sexta-feira, 11 de outubro de 2024

Revelado pormenores elusivos em sistemas estelares jovens

A cada segundo nascem mais de 3.000 estrelas no Universo visível. Muitas estão rodeadas por um disco protoplanetário.

© NAOJ (ilustração de um disco de formação planetária em torno de uma estrela)

No entanto, os processos exatos que dão origem às estrelas e aos sistemas planetários ainda são pouco conhecidos. Uma equipe de astrônomos liderada por pesquisadores da Universidade do Arizona utilizou o telescópio espacial James Webb (JWST) para obter alguns dos conhecimentos mais detalhados das forças que moldam os discos protoplanetários.

As observações fornecem vislumbres do possível aspecto do nosso Sistema Solar há 4,6 bilhões de anos. Especificamente, foi detectado os chamados ventos de disco com um detalhe sem precedentes. Estes ventos são correntes de gás que sopram do disco de formação planetária para o espaço. Alimentados em grande parte por campos magnéticos, estes ventos podem viajar dezenas de quilômetros em apenas um segundo.

As descobertas ajudam a compreender melhor como os jovens sistemas planetários se formam e evoluem. Um dos processos mais importantes num disco protoplanetário é o fato da estrela consumir matéria do disco que a rodeia, ou seja, a acreção. O modo como uma estrela acreta massa tem uma grande influência na forma como o disco circundante evolui ao longo do tempo, incluindo a maneira como os planetas se formam mais tarde.

As estrelas jovens crescem puxando gás do disco que está girando à sua volta, mas para que isso aconteça, o gás tem de perder alguma da sua inércia. Caso contrário, o gás orbitaria consistentemente a estrela e nunca cairia sobre ela. Este processo é denominado "perda de momento angular", mas a forma exata como isso acontece tem-se revelado difícil de entender. Para melhor compreender como o momento angular funciona num disco protoplanetário, é útil imaginar uma patinadora no gelo: o juntar os braços ao seu corpo fará que ela gire mais depressa, enquanto que esticá-los abrandará a sua rotação. Como a sua massa não se altera, o momento angular permanece o mesmo. Para que a acreção ocorra, o gás ao longo do disco tem de perder momento angular. 

Uma vez que existem outros processos que moldam os discos protoplanetários, é fundamental poder distinguir entre os diferentes fenômenos. Enquanto o material na orla interna do disco é empurrado para fora pelo campo magnético da estrela, no que é conhecido como vento X, as partes exteriores do disco são corroídas pela intensa luz estelar, resultando nos chamados ventos térmicos, que sopram a velocidades muito mais lentas.

Para distinguir entre o vento impulsionado pelo campo magnético, o vento térmico e o vento-X, é necessário utilizar a elevada sensibilidade e resolução do JWST. Ao contrário do vento X, que tem um foco restrito, os ventos observados no presente estudo têm origem numa região mais vasta que incluiria os planetas rochosos interiores do nosso Sistema Solar, aproximadamente entre a Terra e Marte. Estes ventos também se estendem mais acima do disco do que os ventos térmicos, atingindo distâncias centenas de vezes superiores à distância entre a Terra e o Sol.

Para este estudo, os pesquisadores selecionaram quatro sistemas de discos protoplanetários, todos eles vistos de lado da perspectiva da Terra. A sua orientação permitiu que a poeira e o gás no disco atuassem como uma máscara, bloqueando alguma da luz da brilhante estrela central, que de outra forma teria oprimido os ventos. Ao configurar os detectores do JWST para distinguir moléculas em certos estados de transição, a equipe foi capaz de rastrear várias camadas dos ventos. As observações revelaram uma estrutura intrincada e tridimensional de um jato central, aninhado dentro de um invólucro em forma de cone de ventos com origem a distâncias progressivamente maiores do disco, semelhante à estrutura em camadas de uma cebola.

Uma nova descoberta importante, de acordo com os pesquisadores, foi a detecção consistente de um buraco central pronunciado no interior dos cones, formado por ventos moleculares em cada um dos quatro discos. A equipe espera, no futuro, expandir estas observações a mais discos protoplanetários, para ter uma melhor noção de quão comuns são as estruturas do vento de disco observadas no Universo e de como evoluem ao longo do tempo.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: University of Arizona

Nenhum comentário:

Postar um comentário