quinta-feira, 5 de dezembro de 2024

O que está por baixo das superfícies insípidas de Urano e Netuno?

Chuva de diamantes? Água superiônica?

© Quanta Magazine (vista interior de um planeta gigante gasoso)

Estas são apenas duas propostas que os cientistas planetários apresentaram para o que se encontra por baixo das espessas atmosferas azuladas de hidrogênio e hélio de Urano e Netuno, gigantes gelados do nosso Sistema Solar, mas superficialmente insípidos.

O cientista planetário Burkhard Militzer, da Universidade da Califórnia, em Berkeley, EUA, propõe agora uma teoria alternativa, que os interiores destes dois planetas são constituídos por camadas e que as duas camadas, tal como o azeite e a água, não se misturam. Esta configuração explica perfeitamente os incomuns campos magnéticos dos planetas e implica que as teorias prévias acerca dos interiores provavelmente não são verdadeiras.

Ele defende que existe um oceano profundo de água logo abaixo das camadas de nuvens e, por baixo, um fluido altamente comprimido de carbono, nitrogênio e hidrogênio. As simulações em computador mostram que, sob as temperaturas e pressões do interior dos planetas, uma combinação de água (H2O), metano (CH3) e amônia (NH3) se separaria naturalmente em duas camadas, principalmente porque o hidrogênio seria espremido do metano e da amônia que constituem grande parte do interior profundo. Estas camadas imiscíveis explicariam porque é que nem Urano nem Netuno têm um campo magnético como o da Terra. Esta foi uma das descobertas surpreendentes acerca dos gigantes gelados do nosso Sistema Solar feitas pela missão Voyager 2 no final da década de 1980.Os planetas do tamanho de Urano e Netuno, os chamados planetas subnetuno, estão entre os exoplanetas mais comuns descobertos até à data. 

À medida que um planeta arrefece da sua superfície para baixo, o material frio e mais denso afunda-se, enquanto as manchas de fluido mais quente sobem como água fervendo, um processo chamado convecção. Se o interior for condutor de eletricidade, uma camada espessa de material em convecção gerará um campo magnético dipolar semelhante ao de um ímã em barra. O campo dipolar da Terra, criado pelo seu núcleo externo de ferro líquido, produz um campo magnético que vai do polo norte ao polo sul e é a razão pela qual as bússolas apontam para os polos. 

Mas a Voyager 2 descobriu que nenhum dos dois gigantes de gelo tem este campo dipolar, apenas campos magnéticos desorganizados. Isto implica que não há movimento convectivo de material, numa camada espessa, no interior profundo dos planetas. Para explicar estas observações, dois grupos de pesquisa distintos propuseram, há mais de 20 anos, que os planetas devem ter camadas que não se podem misturar, impedindo assim a convecção em grande escala e um campo magnético dipolar global. A convecção numa das camadas poderia, no entanto, produzir um campo magnético desorganizado. 

Mas nenhum dos grupos conseguiu explicar de que eram feitas estas camadas que não se misturam. Há dez anos, Militzer tentou repetidamente resolver o problema, utilizando simulações em computador de cerca de 100 átomos com as proporções de carbono, oxigénio, nitrogênio e hidrogênio refletindo a composição conhecida dos elementos do Sistema Solar primitivo. Com as pressões e temperaturas previstas para os interiores dos planetas, 3,4 milhões de vezes a pressão atmosférica da Terra e 4750 K, respectivamente, não conseguiu encontrar uma forma de formar camadas. Porém, no ano passado, com a ajuda da aprendizagem de máquina, conseguiu executar um modelo que simulava o comportamento de 540 átomos e, para sua surpresa, descobriu que as camadas se formam naturalmente à medida que os átomos são aquecidos e comprimidos.

Nota-se que uma camada é rica em água e a outra é rica em carbono, e em Urano e Netuno, é o sistema rico em carbono que está por baixo. A parte pesada fica em baixo e a parte mais leve fica em cima e não pode fazer qualquer convecção. A quantidade de hidrogênio espremido aumenta com a pressão e a profundidade, formando uma camada estratificada estável de carbono, nitrogênio e hidrogênio, quase como um polímero plástico. Enquanto a camada superior, rica em água, provavelmente realiza convecção para produzir o campo magnético desorganizado observado, a camada mais profunda, estratificada e rica em hidrocarbonetos, não pode. Quando modelou a gravidade produzida por um Urano e por um Netuno em camadas, os campos gravitacionais coincidiram com os medidos pela Voyager 2 há quase 40 anos. 

Militzer prevê que por baixo da atmosfera de Urano, com quase 5 mil quilômetros de espessura, se encontre uma camada rica em água com cerca de 8 mil quilômetros de espessura e, por baixo desta, uma camada rica em hidrocarbonetos, também com cerca de 8 mil quilômetros de espessura. 

O seu núcleo rochoso tem aproximadamente o tamanho do planeta Mercúrio. Apesar de Netuno ser mais massivo do que Urano, é menor em diâmetro, com uma atmosfera mais fina, mas com camadas igualmente espessas, ricas em água e hidrocarbonetos. 

Uma missão proposta pela NASA a Urano poderia também fornecer uma confirmação, se a nave espacial tiver a bordo um gerador de imagens Doppler para medir as vibrações do planeta. Um planeta em camadas vibraria a frequências diferentes das de um planeta em convecção. O próximo projeto é utilizar o modelo computacional para calcular a diferença entre as vibrações dos planetas.

Um artigo foi publicado no periódico Proceedings of the National Academy of Sciences.

Fonte: University of California

Nenhum comentário:

Postar um comentário