxias normais no Universo primordial.

formação de galáxias no Universo primordial

© ESO/R. Maiolino (formação de galáxias no Universo primordial)

O quadro acima é uma combinação de imagens de ALMA e o Very Large Telescope (VLT). O objeto central é a galáxia muito distante, denominada BDF 3299, que é vista quando o Universo tinha menos de 800 milhões de anos. A nuvem vermelha brilhante na parte inferior esquerda é a detecção de ALMA de uma vasta nuvem de material que está no processo de formação de galaxias muito jovens.

As novas observações permitem aos astrônomos começar a ver como é que as primeiras galáxias se foram construindo e como é que limparam o nevoeiro cósmico durante a era da reionização. Esta é a primeira vez que tais galáxias são observadas com melhor detalhe do que simples manchas tênues.

Quando as primeiras galáxias se começaram a formar algumas centenas de milhões de anos depois do Big Bang, o Universo estava cheio de um nevoeiro de hidrogênio gasoso. Mas à medida que mais e mais fontes brilhantes, tanto estrelas como quasares alimentados por enormes buracos negros, começaram a brilhar, este nevoeiro foi desaparecendo tornando o Universo transparente à radiação ultravioleta. O hidrogênio neutro gasoso absorve de forma eficiente toda a radiação ultravioleta de alta energia emitida por estrelas jovens quentes. Consequentemente, estas estrelas são quase impossíveis de observar no Universo primordial. Ao mesmo tempo, a radiação ultravioleta absorvida ioniza o hidrogênio, fazendo com que se torne completamente transparente. As estrelas quentes estão por isso “moldando” bolhas transparentes no gás. Assim que todas estas bolhas se juntam enchendo todo o espaço, e o Universo torna-se completamente transparente. Este período é denominado de época da reionização, no entanto pouco se sabe acerca destas primeiras galáxias e, até agora, apenas se tinham observado como manchas tênues. Estas novas observações obtidas com o poder do ALMA estão mudando esta realidade.
Uma equipe de astrônomos liderada por Roberto Maiolino (Cavendish Laboratory e Kavli Institute for Cosmology, University of Cambridge, Reino Unido) apontou o ALMA a galáxias que se sabia estarem sendo observadas a cerca de apenas 800 milhões de anos depois do Big Bang, com desvios para o vermelho entre 6,8 e 7,1. Os astrônomos não estavam à procura da radiação emitida pelas estrelas, mas sim do fraco brilho do carbono ionizado emitido pelas nuvens de gás a partir das quais se formam as estrelas. Os astrônomos estão especialmente interessados no carbono ionizado, já que esta linha espectral particular contém a maioria da energia injetada pelas estrelas, permitindo assim traçar o gás frio a partir do qual as estrelas se formam. De modo concreto, a equipe estava à procura da emissão do carbono uma vez ionizado (conhecido por [C II]). Esta radiação é emitida com o comprimento de onda de 158 mícrons que, ao ser esticada pela expansão do Universo, chega ao ALMA exatamente com o bom comprimento de onda para ser detectada, cerca de 1,3 milímetros. A equipe pretendia estudar a interação entre uma geração de estrelas jovem e os frios nós de gás que estavam se formando nestas primeiras galáxias.
A equipe também não estava à procura de objetos raros extremamente brilhantes, tais como quasares e galáxias com elevada taxa de formação estelar, que tinham sido observados anteriormente. Em vez disso, o trabalho concentrou-se em galáxias muito mais comuns, galáxias que reionizaram o Universo e se transformaram na maior parte das galáxias que vemos hoje à nossa volta.
Vindo de uma das galáxias, a BDF 3299, o ALMA captou um sinal fraco mas claro de carbono brilhante. No entanto, este brilho não vinha do centro da galáxia, mas sim de um dos lados.
A co-autora Andrea Ferrara (Scuola Normale Superiore, Pisa, Itália) explica a importância desta nova descoberta: “Trata-se da detecção mais distante deste tipo de emissão de uma galáxia ‘normal’ observada a menos de um bilhão de anos depois do Big Bang, o que nos dá a oportunidade de observar a formação das primeiras galáxias. Estamos vendo pela primeira vez galáxias primordiais não como pequenos pontos, mas como objetos com estrutura interna!”
Os astrônomos pensam que a localização deslocada do centro desta emissão deve-se ao fato das nuvens centrais estarem sendo desfeitas pelo meio inóspito criado pelas estrelas recém formadas, tanto pela sua radiação intensa como pelos efeitos de explosões de supernova, enquanto o carbono está traçando o gás frio recente que está sendo acretado do meio intergalático.
Ao combinar as novas observações ALMA com simulações de computador foi possível compreender em detalhe processos relevantes que estão ocorrerendo no seio das primeiras galáxias. Os efeitos da radiação emitida pelas estrelas, a sobrevivência de nuvens moleculares, o fato da radiação ionizante se escapar e a estrutura complexa do meio interestelar podem agora ser calculados e comparados às observações. A BDF2399 é muito possivelmente um exemplo típico das galáxias responsáveis pela reionização.
“Durante muitos anos tentamos compreender o meio interestelar e a formação das fontes de reionização. Conseguir finalmente testar previsões e hipóteses em dados reais do ALMA é algo extremamente excitante e que nos abre um novo conjunto de questões. Este tipo de observação clarificará muitos dos difíceis problemas que temos tido com a formação das primeiras estrelas e galáxias no Universo,” acrescenta Andrea Ferrara.
Roberto Maiolino conclui: “Este estudo teria sido simplesmente impossível sem o ALMA, uma vez que nenhum outro instrumento consegue atingir a sensibilidade e resolução espacial necessárias. Embora esta seja uma das observações mais profundas do ALMA realizada até agora, estamos ainda longe de atingir todas as capacidades deste telescópio. No futuro o ALMA fará imagens da estrutura fina das galáxias primordiais, mostrando em detalhe a formação das primeiras galáxias.”

Este trabalho foi descrito num artigo científico intitulado “The assembly of “normal” galaxies at z∼7 probed by ALMA”, de R. Maiolino et al., que foi publicado hoje na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

A atmosfera de Plutão

A equipe da New Horizons observou a atmosfera de Plutão até 1.600 km acima da superfície do planeta, demonstrando que a sua atmosfera, rica em nitrogênio, é bastante alargada. Esta é a primeira observação da atmosfera de Plutão a altitudes maiores que 270 km da superfície.

taxa de contagem da atmosfera

© NASA/JHUAPL/SwRI (taxa de contagem da atmosfera)

A figura acima mostra como a taxa de contagem do instrumento Alice mudou ao longo do tempo durante as observações do pôr-do-Sol e nascer-do-Sol. A taxa de contagem é maior quando a linha de visão do Sol está fora do alcance da atmosfera, no início e no fim. O nitrogênio molecular (N2) começa a absorver a luz solar nas partes mais altas da atmosfera de Plutão, diminuindo à medida que a sonda aproxima-se da sombra do planeta anão. À medida que a ocultação progride, o metano e hidrocarbonetos atmosféricos também podem absorver luz solar e diminuir ainda mais a taxa de contagem. Quando a sonda está totalmente na sombra de Plutão, a taxa de contagem vai para zero. Quando a New Horizons emerge da sombra de Plutão, o processo é invertido. Ao representar graficamente a taxa de contagem observada na direção inversa à do tempo, podemos ver que as atmosferas nos lados opostos de Plutão são quase idênticas.

A nova informação foi recolhida pelo espectrógrafo de imagem Alice da New Horizons, durante um alinhamento cuidadosamente projetado do Sol, de Plutão e da sonda, que começou cerca de uma hora depois da maior aproximação ao planeta de dia 14 de julho. Durante o evento, conhecido como ocultação solar, a New Horizons passou pela sombra de Plutão enquanto o Sol iluminava a atmosfera do planeta anão.

"Este é apenas o começo da ciência atmosférica de Plutão", afirma Andrew Steffl, cientista da New Horizons e do Instituto de Pesquisa do Sudoeste, em Boulder, Colorado, EUA. "No próximo mês, todo o conjunto de dados da ocultação recolhidos pelo Alice será enviado para a Terra para análise. Mesmo assim, os dados que temos agora mostram que a atmosfera de Plutão sobe mais acima da sua superfície, em termos relativos, do que a da Terra."

A sonda New Horizons descobriu uma região fria e densa de gás ionizado com milhares de quilômetros para além de Plutão; a atmosfera do planeta que é arrancada pelo vento solar e perde-se para o espaço. Cerca de hora e meia depois da maior aproximação, o instrumento Solar Wind Around Pluto (SWAP) observou uma cavidade no vento solar, o fluxo de partículas eletricamente carregadas do Sol, entre 77.000 km e 109.000 km a jusante de Plutão. Os dados do SWAP revelam que esta cavidade está preenchida com íons de nitrogênio que formam uma "cauda de plasma" de estrutura e comprimento indeterminado e que se estende para trás do planeta.

interação do vento solar com a atmosfera de nitrogênio de Plutão

© NASA/JHUAPL/SwRI (interação do vento solar com a atmosfera de nitrogênio de Plutão)

A ilustração acima mostra a interação do vento solar (o fluxo supersônico de partículas eletricamente carregadas do Sol) com a atmosfera predominantemente de nitrogênio de Plutão. Algumas das moléculas que formam a atmosfera têm energia suficiente para vencer a fraca gravidade de Plutão e escapar para o espaço, onde são ionizadas pela radiação ultravioleta do Sol. À medida que o vento solar encontra o obstáculo formado pelos íons, é retardado e desviado (representado pela região vermelha), possivelmente formando uma onda de choque a montante de Plutão. Os íons são apanhados pelo vento solar e transportados para além do planeta anão para formar uma cauda de plasma ou íons (região azul).

Já foram observadas caudas semelhantes em planetas como Vênus e Marte. No caso da atmosfera predominantemente de nitrogênio de Plutão, as moléculas que escapam são ionizadas pela luz ultravioleta do Sol, apanhadas pelo vento solar e transportadas para além de Plutão, formando uma cauda de plasma que foi descoberta pela New Horizons. Antes da aproximação, foram detectados íons de nitrogênio mais a montante de Plutão pelo instrumento PEPSSI Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI), proporcionando uma antecipação da atmosfera fugitiva de Plutão.

A formação da cauda de plasma é apenas um dos aspectos fundamentais da interação de Plutão com o vento solar, cuja natureza é determinada por vários fatores ainda pouco conhecidos. Destes, talvez o mais importante seja a taxa de perda atmosférica. "Este é apenas o primeiro olhar tentador para o ambiente de plasma de Plutão," afirma Fran Bagenal, da Universidade do Colorado, em Boulder, EUA, que lidera a equipe de Partículas e Plasma da New Horizons. "Nós vamos receber mais dados em Agosto, que podemos combinar com as medições atmosféricas do Alice e do Rex a fim de determinar a velocidade a que Plutão perde a sua atmosfera. Assim que conhecermos esta taxa, vamos ser capazes de responder a perguntas em aberto sobre a evolução da atmosfera e superfície de Plutão e determinar até que ponto a interação do vento solar com Plutão é como a de Marte."

Fonte: NASA

segunda-feira, 20 de julho de 2015

Uma ponte de matéria escura em nossa vizinhança cósmica

Ao utilizar os melhores dados disponíveis para monitorar o tráfego em nossa vizinhança galáctica, Noam Libeskind, do Instituto Leibniz de Astrofísica de Potsdam e seus colaboradores criaram um mapa detalhado de como as galáxias nas proximidades se movem.

Abell 1689

© Hubble (Abell 1689)

A imagem acima mostra o aglomerado de galáxias Abell 1689, que está  localizado a 2,2 bilhões de anos-luz, na constelação de Virgem. É um dos maiores aglomerados de galáxias conhecidos.

Os pesquisadores descobriram uma ponte de matéria escura que se estende desde o Grupo Local até o aglomerado de Virgem (Virgo), com aproximadamente 50 milhões de anos-luz de distância, que é ligado em ambos os lados por vastas bolhas completamente desprovidas de galáxias. O aglomerado de Virgem possui cerca de 2.000 galáxias,  cuja massa estimada é de 1,2 × 1015 M(massas solares).

Esta ponte e esses vazios possibilitam entender um problema que perdura por mais de 40 anos em relação à distribuição curiosa de galáxias anãs.

Estas galáxias anãs são frequentemente encontradas em torno de galáxias anfitriãs maiores, como a nossa Via Láctea. Uma vez que elas são fracas, são difíceis de serem detectadas e são, portanto, encontradas quase exclusivamente em nossa vizinhança cósmica. Um aspecto particularmente fascinante de sua existência é que perto da Via Láctea e pelo menos dois dos nossos vizinhos mais próximos, as galáxias de Andrômeda e Centaurus A, estes satélites não apenas flutuam ao redor aleatoriamente, mas em vez disso são compactos, lisos, planos e possivelmente giram. Estas estruturas não são um resultado ingênuo do modelo da Matéria Escura Fria que a maioria dos cosmólogos acreditam que é responsável pela forma como o Universo gera galáxias. Estas estruturas são, portanto, um desafio para a doutrina atual.
Uma possibilidade é que essas pequenas galáxias repercutem a geometria da estrutura em escalas muito maiores: "Esta é a primeira vez que tivemos verificação observacional de que os caminhos de grandes filamentos estão canalizando galáxias anãs em todo o cosmos ao longo de magníficas pontes de matéria escura", diz Libeskind. Esta "rodovia" cósmica fornece aos satélites excesso de velocidade numa rampa ao longo do qual eles podem ser transferidos para a Via Láctea, Andrômeda e Centaurus A.
"O fato de que esta ponte galáctica pode afetar as galáxias anãs em torno de nós é impressionante, dada a diferença de escala entre os dois: os planos das galáxias anãs são em torno de um por cento do tamanho da ponte galáctica para Virgo".

A ilustração abaixo mostra o fluxo atual de galáxias ao longo da auto-estrada cósmica e sobre a ponte para Virgo, na região em torno da Via Láctea, Andrômeda e Centaurus A.

fluxo atual de galáxias

© AIP/Kerstin Mork (fluxo atual de galáxias)

O Instituto de Astrofísica de Potsdam (AIP) é o sucessor do Observatório de Berlim fundado em 1700 e do Observatório Astrofísico de Potsdam fundado em 1874. O último foi o primeiro observatório do mundo para enfatizar explicitamente a pesquisa na área de astrofísica. Desde 1992, o Instituto de Astrofísica de Potsdam é um membro da Associação Leibniz. Os temas principais do Instituto Leibniz de Astrofísica de Potsdam são campos magnéticos cósmicos e astrofísica extragaláctica. Uma parte considerável dos esforços do instituto visam o desenvolvimento da tecnologia de pesquisa nas áreas de espectroscopia, telescópios robóticos, e e-ciência.

Um artigo intitulado "Planos de galáxias satélites ea rede cósmica" de Noam Libeskind et al. foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Leibniz Institute for Astrophysics Potsdam

sexta-feira, 17 de julho de 2015

As delicadas asas de uma borboleta cósmica

Os cientistas do National Radio Astronomy Observatory (NOAO), usando o telescópio de 8 metros do Observatório Gemini, no Chile, obtiveram a imagem de mais alta resolução já obtida da nebulosa planetária NGC 2346.

nebulosa planetária NGC 2346

© NOAO/Gemini Observatory (nebulosa planetária NGC 2346)

A nova imagem acima da NGC 2346, mostra uma resolução sem precedentes do gás de hidrogênio molecular. A imagem é de cerca de 1 minuto de arco em um lado: o norte é para cima, a leste é para a esquerda. Em contraste, o tamanho da lua cheia é de 30 minutos de arco.

Com a forma de uma borboleta, ou de uma ampulheta, mas conhecida cientificamente como uma nebulosa planetária bipolar, esse objeto está a uma distância de 2.300 anos-luz do Sol na constelação de Monoceros.

As novas observações dessa nebulosa gasosa resolve detalhes comparáveis em tamanho com o nosso Sistema Solar. A equipe detectou nós previamente não resolvidos e filamentos de gás hidrogênio molecular, detalhes que nenhum outro telescópio no solo ou no espaço, nem mesmo o telescópio espacial Hubbe foram capazes de resolver.

O hidrogênio molecular nos lóbulos bicolores da NGC 2346 foi detectado a quase 30 anos atrás, embora observações prévias sugeriam somente um torus suave. Os nós gasosos provavelmente representam um fenômeno comum que ocorre quando dois fluidos (ou gases) de diferentes densidades entram em contato, e o fluido mais leve está empurrando o fluido mais pesado. Isso é facilmente visto por qualquer um que já observou um óleo colorido num copo de água.

simulação da evolução da nebulosa NGC 2346

© NOAO (simulação da evolução da nebulosa NGC 2346)

Os autores construíram modelos computacionais para entender como os gases interagem: a animação mostra como o gás se desenvolverá no decorrer do tempo. Como primeiro autor, Arturo Manchado disse, “Nessa animação nós mostramos o resultado do modelo numa escala de tempo de 9.000 anos. A cor azul corresponde a emissão do gás hidrogênio molecular. O modelo mostra um toroide inicial de gás frio no equador. Uma vez que a concha varrida é altamente fragmentada, o toroide não é mais visível e somente os grandes aglomerados serão vistos”.

A NGC 2346 é uma estrela registrada nas fases finais de sua vida. Ela começou sua vida como um sistema binário, sendo cada uma das estrelas tendo uma massa equivalente ao dobro da massa do Sol e ambas rotacionando ao redor de um centro de gravidade comum. A mais massiva das duas estrelas queimou seu combustível mais rapidamente do que sua companheira de massa menor, expandindo como uma gigante vermelha, e agora está expulsando suas camadas externas para se tornar uma estrela anã branca, com uma massa atual entre 0,3 e 0,7 vezes a massa do Sol. A nebulosa bipolar, ou a forma de borboleta dessa nebulosa planetária, tem provavelmente sido esculpida pelo par estelar, embora isso ainda esteja sendo estudado. Com um período orbital de 16 dias, as duas estrelas estão separadas por uma distância equivalente à distância entre o Sol e Mercúrio. O material fluindo da estrela mais massiva durante a vida do par faz com que seja difícil calcular a massa inicial da estrela.

As observações foram feitas com o novo sistema infravermelho chamado Adaptive Optics Imager no telescópio Gemini, durante a fase inicial de teste do instrumento. A óptica adaptativa é uma técnica que permite que sejam feitas correções em tempo real das distorções de uma imagem astronômica causada pela atmosfera da Terra.

O artigo aparece no periódico The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

quinta-feira, 16 de julho de 2015

Mapa da distribuição da matéria escura no Universo

Uma equipe internacional de pesquisadores desenvolveu um novo mapa da distribuição da matéria escura no Universo usando dados do Dark Energy Survey (DES).

mapa da distribição de galáxias e da matéria escura

© Dark Energy Survey (mapa da distribuição de galáxias e da matéria escura)

Cientistas do levantamento DES lançaram o primeiro de uma série de mapas de matéria escura do cosmos. Estes mapas, criados como resultados da análise das imagens de uma das câmeras digitais mais poderosas do mundo, a DECam, são os maiores mapas contíguos criados nesse nível de detalhe e irão melhorar a nossa compreensão do papel de matéria escura na formação de galáxias. Análise do grau de aglomeração da matéria escura nestes mapas também permitirá aos cientistas sondar a natureza da misteriosa energia escura, que se acredita estar causando a expansão acelerada do Universo.

A matéria escura, misteriosa substância que compõe cerca de um quarto do Universo, é invisível para até mesmo os instrumentos astronômicos mais sensíveis, pois não emite nem absorve a luz. No entanto, os seus efeitos podem ser vistos através do estudo de um fenômeno chamado de lente gravitacional, que é a distorção que ocorre quando a força gravitacional da matéria escura curva a trajetória de um raio de luz proveniente de galáxias distantes. Compreender o papel da matéria escura faz parte do programa de pesquisa para quantificar o papel da energia escura, objetivo final da pesquisa conduzida pelos participantes do levantamento DES.

Esta análise foi liderada por Vinu Vikram do Argonne National Laboratory (EUA) e Chihway Chang da ETH , de Zurique (Suíça). Vikram , Chang e seus colaboradores de outras instituições participantes do DES trabalharam por mais de um ano para validar cuidadosamente os ‘mapas de lentes’. “Nós medimos distorções quase imperceptíveis nas formas de cerca de dois milhões de galáxias para construir estes novos mapas,” disse Vikram. “Eles são um testemunho, não só da sensibilidade da câmera do DES, mas também do trabalho rigoroso por nossa equipe para compreender sua sensibilidade tão bem que podemos obter resultados precisos”.

A câmera foi construída e testada no Fermi National Accelerator Laboratory, Estados Unidos, e agora está montada no telescópio Blanco de 4 metros, no Observatório de Cerro Tololo, Chile. Os dados foram processados no Nacional Center for Supercomputing Applications, Universidade de Illinois em Urbana-Champaign, EUA.

O mapa de matéria escura recém divulgado faz uso das observações iniciais do DES e cobre apenas três por cento da área do céu que o levantamento irá cobrir ao final de sua missão de cinco anos. A pesquisa acaba de completar seu segundo ano, mas na medida que a busca for expandida, será possível testar as teorias cosmológicas em voga, pela comparação entre as quantidades de matéria escura e visível.

Essas teorias sugerem que, uma vez que há muito mais matéria escura no Universo do que a matéria visível, galáxias se formarão onde grandes concentrações de matéria escura estão presentes. Até agora, a análise dos cientistas do DES corrobora esta afirmação. Os mapas mostram grandes filamentos de matéria ao longo do qual as galáxias visíveis e aglomerados de galáxias se encontram e vazios cósmicos onde poucas galáxias residem. Estudos de acompanhamento de alguns dos enormes filamentos e vazios, e o enorme volume de dados, coletados durante a pesquisa vai revelar mais sobre esta interação da matéria com a luz.

“Nossa análise, até o momento, está de acordo com o modelo dominante que descreve o Universo,” disse Chang. “Nós estamos ansiosos para usar os novos dados que estão sendo reduzidos para fazer testes muito mais rigorosos de modelos teóricos.”

Ampliando os mapas possibilitará medir como a matéria escura envolve galáxias de diferentes tipos, e como juntos eles evoluem ao longo do tempo cósmico. A relação entre a distribuição de galáxias e o mapa de matéria escura é próximo ao previsto por modelos teóricos baseados em simulações cosmológicas que incluem uma expansão acelerada do Universo.

O mapa irá funcionar como uma ferramenta valiosa para a cosmologia, desvendando o mistério da matéria e da energia escura.

Neste trabalho recém submetido a publicação participam 6 afiliados do Laboratório Interinstitucional de e-Astronomia (LIneA), que apoiam um grupo de cientistas brasileiros através do consórcio DES-Brazil.

A pesquisa aparece em dois artigos, Vikram et al, “Wide-Field Lensing Mass Maps from the DES Science Verification Data: Methodology and Detailed Analysis,” na Physical Review D (no prelo) e Chang et al, “Wide-Field Lensing Mass Maps from DES Science Verification Data,” publicado em 24 de junho na Physical Review Letters.

Fonte: Argonne National Laboratory & LIneA

O terreno jovem e variado de Caronte

Além da bela imagem detalhada de Plutão, a NASA também revelou uma linda e impressionante imagem de Caronte, a maior lua de Plutão.

o terreno jovem e variado de Caronte

© NASA-JHUAPL-SwRI (o terreno jovem e variado de Caronte)

A imagem acima foi feita pelo instrumento LORRI no dia 13 de Julho de 2015, a uma distância de 466.000 quilômetros do satélite.

Uma faixa de desfiladeiros e vales se espalha por cerca de 1.000 quilômetros da esquerda para a direita, sugerindo que Caronte possui uma crosta fraturada, provavelmente devido a algum processo interno. Na parte superior direita, ao longo da borda curva da lua, existe um cânion com cerca de 7 a 9  quilômetros de profundidade.

Os cientistas da missão estão surpresos pela aparente ausência de crateras em Caronte. Na parte sul da Lua, na parte inferior da imagem, o terreno é iluminado pelos raios de Sol, criando sombras que faz com que seja fácil distinguir a topografia do satélite. Mesmo aqui, contudo, poucas crateras são visíveis, indicando uma superfície relativamente jovem que foi remodelada por alguma atividade geológica.

Na região polar norte de Caronte, uma região escura e proeminente é vista nas imagens de aproximação da sonda New Horizons, agora pode ser notada uma borda difusa, sugerindo a presença de depósitos de material escuro fino. Subjacente a isso está uma feição angular bem distinta, imagens de resolução mais alta, ainda são esperadas para que se possa saber exatamente o que se tem nessa enigmática região.

A imagem foi comprimida para reduzir o tamanho do arquivo para a transmissão. Em áreas de grande contraste, feições de 5 quilômetros de diâmetro podem ser observadas. Alguns detalhes de contraste mais baixo são obscurecidos pela compressão da imagem, que pode fazer algumas áreas parecerem mais suaves do que elas realmente são. Uma imagem sem compressão ainda está na memória do computador da New Horizons e será transmitida para a Terra numa data posterior.

A imagem foi combinada com a informação colorida obtida pelo instrumento Ralph da New Horizons obtida no dia 13 de Julho de 2015. A sonda New Horizons viajou 5 bilhões de quilômetros em mais de nove anos e meio de missão para alcançar o sistema de Plutão.

Fonte: NASA

As montanhas de gelo de Plutão

A primeira imagem detalhada de Plutão, enviada pela sonda New Horizons, revela uma grande surpresa: uma cadeia de montanhas jovens com cerca de 3.500 metros de altura na superfície do corpo congelado.

montanhas geladas de Plutão

© NASA-JHUAPL-SwRI (montanhas geladas de Plutão)

As montanhas provavelmente se formaram a não mais que 100 milhões de anos atrás, muito jovens se comparadas com a história de 4,56 bilhões de anos do nosso Sistema Solar, e podem ainda estar em processo de formação, disse Jeff Moore, da equipe de Geology, Geophysics and Imaging (GGI) da New Horizons. Isso sugere que a região detalhada de Plutão, que cobre menos de 1% de sua superfície, pode ainda estar geologicamente ativa.

Moore e seus colegas basearam a estimativa da idade das montanhas na falta de crateras observadas na região. Como o resto de Plutão, essa região provavelmente deve ter sido atingida por detritos espaciais por bilhões de anos e deveria ser totalmente coberta por crateras, a menos que uma atividade geológica recente tenha remodelado a região, apagando assim as marcas deixadas pelas colisões.

“Essa é uma das superfície mais jovens que nós já vimos no Sistema Solar”, disse Moore.

Diferente das luas congeladas dos planetas gigantes, Plutão não pode ser aquecido pela interação gravitacional com um corpo planetário muito maior. Assim, algum outro processo deve estar gerando essa paisagem montanhosa.

“Isso pode nos fazer repensar sobre o que gera a atividade geológica em muitos outros mundos congelados”, disse John Spencer também do GGI, do Southwest Research Institute em Boulder, no Colorado.

As montanhas são provavelmente compostas do embasamento de gelo de água de Plutão. Embora o gelo de metano e nitrogênio cubra boa parte da superfície de Plutão, esses materiais não são resistentes o bastante para gerar montanhas. Ao invés disso, um material mais duro, muito provavelmente gelo de água, deve ter criado os picos. “Na temperatura de Plutão, o gelo de água é como se fosse uma rocha”, disse Bill McKinnon do GGI da Universidade de Washington em St. Louis.

Essa imagem detalhada foi feita cerca de 1,5 horas antes da maior aproximação da New Horizons a Plutão, quando a sonda estava a 770.000 quilômetros da superfície do objeto. A imagem facilmente resolve estruturas menores que 2,8 quilômetros de tamanho.

Fonte: NASA

quarta-feira, 15 de julho de 2015

Gêmeo de Júpiter descoberto em torno de gêmea do Sol

Uma equipe internacional de astrônomos utilizou o telescópio de 3,6 metros do ESO para identificar um planeta como Júpiter orbitando uma estrela do tipo do Sol, HIP 11915, à mesma distância da estrela que Júpiter do Sol.

ilustração de um gêmeo de Júpiter em torno de estrela

© ESO/M. Kornmesser (ilustração de um gêmeo de Júpiter em torno de estrela)

De acordo com as teorias atuais, a formação de planetas com a massa de Júpiter desempenha um papel importante na arquitetura de sistemas planetários. A existência de um planeta com a mesma massa e numa órbita semelhante à de Júpiter em torno de uma estrela do tipo do Sol abre a possibilidade de que o sistema planetário em torno desta estrela seja semelhante ao nosso próprio Sistema Solar. A HIP 11915 tem aproximadamente a mesma idade que o Sol e, adicionalmente, a sua composição semelhante à do Sol sugere que possam existir também planetas rochosos em órbitas mais próximas da estrela.

Até agora, os rastreios de exoplanetas têm sido mais sensíveis a sistemas planetários que são povoados nas suas regiões mais internas por planetas massivos, com massas de, no mínimo, algumas vezes a massa da Terra. Este aspecto contrasta com o Sistema Solar, onde  existem pequenos planetas rochosos nas regiões interiores e gigantes gasosos como Júpiter mais para o exterior. As atuais técnicas de detecção são mais sensíveis a planetas grandes ou massivos situados próximo das suas estrelas hospedeiras. Planetas pequenos e de pequena massa estão, na maioria dos casos, para além das nossas atuais capacidades de detecção. Planetas gigantes que possuem órbitas mais afastadas das suas estrelas são também mais difíceis de detectar. Consequentemente, muitos dos exoplanetas que conhecemos atualmente são enormes e/ou massivos,  e situam-se próximo das suas estrelas progenitoras.
De acordo com as teorias mais recentes, a arquitetura do Sistema Solar, tão propícia ao desenvolvimento de vida, foi possível graças à presença de Júpiter e da sua influência gravitacional exercida no Sistema Solar durante a fase da sua formação. Este fato leva-nos a crer que encontrarmos um planeta gêmeo de Júpiter é um marco importante na busca de um sistema planetário que seja semelhante ao nosso.
Uma equipe liderada por brasileiros tem observado estrelas do tipo do Sol numa tentativa de encontrar um sistema planetário semelhante ao nosso. A equipe descobriu agora um planeta com uma massa muito semelhante à de Júpiter, em órbita de uma estrela do tipo do Sol, HIP 11915, e quase exatamente na mesma posição que Júpiter ocupa no nosso Sistema Solar. A nova descoberta foi feita com o auxílio do HARPS, um dos instrumentos mais precisos a detectar exoplanetas, montado no telescópio de 3,6 metros do ESO no Observatório de La Silla, no Chile. O planeta foi descoberto ao medir o ligeiro movimento que induz na sua estrela hospedeira enquanto a orbita. Como a inclinação da órbita do planeta não é conhecida, apenas podemos estimar o limite inferior da sua massa. É de notar que a atividade da estrela, que está ligada às variações do seu campo magnético, poderia imitar o sinal que está sendo interpretado como sendo a assinatura do planeta. Os astrônomos fizeram todos os testes que se conhecem para investigar esta possibilidade, no entanto neste momento é ainda impossível descartar completamente esta hipótese.
Embora já se tenham descoberto muitos planetas semelhantes a Júpiter a uma variedade de distâncias de estrelas do tipo solar, o planeta recentemente descoberto, tanto em termos de massa como de distância à sua estrela hospedeira, e em termos de semelhança entre esta estrela e o nosso Sol, é o análogo mais preciso encontrado até agora do Sol e de Júpiter. Um exemplo de outro gêmeo de Júpiter é um planeta que se encontra em torno da estrela HD 154345, descrito neste link.
A hospedeira do planeta, a gêmea solar HIP 11915, não é apenas semelhante ao Sol em termos de massa, mas tem também aproximadamente a mesma idade. Fortalecendo ainda mais as similaridades, a composição desta estrela é semelhante à do Sol. A assinatura química do nosso Sol pode estar parcialmente marcada pela presença de planetas rochosos no Sistema Solar, o que aponta por isso para a possibilidade de existência de planetas rochosos em torno de HIP 11915.
De acordo com Jorge Melendez, da Universidade de São Paulo, Brasil, líder da equipe e co-autor do artigo científico que descreve estes resultados, “a procura de uma Terra 2.0 e de um Sistema Solar 2.0 completo, é um dos esforços mais excitantes da astronomia. Estamos muito entusiasmados por fazer parte desta investigação de vanguarda, tornada possível pelas infraestruturas observacionais disponibilizadas pelo ESO.” 
Desde a assinatura do acordo de adesão do Brasil ao ESO em dezembro de 2010, os astrônomos brasileiros têm tido total acesso a todas as instalações de observação do ESO.

Megan Bedell, da Universidade de Chicago e autora principal do artigo científico, conclui: “Após duas décadas de busca de exoplanetas, estamos finalmente vendo planetas gigantes gasosos de período longo semelhantes aos do nosso próprio Sistema Solar, graças à estabilidade de longo termo de instrumentos “caçadores de planetas” como o HARPS. Esta descoberta é, em todos os aspectos, um sinal muito estimulante de que existem outros sistemas solares à espera de serem descobertos.”
São necessárias observações de acompanhamento para confirmar e delimitar a descoberta, mas a HIP 11915 é, até agora, uma das mais promissoras candidatas a abrigar um sistema planetário semelhante ao nosso.

Este trabalho foi descrito no artigo intitulado “The Solar Twin Planet Search II. A Jupiter twin around a solar twin”, de M. Bedell et al., que será publicado na revista especializada Astronomy and Astrophysics.

Fonte: ESO

terça-feira, 14 de julho de 2015

New Horizons passou hoje mais perto de Plutão

À medida que a sonda New Horizons da NASA aproximava-se do voo histórico de hoje por Plutão, continuava fazendo as suas diversas funções, produzindo imagens de um mundo gelado que se tornou mais fascinante e complexo com o passar dos dias.

misterioso e brilhante coração de Plutão

© NASA/JHUAPL/SWRI (misterioso e brilhante "coração" de Plutão)

No dia 12 de julho, a New Horizons captou a imagem acima a uma distância de 2,5 milhões de quilômetros, que sugere algumas novas características de interesse para a equipe Geology, Geophysics and Imaging (GGI), agora reunida no Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, no estado americano de Maryland. Pela primeira vez, a imagem revela características lineares que podem ser penhascos, bem como uma característica circular que pode ser uma cratera de impacto. Emergindo do lado esquerdo, está a denominada área em forma de coração que será observada em mais detalhe durante a maior aproximação da New Horizons.

A New Horizons percorreu 5 bilhões de quilômetros, durante mais de nove anos, para alcançar Plutão. Às 08:49 de hoje (horário de Brasília), a sonda passou a aproximadamente 12.500 km do planeta anão e a 49.600 km/h, os seus sete instrumentos científicos trabalhando a todo vapor para recolher dados.

A câmara de longo alcance da sonda conseguirá resolver características tão pequenas quanto 70 metros. Cerca de catorze minutos depois da maior aproximação, passou a cerca de 29.000 km de Caronte e esteve também na mira das quatro luas mais pequenas de Plutão: Hydra, Nix, Kerberos e Stix.

Depois da passagem, a sonda irá virar-se para fotografar Plutão eclipsando o Sol, enquanto procura também a existência de anéis ou camadas de poeira iluminadas pela luz.

Os outros seis instrumentos científicos vão construir mapas termais do par Plutão-Caronte, medir a composição da superfície e atmosfera e observar a interação de Plutão com o vento solar. Tudo isto acontecerá em modo automático.

A sonda New Horizons já respondeu a uma das questões mais básicas sobre Plutão; qual é o o seu tamanho?

Os cientistas da missão determinaram que Plutão tem 2.370 km em diâmetro, um pouco maior que as estimativas anteriores. Este resultado confirma o que já se esperava: Plutão é maior do que todos os outros objetos conhecidos para além da órbita de Netuno.

A nova estimativa do tamanho de Plutão significa que a sua densidade é inferior ao que se pensava, e que a fração de gelo no seu interior é ligeiramente maior. Igualmente, a camada mais baixa da atmosfera de Plutão, chamada troposfera, é também mais fina do que se pensava.

A medição do tamanho de Plutão tem sido um desafio de décadas devido a fatores complexos derivados da sua atmosfera. Caronte, a maior lua, não tem uma atmosfera substancial e o seu diâmetro foi mais fácil de determinar usando telescópios terrestres. As observações da New Horizons confirmam as estimativas anteriores de 1.208 km.

A sonda também começou a estudar as luas mais pequenas, nomeadamente Nix e Hydra. Nix tem um tamanho estimado em aproximadamente 35 km, enquanto Hidra mede mais ou menos 45 km. Estes tamanhos levam os cientistas a concluir que as suas superfícies são muito brilhantes, possivelmente devido à presença de gelo.

Referente às restantes duas luas, Kerberos e Stix, estas são mais difíceis de estudar. Os cientistas da missão deverão conseguir determinar os tamanhos com as observações da sonda durante a passagem pelo planeta anão.

As manchas aparecem no lado de Plutão orientado sempre para a sua maior lua, Caronte. Esta face foi invisível para a New Horizons durante a aproximação máxima. Alan Stern, pesquisador principal da New Horizons, descreve a imagem como o "último e melhor olhar que teremos do lado 'oculto' de Plutão durante décadas".

As manchas estão ligadas por uma faixa escura que rodeia a região equatorial de Plutão. O que continua despertando o interesse dos cientistas é o seu tamanho semelhante e até mesmo o espaçamento. "É estranho estarem espaçadas tão regularmente," afirma Curt Niebur, cientista do programa New Horizons na sede da NASA em Washington, EUA. Jeff Moore, do Centro de Pesquisa Ames da NASA, em Mountain View, no estado da Califórnia, está igualmente intrigado: "nós não conseguimos discernir se são planaltos ou planícies, ou se são variações de brilho numa superfície completamente lisa."

As grandes áreas escuras têm um tamanho atualmente estimado em 480 km. Em comparação com as imagens anteriores, vemos agora que as áreas escuras são mais complexas do que inicialmente pareciam, enquanto as fronteiras entre os terrenos escuros e brilhantes são irregulares e bem definidos.

sistema de abismos e crateras de Caronte

© NASA/JHUAPL/SWRI (sistema de abismos e crateras de Caronte)

As imagens mais recentes da maior lua de Plutão, Caronte, revelam que é um mundo de abismos e crateras. De acordo com William McKinnon, da equipe GGI, o mais pronunciado, que se encontra no hemisfério sul, é mais longo e mais profundo que o Grand Canyon da Terra.

"Esta é a primeira evidência de falhas e rupturas à superfície de Caronte," afirma. "A New Horizons tem transformado a nossa visão desta lua distante, de uma bola de gelo quase sem traços característicos, para um mundo que exibe todos os tipos de atividade geológica."

A cratera mais proeminente, que se encontra perto do polo sul de Caronte, vista numa imagem obtida dia 11, mede cerca de 96,5 km de diâmetro. O brilho dos raios, material expelido para fora da cratera, sugere que se formou há relativamente pouco tempo (em termos geológicos), durante uma colisão com um pequeno objeto do Cinturão de Kuiper, talvez durante os últimos bilhões de anos.

O tom escuro do solo da cratera é especialmente interessante. Uma explicação é que a cratera expôs um tipo de material gelado mais refletivo do que o que se encontra à superfície. Outra possibilidade é que o gelo no interior da cratera é o mesmo material que os seus arredores, mas contém grãos maiores de gelo, o que reflete menos luz solar. Neste cenário, o objeto impactante derreteu o gelo no chão da cratera que, em seguida, congelou novamente em grãos maiores.

A região escura e misteriosa perto do polo norte de Caronte prolonga-se por 320 km. As imagens que a sonda enviar, talvez um pouco antes da passagem mais próxima ocorrida, podem fornecer mais pistas sobre a origem da região escura.

Fonte: Johns Hopkins University Applied Physics Laboratory

domingo, 12 de julho de 2015

Buraco negro colossal evolui na sua galáxia anfitriã

Uma nova descoberta vai contra a maioria das observações sobre os buracos negros, que são objetos enormes do espaço com gravidade extraordinariamente forte que pode puxar qualquer coisa, inclusive a luz.

M87

© NASA/Canada-France-Hawaii Telescope/J.-C. Cuillandre (M87)

Na maioria dos casos, os buracos negros e suas galáxias hospedeiras expandem no mesmo ritmo. Mas os astrônomos têm descoberto um buraco negro amplamente dimensionado no início do Universo que cresceu muito mais rápido do que a sua galáxia hospedeira.

Este buraco negro especial foi formado no início do Universo, cerca de dois bilhões de anos após o Big Bang. Um grupo internacional de pesquisadores fizeram a descoberta durante um projeto para mapear o crescimento de buracos negros supermassivos em todo o tempo cósmico. A equipe incluiu astrônomos da Universidade de Yale, ETH Zurique, do Instituto Max-Planck na Alemanha, da Universidade Harvard, da Universidade do Havaí, INAF-Osservatorio Astronomico di Roma, e a Universidade de Oxford.
"Nossa pesquisa foi projetada para observar os objetos médios, e não os exóticos", disse C. Megan Urry da Universidade Yale. "Este projeto dirige-se especificamente aos buracos negros moderados que habitam atualmente galáxias típicas. Foi um choque ver um buraco negro extremamente grande em um campo tão profundo."

Levantamentos de campo profundo destinam-se a olhar para galáxias fracas; eles apontam para pequenas áreas do céu por um longo período de tempo, ou seja, o volume total do espaço a ser amostrado é relativamente pequeno.

Este buraco negro particular, localizado na galáxia CID-947, está entre os maiores buracos negros já encontrados. Ele mede cerca de 7 bilhões de massas solares (uma massa solar é equivalente à massa do nosso Sol, ou seja 2 x 10³º kg).

No entanto, foi a massa da galáxia circundante que mais surpreendeu a equipe de pesquisa. "As medições correspondem à massa de uma galáxia típica," disse o autor Benny Trakhtenbrot, pesquisador do Instituto de Astronomia ETH Zurich. "Estamos, portanto, tendo um buraco negro gigantesco dentro de uma galáxia de tamanho normal."

A maioria das galáxias, incluindo a nossa própria Via Láctea, tem um buraco negro em seu centro, segurando milhões a bilhões de massas solares. O novo estudo desafia as noções anteriores sobre a forma como as galáxias hospedeiras crescem em relação aos buracos negros, e também as sugestões anteriores de que a radiação emitida pelos buracos negros em expansão limitam a criação de estrelas.

Estrelas ainda estavam se formando na CID-947 e a galáxia continuava a crescendo. A galáxia CID-947 poderia ser uma precursora de sistemas massivos extremos observados no Universo local de hoje, como a galáxia NGC 1277, na constelação de Perseu, localizada 220 milhões de anos-luz da Via Láctea. Mas, o crescimento do buraco negro ainda antecipou muito o crescimento da galáxia circundante, ao contrário do que os astrônomos pensavam anteriormente.

Urry e seus colegas creditaram o observatório W.M. Keck no Havaí e o Chandra COSMOS que auliaram o trabalho da equipe. "A sensibilidade e versatilidade do novo espectrômetro infravermelho do Keck, MOSFIRE, foi fundamental para essa descoberta", disse Urry.

O buraco negro no centro da galáxia elíptica super gigante M87 mostrado na parte superior da imagem no aglomerado de Virgem está a 50 milhões de anos-luz de distância, é o buraco negro mais massivo, cuja uma massa exata foi medida com 6,6 bilhões de massas solares. Orbitando a galáxia está uma anormalmente grande população de cerca de 12.000 aglomerados globulares, em comparação com 150 a 200 aglomerados globulares que orbitam a Via Láctea.

A equipe teorizou que o buraco negro da M87 alcançou seu tamanho enorme, mesclando com vários outros buracos negros. A galáxia M87 é a de maior massa no Universo próximo, e provavelmente pode ter sido formada pela fusão de galáxias menores.

Obtenha mais informações no artigo noticiado neste blog.

Um estudo sobre o fenômeno foi publicado na revista Science.

Fonte: Universidade Yale

sábado, 11 de julho de 2015

Uma galáxia florescendo

As conchas fantasmagóricas da galáxia ESO 381-12 são captadas numa nova imagem feita pelo telescópio espacial Hubble da NASA/ESA, contra um fundo salpicado de galáxias distantes.

galáxia ESO 381-12

© Hubble/P. Goudfrooij (galáxia ESO 381-12)

A estrutura e os aglomerados de estrelas que orbitam a galáxia sugerem que a ESO 381-12 pode ter sido parte de uma grande colisão que ocorreu em algum momento num passado relativamente presente.

Localizada a aproximadamente 270 milhões de anos-luz de distância da Terra, na constelação de Centaurus (O Centauro), uma brilhante constelação da porção sul do céu, a ESO 381-12, também conhecida como PGC 42871 pode ter recentemente interagido com outra galáxia, enviando ondas de choque através de sua estrutura como ondas numa piscina. Essas fusões galácticas são processos violentos, que comprimem material dentro das galáxias em colisão e mudam completamente sua aparência e o seu desenvolvimento futuro. Esse violento evento provavelmente disparou uma onda de formação de estrelas através da galáxia, levando à criação de muitas estrelas quentes e jovens.

Os astrônomos têm estudado a ESO 381-12 em detalhe devido à sua estrutura pouco comum. Ela foi uma das amostras de galáxias exploradas pela Advanced Camera for Surveys do Hubble durante um recente estudo das propriedades das galáxias de conchas criadas em eventos de fusão ocorridos a um bilhão de anos atrás.

A proeminente galáxia na direita da imagem, conhecida como ESO 381-13 ou PGC 42877, é uma diferente amostra onde tanto a formação ativa de estrelas como a poeira podem ser vistas em seu interior. Contudo, as galáxias ESO 381-12 e  ESO 381-13 estão a distâncias muito parecidas da Terra, e, apesar de suas diferenças podem estar interagindo.

Fonte: Space Telescope Science Institute

O centro do alvo de um buraco negro

O que parece ser um alvo de tiro é na verdade uma imagem de anéis imbricados de luz de raios X centrados num buraco negro em erupção.

anéis de luz de raios X centrados no sistema V404 Cygni

© NASA/Swift/Andrew Beardmore (anéis de luz de raios X centrados no sistema V404 Cygni)

A imagem acima mostra anéis de luz de raios X centrados no V404 Cygni, um sistema binário que contém um buraco negro em erupção (ponto no centro), foram fotografadas pelo telescópio de raios X a bordo do satélite Swift da NASA em 30 de junho a a 4 de julho deste ano. A cor indica a energia dos raios X, com a mais baixa representando o vermelho (800 a 1.500 eV elétron-volts), o verde para energias intermediárias (1.500 a 2.500 eV), e a mais energética (2.500 a 5.000 eV) mostrado em azul. Para comparação, a luz visível tem energias que variam desde cerca de 2 a 3 eV. As linhas escuras que aparecem diagonalmente através da imagem são artefatos do sistema de imagem.

No dia 15 de Junho de 2015, o satélite Swift da NASA detectou o início de uma nova explosão da V404 Cygni, onde um buraco negro e uma estrela parecida com o Sol se orbitam. Desde então, os astrônomos ao redor do mundo têm monitorado o show de luz.

No dia 30 de Junho de 2015, uma equipe liderada por Andrew Beardmore na Universidade de Leicester, no Reino Unido, imageou o sistema usando o telescópio de raios X a bordo do Swift revelando uma série de anéis concêntricos se estendendo cerca de um terço do tamanho aparente da Lua Cheia. Um filme feito pela combinação das observações adicionais adquiridas nos dias 2 e 4 de Julho de 2015 mostram a expansão e o gradativo apagamento dos anéis.

Os astrônomos dizem que os anéis resultam de um eco da luz de raios X. As flares do buraco negro emitem raios X em todas as direções. Camadas de poeira refletem parte desses raios X de volta para a Terra, mas a luz viaja uma distância maior e atinge nooso planeta pouco tempo depois do que a luz que viaja numa trajetória mais direta. O intervalo de tempo cria o eco de luz, formando os anéis que se expandem com o tempo.

Análises detalhadas dos anéis em expansão mostram que todos eles originam de uma grande flare que ocorreu no dia 26 de Junho de 2015, às 14:40, hora de Brasília. Existem múltiplos anéis pois existem múltiplas camadas de poeira de reflexão entre 4.000 e 7.000 anos-luz de distância de nós. O monitoramento regular dos anéis e como eles mudam à medida que a erupção continua permitirá aos astrônomos entenderem melhor sua natureza.

“O planejamento flexível das observações do Swift tem nos dado as melhores imagens de anéis de raios X espalhados pela poeira já feitas”, disse Beardmore. “Com essas observações nós podemos fazer um estudo detalhado da poeira interestelar normalmente invisível na direção desse buraco negro”.

O V404 Cygni está localizado a cerca de 8.000 anos-luz de distância. A cada duas décadas o buraco negro tem entrado em atividade, gerando uma explosão de alta energia. Sua erupção anterior aconteceu em 1989.

Veja outros detalhes na notícia veiculada aqui.

Fonte: Goddard Space Flight Center

sexta-feira, 10 de julho de 2015

Messier 43: uma grande região de formação estelar

Frequentemente fotografada mas raramente mencionada, Messier 43 (M43) é uma grande região HII de formação estelar.

M43

© Yuri Beletsky/Igor Chilingarian (M43)

A M43, também conhecida como NGC 1982 e Nebulosa De Mairan, foi descoberta por Jean-Jacques De Mairan Dortous em 1731.

A M43 faz parte do complexo de formação de formação estelar de gás e poeira que inclui a mais famosa vizinha, a Messier 42 (M42), a grande nebulosa de Órion. Na verdade, a grande nebulosa de Órion está fora da borda inferior desta cena. A imagem mais próxima da M43 foi obtida durante os testes das capacidades de um instrumento que capta infravermelho próximo acoplado em um dos telescópios gêmeos Magalhães de 6,5 metros no observatório Las Campanas nos Andes chilenos.

A imagem composta desvia os comprimentos de onda infravermelhos invisíveis para as cores: azul, verde e vermelha. Perscrutando dentro das cavernas de poeira interestelar que obscurecem a luz visível, a visão em infravermelho próximo também pode ser usada para estudar as frias estrelas anãs marrons nesta região complexa, juntamente com o sua célebre vizinha (M42). A M43 está localizada  a cerca de 1.500 anos-luz de distância, na borda da nuvem molecular gigante da Órion. A essa distância, este campo de visão se estende por cerca de 5 anos-luz.

Fonte: NASA