Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens
Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens

quinta-feira, 26 de maio de 2011

Hubble viu a estrela que mudou o Universo

Entre os inúmeras estrelas que formam o Universo, a descoberta de uma simples estrela variável, em 1923, alterou o curso da astronomia moderna.
estrela variável cefeida V1 na galáxia M31
© NASA/ESA (estrela variável cefeida V1 na galáxia M31)
É a estrela com o nome de "variável Hubble número um", ou V1, e está localizada na região exterior da vizinha galáxia de Andrômeda, também conhecida por M31. No início de 1900, para a maioria dos astrônomos, o Universo era a Via Láctea, sem nada para além dos seus limites observáveis. Andrômeda era uma das muitas "manchas de luz", a que chamavam "nebulosas espirais" e que faziam parte da nossa galáxia Via Láctea.
Em 1923, o cientista Edwin Hubble descobriu uma estrela, em Andrômeda, que ele identificou como V1, uma estrela variável cefeida, pois ela apresentou um brilho variável, brilhando e apagando segundo um determinado padrão. Nessa altura já se usava este tipo de estrelas para calcular distâncias dentro da nossa galáxia. Hubble calculou a sua distância e o resultdo revelou um milhão de anos-luz da Terra, mais de três vezes o diâmetro já calculado para a Via Láctea.
A estrela de Hubble ajudou a mostrar que Andrômeda estava para além da nossa galáxia e que havia mais galáxias no Universo que, afinal, era maior do que se pensava.
Até ao final de 1924, Hubble encontrou mais 12 variáveis cefeidas em Andrômeda e com as quais obteve uma distância de 900.000 anos-luz. Medições atuais mais rigorosas indicam uma distância de 2 milhões de anos-luz.
Quase 90 anos depois, os astrônomos prestaram uma simbólica homenagem a Edwin Hubble e à sua descoberta, e voltaram a observar a estrela V1 utilizando o Telescópio Espacial Hubble, em parceria com a Associação Americana de Observadores de Estrelas Variáveis ​​(AAVSO), que observaram a estrela durante seis meses. Os resultados obtidos permitiram programar a obtenção de imagens pelo Hubble.
Para o astrônomo Dave Soderblom, do Space Telescope Science Institute (STScI), em Baltimore, que propôs a observação de V1, esta é a estrela mais importante na história da cosmologia. Mais do que um tributo ao grande astrônomo Hubble, a sua observação mostrou que as cefeidas ainda são importantes atualmente. AS cefeidas são utilizadas para medir as distâncias de galáxias mais distantes que Andrômeda, elas são "o primeiro degrau da escada da distância cósmica".
Fonte: NASA

domingo, 22 de maio de 2011

Sementes da vida no espaço

Partes do DNA e de outras moléculas essenciais dos seres vivos podem ter se formado no espaço há bilhões de anos e chegado à Terra de carona em cometas ou meteoritos.
detalhe da obra The day we bomb the moon
© Sheila Goloborotko (detalhe da obra The day we bomb the moon)
Uma hipótese que agora ganha novos argumentos é que os fragmentos dessas moléculas podem ter se originado em nuvens galácticas bombardeadas por raios cósmicos, partículas muito energéticas abundantes desde o início do Universo. Essas nuvens são muito frias e constituídas por grãos de água sólida e gases condensados como o monóxido de carbono, o dióxido de carbono, a amônia e o metano.
Físicos brasileiros e franceses chegaram a essas conclusões por meio de experimentos em aceleradores de partículas na Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) e na Universidade de Caen-Baixa Normandia, em Caen, noroeste da França. Os feixes de íons produzidos nessas máquinas interagem com gelos mantidos em temperaturas de até -260o Celsius, produzindo efeitos similares aos da interação de raios cósmicos com as nuvens galácticas.
“Estamos reconstruindo as condições de surgimento dos primeiros passos da vida”, diz o físico Enio Silveira, da PUC-Rio. “Queremos descobrir o que resulta do bombardeio por raios cósmicos do gelo do espaço sideral.” Segundo ele, o encontro de raios cósmicos com as nuvens de gelo assemelha-se a um jato de areia atirado contra uma parede: os grãos de areia erodem a superfície da parede. Outra possibilidade é que as moléculas orgânicas possam ter se formado a partir da interação com outro tipo de feixe de partículas elementares, os elétrons, mais abundantes, mas menos energéticos que os raios cósmicos.
Os experimentos da equipe da PUC-Rio e de Caen indicaram que a água pode se decompor e formar peróxido de hidrogênio (água oxigenada, H2O2), ozônio (O3) ou radicais químicos com alta afinidade por moléculas com carga elétrica oposta. Em 2009 e 2010, como parte de seu doutorado, o astrônomo Eduardo Seperuelo Duarte, da PUC, trabalhou durante 18 meses com Alicja Domaracka no Grande Acelerador Nacional de Íons Pesados (Ganil) em Caen para determinar quais as novas espécies químicas que saem das nuvens congeladas de monóxido ou dióxido de carbono (CO ou CO2) bombardeadas por íons de níquel. “Raios cósmicos formados por elementos de massa atômica elevada como o níquel são raros no Universo, mas seu efeito é devastador, como o produzido em uma guerra por um tiro de canhão em relação ao dos muito mais abundantes tiros de metralhadora”, compara Silveira. Em outros testes feitos em dezembro no Ganil, a física Ana Lúcia Barros, do grupo de Silveira, verificou que cinco moléculas diferentes, como CH3 e C2H4, formam-se nas nuvens de metano (CH4) bombardeadas por feixes de íons que simulam os raios cósmicos.
“Os raios cósmicos podem induzir a síntese de novas moléculas se a exposição das nuvens de gelo a eles for temporária”, comenta Silveira. “Bombardeamentos prolongados impedem a formação de macromoléculas.” Em dezembro de 2009 Alicja Domaracka esteve no Brasil e trabalhou com Silveira no acelerador da PUC bombardeando cristais de fluoreto de lítio, que se estilhaçavam de modo semelhante às nuvens de gelo.
“Nosso planeta foi muito bombardeado por cometas, que trouxeram a água que forma parte dos oceanos”, afirma Silveira. “A vida surgiu aqui relativamente em pouco tempo, apenas cerca de 1 bilhão de anos depois de a Terra ter se formado.” Se essa hipótese estiver correta, os cometas podem ter levado as moléculas orgânicas para qualquer canto do Universo, reforçando a possibilidade de vida extraterrestre.
Fonte: FAPESP (Pesquisa)

sexta-feira, 20 de maio de 2011

Confirmada a existência da energia escura

Uma pesquisa que durou cinco anos e cobriu 200.000 galáxias, levou a uma das melhores confirmações de que é mesmo a energia escura que está acelerando a expansão do Universo.
energia escura e gravidade
© NASA (energia escura e gravidade)
O estudo, que representa um retorno de até sete bilhões de anos no tempo cósmico, usou dados da sonda espacial Galex (Galaxy Evolution Explorer: Exploração da Evolução das Galáxias) e do Telescópio Anglo-Australiano instalado na montanha Siding Spring, na Austrália.
Os resultados dão suporte para a principal interpretação sobre como funciona a energia escura - como uma força constante, afetando uniformemente o Universo e impulsionando sua expansão.
Por decorrência, os dados contradizem uma teoria alternativa, que propõe que seria a gravidade, e não a energia escura, a força que impulsionaria a expansão do Universo. De acordo com esta teoria alternativa, com a qual os novos resultados não são consistentes, o conceito de Albert Einstein da gravidade estaria errado, e gravidade tornar-se-ia repulsiva, ao invés de atrativa, quando atuando em grandes distâncias.
"Os resultados nos dizem que a energia escura é uma constante cosmológica, como Einstein propôs. Se a gravidade fosse a responsável, então não estaríamos vendo esses efeitos constantes da energia escura ao longo do tempo," explica Chris Blake, da Universidade de Tecnologia Swinburne, na Austrália, e líder da pesquisa.
Acredita-se que a energia escura domine o nosso Universo, perfazendo cerca de 74% dele. A matéria escura, uma substância não menos misteriosa, é responsável por 22%. A chamada matéria bariônica representa apenas cerca de 4% do cosmos.
A ideia da energia escura foi proposta durante a última década, com base em estudos de estrelas distantes que explodiram, conhecidas como supernovas.
As supernovas emitem uma luz constante e mensurável, o que as torna uma referência inigualável, que permite o cálculo de sua distância da Terra com grande precisão.
As observações revelaram que a energia escura estava fazendo aumentar a aceleração desses objetos celestes.
A teoria atual propõe que, no início do Universo, a gravidade assumiu a liderança, dominando a energia escura.
Cerca de 8 bilhões de anos após o Big Bang, com o espaço se ampliando e a matéria se diluindo, as atrações gravitacionais enfraqueceram e a energia escura prevaleceu.
Se isto estiver correto, daqui a bilhões de anos a energia escura será ainda mais dominante.
A previsão estabalece que o nosso Universo será um verdadeiro deserto cósmico, com as galáxias se distanciando tanto umas das outras que quaisquer seres que viverem dentro delas não serão capazes de ver outras galáxias.
Esta é a primeira vez que astrônomos fazem essa verificação cobrindo todo o período de vida do Universo desde que ele foi dominado pela energia escura.
A equipe começou montando o maior mapa tridimensional já feito das galáxias do Universo distante. Isto foi feito pelo Telescópio de ultravioleta GALEX, que mapeou cerca de três quartos do céu, observando centenas de milhões de galáxias.
O Telescópio Anglo-Australiano coletou informações detalhadas sobre a luz de cada galáxia, o que permitiu estudar o padrão de distância entre elas - ondas sônicas do Universo jovem deixaram marcas nos padrões de galáxias, fazendo com que pares de galáxias sejam separados por aproximadamente 500 milhões de anos-luz.
Essa "régua padrão" foi usada para determinar a distância entre os pares de galáxias e a Terra - quanto mais próximo um par de galáxia estiver de nós, mais distantes elas irão aparecer uma da outra no céu.
Tal como acontece com os estudos de supernovas, estes dados de distância foram combinados com informações sobre as velocidades nas quais os pares estão se afastando de nós, revelando que o tecido do espaço está se esticando cada vez mais rápido.
Fonte: Monthly Notices of the Royal Astronomical Society

quarta-feira, 18 de maio de 2011

A receita do Universo e seus ingredientes

Além de seis tripulantes, o ônibus espacial Endeavour decolou nesta segunda-feira levando ao espaço um experimento científico de dois bilhões de dólares, financiado por nada menos que 16 nações da Europa, da Ásia e da América do Norte - o Espectrômetro Magnético-Alfa (AMS, na sigla em inglês).
a evolução do Universo
© Science Photo Library (a evolução do Universo)
Trata-se de uma sonda de seis toneladas, que será acoplada à Estação Espacial Internacional (ISS) e fará medições de partículas que bombardeiam a Terra, também conhecidas como raios cósmicos. Essas partículas, originadas por diferentes fontes no Universo, deixam rastros únicos, que podem dizer aos cientistas do que o Universo é realmente feito.
Os especialistas ainda não sabem exatamente do que são feitos todos os componentes fundamentais do cosmo. Sabe-se, por exemplo, que o Universo possui três ingredientes principais. O primeiro deles é uma velha conhecida do homem: a matéria visível. São partículas que formam os tijolos fundamentais dos átomos, planetas e estrelas. Tão massivos são os corpos celestes e tão onipresentes são os átomos que seria natural assumir que a maior parte do Universo é composta por matéria visível, certo? Mas não. Apenas 5% dele é matéria visível. O restante é ocupado pelos outros dois ingredientes - a matéria escura e a energia escura. São manifestações exóticas da natureza e quase nada conhecidas pelo homem. A audaciosa tarefa do AMS será ajudar os cientistas a entender do que são feitos esses 95% do universo.
Para entender os outros dois ingredientes que formam o cosmo será preciso levar em consideração um fato inusitado. Quando os cientistas observam a forma com que estrelas e as galáxias se movem, há algo inusitado: apesar de a Física afirma que as estrelas, planetas e corpos de uma galáxia deveriam se movimentar mais lentamente à medida em que se afastam do centro dela, isso não acontece na prática, no caso das galáxias. No Sistema Solar, por exemplo, Mercúrio, que está próximo do Sol, movimenta-se em torno do astro com velocidade 60% mais rápida do que a da Terra. Marte segue mais lento que o nosso planeta e Júpiter ainda mais. E assim por diante, até Plutão e Eris, que praticamente se arrastam em volta do Sol.
As diferentes velocidades esperadas pelos físicos podem ser entendidas quando observamos um furacão, explica o físico Marcelo Gleiser, autor do livro Criação Imperfeita. Se medirmos a velocidade das moléculas próximas ao olho do fenômeno, elas se movem rapidamente. À medida em que se afastam do centro, as partículas perdem força e ficam mais lentas, até o furacão desaparecer completamente. “Assim deveria funcionar com as galáxias”, afirma Gleiser. Contudo, as observações cósmicas mostram que os corpos nas periferias das galáxias movimentam-se com velocidades comparáveis às daqueles que estão mais ao centro.
Matéria escura - Portanto, para que as equações da física façam sentido, é preciso que exista alguma força empurrando o amontoado de poeira, gás, estrelas e planetas da periferia das galáxias em velocidades semelhantes a de corpos que estão mais próximos do núcleo. Essa força adicional compensaria a previsão física de que quanto mais longe do centro de uma galáxia, mais lento é o movimento dos corpos. Essa força adicional é a gravidade de uma manifestação da natureza que possui massa, mas não emite qualquer tipo de luz - ou radiação - que o homem consiga medir diretamente.
Como não é possível enxergá-lo, os cientistas deram o nome de "matéria escura" a esse que seria o segundo ingrediente mais abundante no universo. Estima-se que 23% de tudo seja formado pela matéria escura. “Os pesquisadores têm certeza de que ela existe, pois ela exerce força sobre os corpos, influencia inclusive a luz”, esclarece Gleiser. Apesar de não detectá-la diretamente, é possível perceber os efeitos que a matéria escura causa no movimento das galáxias.
Energia escura - O mais abundante dos ingredientes do Universo, porém, é a ainda mais misteriosa, a energia escura. Gleiser explica que os modelos físicos provaram que o Universo está em expansão, de acordo com a teoria do Big Bang - a grande explosão primordial que deu início a tudo. “Só que, em 1998, descobriu-se que essa expansão estava acontecendo mais rapidamente do que as equações previam”, diz. Para que a conta fechasse, os cientistas calcularam o quanto de força seria preciso para provocar o excedente na velocidade de expansão das galáxias. A essa força deu-se o nome de energia escura - que corresponde a 72% do universo.
Saber que essas forças estranhas existem não é suficiente. “É necessário saber do que elas são feitas e como elas podem ajudar o homem a entender o Universo, melhorar os modelos físicos e desenvolver melhores tecnologias”, pondera Gleiser. É aí que entra o AMS, o caro experimento de dois bilhões de dólares.
A análise dos raios cósmicos que a sonda fará será inédita. Como a maioria das partículas dos raios cósmicos é repelida pela atmosfera, torna-se difícil o estudo deles a partir da superfície da Terra sem qualquer tipo de interferência. O AMS vai capturar partículas usando um poderosíssimo imã, o mais potente já colocado no espaço. Detectores ultraprecisos vão identificar essas partículas e medir a massa, carga e energia de cada uma delas. Como cada partícula deixa um rastro único, os cientistas esperam encontrar aquelas que explicam de alguma forma a natureza da matéria e energia escuras.
O investimento colossal em um único experimento científico mostra que a comunidade internacional está disposta a gastar muito dinheiro para responder questões fundamentais. O projeto ainda dá uma sobrevida à Estação Espacial Internacional, criticada por não ter uma serventia substancial no avanço da ciência além de experimentos em microgravidade. Os cientistas ainda terão muito que fazer até que o AMS esteja em pleno funcionamento. Será preciso instalá-lo no enorme complexo espacial que flutua a 400 quilômetros da superfície da Terra e depois realizar uma série de testes para comprovar seu funcionamento. Não tem problema. O Universo nos espera - desde sua criação, há bilhões de anos - e sempre vai esperar, pacientemente, para ser explorado.
O AMS também vai procurar pela antimatéria, uma manifestação da habitual matéria visível, mas com carga contrária. Por exemplo, um átomo de matéria é formado por prótons, que são cargas positivas, envolvido por elétrons, que são cargas negativas. Os átomos de antimatéria seriam formados por antiprótons, com cargas negativas, envolvidos por pósitrons, que são cargas positivas. Antipartículas já foram observadas pelo homem em laboratório, mas nunca no espaço.
Por possuir um poderosíssimo imã, o AMS vai aumentar o conhecimento sobre o comportamento de imãs no espaço. Isso quer dizer que, no futuro, poderemos construir escudos melhores para proteger astronautas dos raios cósmicos, um dos maiores impedimentos para as longas viagens no espaço, até Marte e além.
Fonte: Revista Veja

quarta-feira, 11 de maio de 2011

O carbono primordial que originou a vida

Praticamente todos os elementos químicos mais pesados do que o hélio exigem as condições extremas encontradas no interior das estrelas para se formarem.
galáxia M64
© Hubble (galáxia M64)
No caso do carbono - um elemento fundamental para a vida na Terra - é necessário que seu núcleo passe por um certo estado intermediário especial, para que ele possa se formar no interior das estrelas,
Esse estado - chamado estado de Hoyle - é uma forma do núcleo de carbono rica em energia, uma espécie de passo intermediário entre o núcleo de hélio e o núcleo de carbono, muito mais pesado.
O problema é que os cientistas vinham tentando calcular o estado de Hoyle há quase de 60 anos, sem sucesso.
Se o estado de Hoyle não existisse, as estrelas poderiam gerar apenas quantidades muito pequenas não apenas do carbono, mas também de outros elementos mais pesados, como oxigênio, nitrogênio e ferro.
Ou seja, sem esse passo intermediário, o Universo não seria mais do que uma massa gasosa ou gelatinosa, com muito poucos elementos pesados.
Sem esse tipo específico de núcleo de carbono, a vida como a conhecemos não teria sido possível - e, eventualmente, nem mesmo o Universo como o conhecemos.
Mas a vida e o Universo existem, com todos os elementos pesados - logo, a peça que faltava ao quebra-cabeças deveria estar em algum lugar.
O processo de formação do carbono no interior das estrelas é chamado processo triplo alfa: duas partículas alfa, que são núcleos de hélio, reagem para formar o berílio-8, que, por sua vez, reage com uma terceira partícula alfa para formar o carbono-12.
processo triplo alfa
© Wikipédia (processo triplo alfa)
Esse, contudo, não é o carbono-12 que conhecemos hoje, mas um estado especial de alta energia, ou estado de Hoyle.
O estado de Hoyle não é exatamente um átomo, mas um estado de ressonância, o que significa que ele não pode ser localizado espacialmente e tem uma meia vida finita, determinada pela energia que falta para o limite de emissão da partícula.
Apenas 1 em cada 2.500 estados de ressonância vão de fato decair e gerar um carbono-12 estável, como o conhecemos.
Fred Hoyle previu o estado de ressonância em 1954 e alguns anos depois experimentalistas comprovaram sua existência.
Mas, até agora, ninguém havia conseguido entender exatamente o estado de ressonância e descrevê-lo matematicamente.
"As tentativas de calcular o estado de Hoyle têm fracassado desde 1954. Mas agora, nós conseguimos," comemora o Dr. Ulf-G. Meibner, da Universidade de Bonn, na Alemanha.
Segundo os pesquisadores, esses cálculos vinham fracassando porque não se estava adotando uma precisão suficiente paras as forças atuando entre os diversos núcleos - é o que os cientistas chamam de cálculos de primeiros princípios, que partem das forças mais fundamentais da natureza para simular a evolução, neste caso, dos átomos de carbono.
Depois de uma semana ininterrupta de uso de um supercomputador, os cientistas obtiveram resultados que coincidem tão bem com os dados experimentais que eles acreditam ter de fato calculado o estado de Hoyle.
"Agora nós podemos analisar esta forma essencial do núcleo de carbono em cada detalhe," diz o Dr. Meibner. "Nós iremos determinar seu tamanho e sua estrutura. E isso também significa que agora poderemos analisar em detalhes toda a cadeia de formação dos elementos químicos."
Durante décadas, o estado de Hoyle foi o melhor exemplo para a teoria de que as constantes fundamentais da natureza devem ter precisamente os seus valores verificados experimentalmente, e não quaisquer outros, pois, caso contrário, não estaríamos aqui para observar o Universo - este é o chamado princípio antrópico.
"Para o estado de Hoyle, isso significa que ele deve ter exatamente a quantidade de energia que ele tem, ou então nós não existiríamos", afirma o Dr. Meibner. "Agora nós podemos calcular se, em um mundo diferente, com outros parâmetros, o estado de Hoyle teria de fato uma energia diferente quando comparado com a massa de três núcleos de hélio."
Se o estado de Hoyle foi de fato obtido, os cálculos validariam o princípio antrópico.
Fonte: Physical Review Letters

sábado, 30 de abril de 2011

Volta aos primórdios do Universo

No início da formação do Universo, estrelas de grande massa (pelo menos 10 vezes a massa do Sol) e vida curta eram as principais fábricas de elementos químicos que entravam na composição de novas estrelas.
 simulação da formação das primeiras estrelas
© U. Texas (simulação da formação das primeiras estrelas)
Além de grandes, esses corpos celestes também giravam depressa, propõe um estudo liderado pela astrônoma brasileira Cristina Chiappini, do Instituto Leibnitz para Astronomia de Potsdam, na Alemanha, publicado na revista Nature desta semana.
“A presença de alguns elementos em estrelas antigas só pode ser explicada se as estrelas massivas da época tivessem rotação rápida”, explica Cristina. A ideia brotou do trabalho de Beatriz Barbuy, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP), que em 2009 publicou um artigo na revista Astronomy & Astrophysics em que analisava 8 estrelas muito velhas – por volta de 12 bilhões de anos – no centro da nossa galáxia.
A astrônoma da USP examinou imagens captadas pelo Very Large Telescope (VLT), do Observatório Europeu do Sul (ESO), que registram os espectros de elementos na atmosfera dos corpos celestes. Beatriz notou uma abundância excessiva de bário e lantânio, elementos pesados que precisariam de um processo lento para se formarem. Só que essas estrelas nasceram no início da formação do Universo, quando ainda não tinha passado tempo suficiente para que esses elementos se formassem da forma tradicionalmente aceita.
Cristina logo percebeu a ligação com o trabalho do grupo do Observatório de Genebra, a que está associada, com modelos de alta rotação de estrelas. O movimento poderia explicar a presença desses metais porque funciona mesmo como uma batedeira, levando a processos de mistura dentro da estrela que permitem a captura lenta de nêutrons, produzindo os chamados elementos-s. Sem rotação, esses elementos seriam produzidos somente em estrelas de baixa massa, com tempos de vidas muito longos.
Cristina procurou então Beatriz, com quem tinha contato desde que fez doutorado na USP, e pediu que verificasse nos espectros a quantidade de outros metais, ítrio e estrôncio, nessas estrelas antigas. Voltando às imagens, viu valores perfeitamente compatíveis com o modelo da pesquisadora radicada na Europa: só estrelas de grande massa em rotação vigorosa poderiam gerar aqueles elementos nas quantidades necessárias para compor as anciãs ainda vivas hoje.
Não é a única explicação possível, mas é a mais plausível. A conclusão é ainda mais forte porque dois pesquisadores do grupo de Genebra, proponentes de outro modelo para explicar a evolução química da galáxia, também assinam o artigo da Nature. “O modelo deles explica a evolução de algumas estrelas nesse aglomerado, mas o nosso explica todas”, conta Cristina. A interpretação ainda é mais corroborada pelo trabalho de um grupo independente da Universidade do Texas, nos Estados Unidos, que com uma técnica completamente diferente demonstrou a rotação rápida das primeiras estrelas.
Para Beatriz, o trabalho quebra um paradigma aceito pela maior parte dos pesquisadores na área. “Há 30 anos, um autor falou que as estrelas velhas são compostas por elementos formados por um processo rápido, e mostramos que não é assim.” Um grande passo, mas as duas pesquisadoras brasileiras veem a publicação na Nature como uma chave que deve lhes abrir novas portas. Com a repercussão que o trabalho deve ter, elas esperam conseguir mais tempo de observação no VLT e no Hubble, telescópios disputados por pesquisadores do mundo todo e cujo uso é determinado por mérito.
“Precisamos melhorar os modelos”, completa Cristina, “mas incluir outros metais é um processo muito lento”. Não é para menos. Os elementos que as estrelas criam, e lançam no gás do Universo quando morrem, não só formam outras estrelas, mas também o Sol, a Terra e os corpos das pessoas. Não é uma busca modesta.
Fonte: FAPESP (Pesquisa)

segunda-feira, 11 de abril de 2011

O útero cósmico do Universo

O útero cósmico no qual o nosso Universo teria sido gestado era um buraco negro da categoria peso-pesado, cuja massa seria equivalente a 3.000 vezes a do nosso Sol.
ponte de Einstein-Rosen
© Universidade Indiana (ponte de Einstein-Rosen)
A ponte de Einstein-Rosen nunca foi observada na natureza, mas fornece informações aos físicos e cosmólogos teóricos através de soluções na relatividade geral da combinação dos modelos de buracos negros e buracos brancos.
É isso o que propõe o físico polonês Nikodem Poplawski, da Universidade de Indiana, nos Estados Unidos.
Em artigo publicado recentemente, ele apresentou o cálculo da massa necessária para que um buraco negro produza um Universo com as características do nosso.
O polonês reacendeu a discussão sobre a possibilidade de o Cosmos ter "nascido" dentro de um buraco negro.
Ele publicou uma sequência de artigos sobre o tema no "ArXiv" e na revista "Physics Letters B", uma das mais importantes sobre física nuclear e de partículas.
Essas publicações confrontam a teoria do Big Bang, que define que o Universo teria surgido a partir da expansão de uma grande concentração de massa e energia, comparada a uma explosão.
A questão é que, quando se considera que o Big Bang é o início de tudo, é preciso postular que a expansão do Universo teria começado a partir de um ponto incrivelmente pequeno, de densidade e energia infinitas.
Para os físicos, esses infinitos são suspeitos, porque fica impossível investigar o que acontecia no momento inicial da expansão cósmica.
Uma das formas de resolver o problema é propor que o Big Bang não foi o começo de tudo o que existe, mas uma perturbação no interior de um buraco negro em outro universo, conforme defendido pelo cientista polonês.
geração de universos
© Folha (arte da geração de universos)
Segundo Poplawski, todos os universos (já que haveria vários deles) estão dentro de buracos negros. E todos têm estrelas que, se altamente contraídas (quando seu combustível acaba), dariam origem a novos buracos negros, e a novos universos.
Os números da conta saíram de uma modificação da teoria da relatividade geral de Einstein, que Poplawski vem usando nos seus estudos com frequência.
Nesta teoria qualitativa, ele não é o único a especular sobre o que poderia ter havido antes do Big Bang, pois é possível que haja uma nucleossíntese antes do início de tudo.
A repercussão sobre a nova proposta do físico polonês ainda está começando a surtir efeito. Será que ela é consistente?
Fonte: Folha de São Paulo e Physics Letters B

terça-feira, 15 de março de 2011

Expansão do Universo é medida com 3,3% de precisão

Uma teoria alternativa à matéria escura foi descartada depois que astrônomos da NASA recalcularam a taxa de expansão do Universo com precisão sem precedentes usando o Telescópio Hubble da NASA.
galáxia M101
© Robert Gendler (galáxia M101)
As novas medições têm margem de erro de apenas 3,3%, enquanto as anteriores, efetuadas em 2009, eram de até 30%. O valor da taxa de expansão do Universo é de 73,8 km/s por megaparsec (3,26 milhões de anos-luz).
Há tempos os cientistas tentam explicar a expansão do Universo a taxas crescentes. Uma das teorias, a da matéria escura, explica que existe um tipo de matéria que não pode ser detectada, mas que tem efeito oposto ao da gravidade. Acredita-se que ela forme cerca de um quarto do Universo.
A hipótese concorrente, descartada após este último estudo, postulava que uma "bolha" enorme de espaço relativamente vazio de oito bilhões de anos-luz rodeia nossa vizinhança galáctica. Se vivêssemos perto do centro desse vácuo, observações de galáxias sendo empurradas para fora a velocidades crescentes seriam uma ilusão.
Adam Riess, que liderou o estudo, conseguiu descartar essa última hipótese usando as observações do Hubble para uma melhor caracterização do comportamento da matéria escura. Os dados ajudaram a determinar um número muito mais preciso para a taxa de expansão do Universo, o que ajudará os astrônomos a determinar questões como o formato do Universo.
"Estamos usando a nova câmera instalada no Hubble como um radar de trânsito para pegar o Universo ultrapassando a velocidade permitida. Parece que é a matéria escura que está apertando o acelerador", afirmou Riess em nota divulgada pela NASA.
Para a pesquisa, inicialmente a equipe teve que determinar com precisão as distâncias de galáxias próximas e distantes da Terra. Então, foi comparada essas distâncias com a velocidade a que as galáxias estão aparentemente diminuindo devido à expansão do Universo. Eles usaram esses dois valores para calcular a "constante de Hubble", número que relaciona a velocidade a que uma galáxia parece "diminuir" a sua distância da Via-Láctea.
Vale lembrar que os astrônomos não podem medir fisicamente a distância de uma galáxia até a Via-Láctea. Sendo assim, eles usam estrelas ou supernovas como pontos de referência confiáveis. Esses objetos têm um brilho intrínseco - seu brilho real, não diminuído pela distância, pela poeira ou pela atmosfera - e um brilho real, visto da Terra. Sua distância pode então ser medida de maneira confiável pela comparação desses dois brilhos.
Fonte: Astrophysical Journal

quarta-feira, 12 de janeiro de 2011

Registro de ondas cósmicas na Via Láctea

A ESA (agência espacial europeia) divulgou uma imagem feita pelo telescópio Planck Suveyor, que mostra a Via Láctea em ondas de radiação cósmica em micro-ondas.
distribuição estelar através da Via Láctea feita pelo Planck
© ESA (distribuição estelar na Via Láctea feita pelo Planck)
Um rastro de poeira é visível no sentido horizontal. Ao norte e ao sul da imagem, a variação de temperatura da radiação cósmica também pode ser observada.
Lançado em maio de 2009, o telescópio providenciou, desde então, um catálogo de imagens com aproximadamente 15 mil novos objetos celestiais, além de mais 30 aglomerados de galáxias.
O Planck, que está a 1,5 milhão de quilômetros da Terra, é essencialmente designado para captar até as menores variações de energia liberadas depois do Big Bang.
Ainda em andamento, o estudo sobre a radiação cósmica de fundo em micro-ondas (CMB), a radiação remanescente do Big Bang e uma de suas maiores evidências, deve ser publicado em 2013.
Uma das tarefas que o telescópio tem superado é remover uma "névoa" de emissões de micro-ondas, um brilho difuso que durante décadas tem distorcido a visão de regiões empoeiradas do espaço profundo.
Os dados coletados pelo Planck confirmam a teoria de que a "névoa" vem dos grãos em escala nanométrica espalhados ao rodopiar várias dezenas de bilhões de vezes por segundo, por colisão com átomos em grande movimento ou com raios de luz ultravioleta.
Os cientistas agora devem ser capazes de filtrar este sinal, podendo se concentrar nos vestígios genuínos de CMB nas ricas quantidades de dados do Planck.
"Estes novos resultados são peças vitais de um quebra-cabeça que pode nos dar um quadro completo da evolução do próprio quintal cósmico em que vivemos, a Via Láctea, bem como do início da história de todo o Universo", afirmou David Parker, diretor de ciência espacial da ESA.
A grande ferramenta do Planck é um telescópio de 1,5 metro de comprimento que concentra a radiação em dois conjuntos de detectores, que são refrigerados a quase zero absoluto. O telescópio já realizou sua missão de 15 meses, mas as suas operações já foram prorrogadas por dois anos.
Fonte: ESA

quarta-feira, 24 de novembro de 2010

Confirmada ação de força oposta à gravidade

O Universo é realmente dominado pela misteriosa "energia escura" que se opõe à gravidade, e deve continuar a se expandir para sempre. Essa é a conclusão tirada de uma série de observações de pares de galáxias realizada por cientistas franceses e publicada na edição desta semana da revista Nature.
par de galáxias NGC 5426 e NGC 5427
© ESO (ARP 271, o par de galáxias NGC 5426 e NGC 5427)
Embora o resultado indique que o Universo pode ter um futuro infinito, as perspectivas para os seres vivos não são tão boas: à medida que o espaço se expande, o conteúdo de matéria torna-se cada vez mais rarefeito, até que se torna impossível a formação de novas estrelas e planetas para substituir os astros que completam seus ciclos de existência.
"A expectativa da vida provavelmente é definida pelas estrelas mais longevas cujos sistemas planetários podem suportar vida. Talvez seja possível encontrar uma estrela de pequena massa que possa durar um trilhão de anos, mas ela seria muito fria, e o planeta teria de ficar muito próximo", diz o astrofísico Alan Heavens, da Universidade de Edimburgo.
A constatação de que o Universo se encontra em expansão acelerada surgiu no fim do século passado, depois que observações de supernovas distantes indicaram que elas estavam se afastando cada vez mais rápido, e não desacelerando, naquela época foi um resultado que surpreendente.
Até então, acreditava-se que a atração gravitacional da matéria do Universo estaria se contrapondo à expansão do espaço, iniciada com o Big Bang, há 13,7 bilhões de anos. Especulava-se que o efeito da gravidade poderia até mesmo reverter essa expansão, lançando o Universo num Big Bang ao contrário, o "Big Crunch", gerando o colapso do Universo.
Para explicar o resultado, os pesquisadores foram buscar a constante cosmológica, um termo introduzido por Albert Einstein na equação que apresentou em 1917 para explicar a relação entre a matéria do Universo e a geometria do espaço-tempo: na Relatividade Geral, a presença de matéria ou de energia deforma o espaço.
Einstein havia postulado a constante para se contrapor à gravidade e manter seu modelo do Universo estável, mas quando o fato de que as galáxias estavam se afastando umas das outras foi descoberto, ele renegou a ideia.
Atualmente, a realidade da constante de Einstein é uma das possíveis explicações para a energia escura, que corresponderia a cerca de 73% do conteúdo do Universo (outros 23% seriam compostos pela matéria escura que mantém as galáxias coesas e apenas 4% pela matéria ordinária que existe em estrelas, planetas e seres vivos).
A energia escura implica um componente da gravidade que é repulsivo e que, depois de algum tempo, pode superar a atração gravitacional comum entre os objetos. Isso leva as galáxias a acelerar para longe umas das outras na grande escala.
Os autores do trabalho, Christian Marinoni e Adeline Buzzi, do Centro de Física Teórica da Universidade de Provença, realizaram observações das posições relativas de pares de galáxias localizados a 7 bilhões de anos-luz da Terra.
Usando a relação de Einstein entre a geometria e o conteúdo do espaço, concluíram que as posições encontradas são mais consistentes com um universo "plano", isto é, em expansão permanente, e onde a energia escura corresponda a algo entre 60% e 80% do conteúdo do espaço.
Com isso, os franceses obtiveram uma confirmação independente da teoria da expansão acelerada e contínua do cosmo, embora não definitiva. Como a luz das galáxias estudadas levou 7 bilhões de anos para chegar à Terra, as configurações observadas podem não ser mais válidas.
A repulsão provocada pela energia escura não está afastando a Terra do Sol. A gravidade comum que mantém a Terra em órbita é muito mais forte, então a Terra ficará onde está. A galáxia também não está se desmanchando, porque a atração gravitacional das estrelas, gás e matéria escura é muito mais forte que a repulsão da energia escura.
Fonte: Nature

sexta-feira, 12 de novembro de 2010

Hubble cria mapa da matéria escura

Através do Telescópio Espacial Hubble foi criado um dos mapas mais nítidos e mais detalhados já feitos da matéria escura no Universo.
aglomerado de galáxias Abell 1689
© NASA (aglomerado de galáxias Abell 1689)
A matéria escura é representada na imagem pelas manchas claras. Ela é uma substância invisível e desconhecida, nunca detectada diretamente, que se acredita compor 22% da massa do Universo, enquanto a matéria comum, das estrelas e planetas, seres humanos inclusive, representa apenas 4%.
A equipe do Dr. Dan Coe, do Laboratório de Propulsão a Jato da NASA, direcionou uma das câmeras do Hubble para o gigantesco aglomerado de galáxias Abell 1689, situado a 2,2 bilhões de anos-luz de distância.
A gravidade do aglomerado é grande demais, não podendo ser explicada pela matéria comum, então deve ser gerada pela matéria escura. Essa enorme gravidade age como uma lente de aumento cósmica, dobrando e amplificando a luz de galáxias mais distantes, por trás do aglomerado. O efeito, chamado de lente gravitacional, produz imagens múltiplas, distorcidas, e grandemente ampliadas dessas galáxias.
Ao estudar as imagens distorcidas é possível calcular a quantidade de matéria que seria necessária para gerar a gravidade que provocou tais distorções. Deduzindo a massa das galáxias visíveis, é obtida a quantidade de matéria escura que deve existir no local.
Utilizando este método, o mapa de massa pode ser concebido diretamente a partir dos dados coletados.
Os astrônomos estão planejando agora estudar mais aglomerados de galáxias para confirmar a possível influência da energia escura.
Fonte: NASA

sábado, 6 de novembro de 2010

Descoberta mudança climática em escala cósmica

Uma equipe de astrônomos encontrou indícios de que o Universo pode ter passado por uma tendência de aquecimento no início de sua história.
aquecimento primordial do Universo
© Amanda Smith/IoA (aquecimento primordial do Universo)
O gráfico mostra a temperatura do meio intergaláctico quando o Universo tinha entre 1 e 3,5 bilhões de anos, sobreposta com uma impressão artística do surgimento das galáxias. A região sombreada mostra a faixa de possíveis temperaturas, medidas pela equipe.
A temperatura do gás que se encontra entre as galáxias foi mensurada e foi encontrada uma indicação plausível de que sua temperatura aumentou de forma constante durante o período entre um décimo e um quarto de sua idade atual.
Essa mudança climática cósmica foi provavelmente causada pela gigantesca quantidade de energia gerada pelas jovens galáxias, muito ativas durante essa época.
No início da história do Universo, a grande maioria da matéria não estava em estrelas ou galáxias, ao contrário, ela estava espalhada na forma de um gás muito fino que preenchia todo o espaço.
A temperatura desse gás foi medida utilizando a luz de objetos distantes, chamados quasares. O gás, que fica entre a Terra e o quasar, acrescenta uma série de marcas à luz desses objetos extremamente brilhantes. Analisando como essas impressões bloqueiam parcialmente a luz dos quasares podemos inferir muitas das propriedades do gás absorvente, tais como onde ele está, do que é feito e qual é a sua temperatura.
A luz do quasar que os astrônomos estudaram tem mais de dez bilhões de anos de idade no momento em que chega à Terra, tendo viajado através de vastas áreas do Universo. Cada nuvem de gás intergaláctica que a luz atravessou durante essa jornada deixou sua própria marca, e o efeito acumulado pode ser usado como um registro fóssil da temperatura no início do Universo. Portanto, a luz dos quasares contém um registro da história do clima do cosmos.
É claro que há grandes diferenças de magnitude nessas medições de temperatura. Um bilhão de anos após o Big Bang, o gás que medimos tinha uma temperatura bem “fria” de 8.000 graus Celsius. Três e meio bilhões de anos mais tarde a temperatura havia subido para pelo menos 12.000 graus Celsius.
A tendência de aquecimento contraria o “padrão normal” atribuído ao clima cósmico. Segundo as teorias atuais, o Universo deveria esfriar ao longo do tempo. À medida que o cosmos se expande, o gás deve ficar mais frio, como o gás que escapa de uma lata de aerossol.
Os prováveis culpados desse aquecimento intergaláctico são os próprios quasares. Durante o período da história cósmica estudada pela equipe, os quasares estavam se tornando muito mais comuns. Esses objetos, que se acredita serem buracos negros gigantes engolindo matéria no centro das galáxias, emitem enormes quantidades de luz ultravioleta de alta energia. Esses raios UV teriam interagido com o gás intergaláctico, criando o aumento da temperatura que observamos.
Fonte: Monthly Notices of the Royal Astronomical Society

sábado, 23 de outubro de 2010

Existe o lado negro do Universo?

Astrônomos da Universidade de Durham, no Reino Unido, afirmaram que todo o conhecimento atual sobre a composição do Universo pode estar errado.
WMAP - banda W
© NASA (imagem obtida pelo WMAP na banda W)
Os pesquisadores Utane Sawangwit e Tom Shanks estudaram os resultados das observações do telescópio espacial WMAP e afirmam que os erros em seus dados parecem ser muito maiores do que se acreditava anteriormente.
A sonda WMAP (Wilkinson Microwave Anisotropy Probe) foi lançada em 2001 para medir a radiação cósmica de fundo (CMB: Cosmic Microwave Background), o calor residual do Big Bang que preenche o Universo e aparece ao longo de todo o céu.
Há poucas semanas a sonda terminou o mapeamento do Universo primitivo, embora ainda sejam necessários meses para que esses dados sejam totalmente processados.
Acredita-se que a dimensão angular das ondulações verificadas na CMB esteja ligada à composição do Universo. As observações do WMAP mostram que as ondulações têm aproximadamente duas vezes o tamanho da Lua cheia, ou cerca de um grau de diâmetro.
Com estes resultados, os cientistas concluíram que o cosmos é composto de 4% de matéria "normal", 22% de matéria escura ou matéria invisível e 74% de energia escura.
O debate sobre a exata natureza desse "lado negro" do Universo, a matéria escura e a energia escura, continua intenso até hoje.
Sawangwit e Shanks usaram objetos astronômicos que aparecem como pontos não identificados nos radiotelescópios para testar a forma como o telescópio WMAP ameniza os dados para formar seus mapas.
Eles descobriram que essa suavização é muito maior do que se acreditava anteriormente, sugerindo que a medição do tamanho das ondulações da radiação de fundo residual não é tão rigorosa como se pensava.
Se for verdade, isso significaria que as ondulações são na verdade muito menores, o que poderia implicar que a matéria escura e a energia escura podem nem mesmo existir.
As observações da CMB representam uma ferramenta poderosa para a Cosmologia. Se os resultados se confirmarem, então será menos provável que partículas exóticas de energia escura e de matéria escura dominem o Universo.
Se a energia escura de fato existir, então, em última instância, ela faz com que a expansão do Universo se acelere.
Em sua jornada a partir da CMB até os sensores dos telescópios como o WMAP, os fótons (as partículas de mediadoras da radiação eletromagnética) viajam através de gigantescos superaglomerados de galáxias.
Normalmente, um fóton CMB sofre um decaimento para o azul quando ele entra no superaglomerado de galáxias. E, quando ele sai do superaglomerado, ele tende novamente para o vermelho. Desta forma, os dois efeitos se anulam durante a travessia completa.
No entanto, se os superaglomerados de galáxias estiverem se acelerando uns em relação aos outros por efeito da matéria escura, esse cancelamento não é exato, e os fótons ficam ligeiramente deslocados para o azul.
Com isto, a radiação de fundo deve mostrar temperaturas ligeiramente mais altas onde os fótons atravessaram superaglomerados de galáxias.
Entretanto, novos resultados obtidos com o Sloan Digital Sky Survey, que já pesquisou mais de um milhão de galáxias vermelhas, sugerem que esse efeito não existe, mais uma vez ameaçando o modelo padrão do Universo e ameaçando dispensar a matéria e a energia escuras. Esses dados do Sloan recentemente validaram a teoria da relatividade em escala cósmica.
Se o Universo realmente não tiver um "lado negro", na verdade isso poderá representar um alívio para muito físicos teóricos, que se sentem desconfortáveis com o fato de não se haver sido ainda detectado qualquer sinal das partículas exóticas que comporiam a matéria escura e a energia escura. Mas, conforme os próprios autores declaram, mais medições precisam ser feitas antes de qualquer declaração categórica a favor ou contra o modelo do Universo mais aceito atualmente.
O telescópio espacial Planck, da Agência Espacial Europeia, está coletando mais dados sobre a radiação cósmica de fundo e poderá ajudar a indicar se há ou não um lado escuro no Universo.
Fonte: Monthly Notices of the Royal Astronomical Society

quinta-feira, 21 de outubro de 2010

Astrônomos medem distância da galáxia mais remota no Universo

Uma equipe de astrônomos europeus utilizou o Very Large Telescope (VLT) do ESO (Observatório Europeu do Sul) com auxílio do espectrógrafo infravermelho SINFONI para medir a distância da galáxia mais distante conhecida até hoje.
galáxia mais distante
© NASA/ESA (galáxia UDFy-38135539, a mais distante do Universo)
Somente ao analisar cuidadosamente a fraca luminosidade da galáxia a equipe descobriu que estava na realidade vendo uma imagem da galáxia quando o Universo tinha apenas 600 milhões de anos, o que corresponde a um desvio para o vermelho de 8,6.
Estas são as primeiras observações confirmadas de uma galáxia cuja radiação está dissipando o denso nevoeiro de hidrogênio que enchia o Universo primordial.
Estudar estas galáxias primordiais é extremamente difícil. Embora originalmente brilhante, a sua luz já está muito tênue quando chega à Terra. Além disso, esta radiação fraca chega até nós na região infravermelha do espectro eletromagnético porque o seu comprimento de onda foi esticado devido à expansão do Universo, um efeito conhecido como desvio para o vermelho.
Para tornar as coisas ainda difíceis, nos primeiros tempos do Universo, menos de um bilhão de anos depois do Big Bang, o Universo não era completamente transparente, encontrando-se preenchido com um nevoeiro de hidrogênio, que absorvia a intensa radiação ultravioleta emitida pelas galáxias jovens.
Esse período em que o nevoeiro ainda estava sendo dissipado pela radiação ultravioleta é conhecido como a Era da Reionização.
Quando o Universo esfriou depois do Big Bang, há cerca de 13,7 bilhões de anos, os elétrons e os prótons combinaram-se para formar hidrogênio gasoso. Este gás escuro e frio era o constituinte principal do Universo durante a chamada Idade das Trevas, quando não existiam ainda objetos luminosos.
Esta fase terminou quando as primeiras estrelas se formaram e a sua intensa radiação ultravioleta foi lentamente tornando transparente este nevoeiro de hidrogênio, ao separar outra vez os átomos de hidrogênio em elétrons e prótons, um processo conhecido por reionização. Esta época do Universo primordial durou desde os 150 até os 800 milhões de anos depois do Big Bang.
Compreender como é que se processou a reionização e como se formaram e evoluíram as primeiras galáxias é um dos maiores desafios da cosmologia moderna.
Apesar destes desafios, a nova câmara de grande campo do Telescópio Espacial Hubble descobriu, em 2009, vários objetos candidatos a galáxias brilhando na Era da Reionização.
Confirmar as distâncias de objetos tão distantes e tênues é um enorme desafio e apenas pode ser conseguido com o uso de espectroscopia feita por telescópios terrestres muito grandes, que medem o desvio para o vermelho da radiação da galáxia.
A galáxia candidata UDFy-38135539 foi obervada durante 16 horas. Depois de dois meses de análise detalhada dos dados e testes dos resultados, a equipe descobriu que tinha efetivamente detectado o brilho muito fraco emitido pelo hidrogênio com um desvio para o vermelho de 8,6, o que torna esta galáxia o objeto mais distante já confirmado por espectroscopia.
Um desvio para o vermelho de 8,6 corresponde a uma galáxia vista apenas 600 milhões de anos depois do Big Bang. Há alguns anos, astrônomos anunciaram ter descoberto um objeto com um desvio para o vermelho de 10, mas o achado não foi confirmado por observações posteriores e hoje não é mais aceito pela comunidade científica.
Um dos fatos surpreendentes com relação a esta descoberta é que o brilho da UDFy-38135539 parece não ser suficientemente forte por si só para dissipar o nevoeiro de hidrogênio.
Devem existir outras galáxias, provavelmente menos brilhantes e de menor massa, companheiras da UDFy-38135539, que também ajudam a tornar o espaço entre as galáxias transparente. Sem esta ajuda adicional, a radiação da galáxia, por mais brilhante que fosse, ficaria presa no nevoeiro de hidrogênio circundante e não poderia ser observada.
Estudar a Era da Reionização e da formação de galáxias é levar ao extremo as capacidades dos atuais telescópios e instrumentos, mas será apenas ciência de rotina quando o European Extremely Large Telescope do ESO, que será o maior telescópio do mundo a trabalhar nas faixas do visível e do infravermelho próximo, estiver operacional.
Fonte: Nature

quarta-feira, 6 de outubro de 2010

Nasa encerra operação de satélite que mediu a idade do Universo

A Nasa anunciou que está encerrando as atividades do satélite Wilkinson Microwave Anisotropy Probe, ou WMAP, que realizou um mapeamento do radiação cósmica de fundo de micro-ondas, muitas vezes descrito como o brilho do Big Bang, e que permitiu a obtenção da mais precisa estimativa da idade do Universo: 13,75 bilhões de anos, com margem de erro de 1%.
mapa celeste obtido pela sonda WMAP
© NASA (mapa celeste obtido pela sonda WMAP)
O WMAP opera desde 2001 e os cientistas ainda estão ocupados analisando os dados levantados nesse período. O satélite foi criado para oferecer a visão mais detalhada possível das diferenças de temperatura da radiação cósmica de fundo de micro-ondas, que havia sido descoberto na década de 90 por outro satélite, o Cobe.
O WMAP fez sua última leitura de dados em 20 de agosto e, em 8 de setembro, disparou os foguetes que o tiraram de sua órbita de trabalho e o colocaram numa órbita estacionária, ao redor do Sol.
O satélite detecta os vestígios da luz do Universo primordial, um padrão congelado no espaço quando o cosmo tinha apenas 380.000 anos. À medida que o Universo se expandia ao longo dos 13 bilhões de anos seguintes, essa luz vestigial foi esticada até atingir o comprimento de micro-ondas.
O WMAP mostrou que os átomos do tipo que compõe a matéria comum encontrada em planetas e estrelas correspondem a apenas 4,6% do Universo atual, e que a maior parte do cosmo é feita de duas entidades ainda incompreendidas.
A matéria escura, que perfaz 23% do Universo, é um material que ainda não foi detectado em laboratórios, embora seus efeitos sejam notados em escala cósmica. A energia escura é uma entidade que atua de forma oposta à gravidade e pode ser uma propriedade do espaço vazio. O WMAP confirmou sua existência e determinou que preenche 72% do cosmo.
Fonte: NASA

quarta-feira, 25 de agosto de 2010

Colisões de galáxias criaram primeiros buracos negros do Universo

Astrônomos acreditam ter descoberto a origem dos primeiros buracos negros supermassivos do Universo, que se formaram há cerca de 13 bilhões de anos. A descoberta, realizada por meio de simulações de computador pode vir a preencher uma lacuna da história primordial do Universo.
tempo de evolução do disco de gás nuclear
© Nature (tempo de evolução do disco de gás nuclear)
A imagem acime mostra o tempo de evolução do disco de gás nuclear.
A equipe do astrônomo Stelios Kazantzidis, da Universidade Estadual de Ohio, simulou condições que poderiam ter produzido buracos negros gigantes apenas 1 bilhão de anos após o Big Bang. Esse período é consistente com as observações das primeiras grandes galáxias conhecidas.
Durante décadas, cientistas acreditaram que as galáxias haviam evoluído hierarquicamente, isto é, com pequenos aglomerados de matéria crescendo gradualmente até atingir proporções galácticas.
A seguir um gráfico mostra a evolução da distribuição de massa da região do núcleo.
evolução da distribuição de massa da região do núcleo
© Nature (evolução da distribuição de massa da região do núcleo)
A simulação de Kazantzidis indica que o processo foi muito mais abrupto. "Junto com resultados anteriores, nosso trabalho mostra que grandes estruturas, tanto galáxias quanto buracos negros, cresceram rapidamente. Isso contraria a formação hierárquica", disse o pesquisador.
O aparente paradoxo se resolve com a percepção de que a matéria escura, um conjunto misterioso de partículas que não interage com a luz e que responderia pela maior parte da atração gravitacional no Universo, cresce de modo hierárquico, mas a matéria comum, não.
"A matéria normal que compõe as galáxias visíveis e os buracos negros supermassivos entra em colapso de modo mais eficiente, dando origem à formação anti-hierárquica".
Os cientistas iniciaram as simulações com duas galáxias primordiais gigantes, feitas de estrelas do tipo que existia no início do Universo. Os astrônomos acreditam que, naquela época, todas as estrelas tinham muito mais massa que as atuais: até 300 vezes a massa do Sol.
Em seguida, foram simuladas fusões e colisões galácticas, com o uso de supercomputadores. Os pesquisadores foram capazes de obter uma resolução de menos de 1 ano-luz, mostrando o que ocorre no núcleo das galáxias durante a fusão.
Duas coisas aconteceram: primeiro, gás e poeira no centro das galáxias se condensa, formando um disco denso. Em seguida o disco torna-se instável, o gás e a poeira contraem-se novamente, dando origem a um disco ainda mais denso, que por fim origina um buraco negro gigante.
Segundo Kazantzidis, esse resultado indica que a ideia de que as galáxias e seus buracos negros centrais crescem juntos pode estar errada: na simulação, o buraco negro cresce muito mais depressa e acaba dominando a galáxia. "Pode ser que a galáxia seja controlada pelo crescimento do buraco negro", disse.
Fonte: Nature

sexta-feira, 20 de agosto de 2010

Hubble é usado para estudar a energia escura

Pela primeira vez, cientistas utilizando o Telescópio Espacial Hubble conseguiram tirar vantagem de uma lente de aumento espacial, um enorme aglomerado de galáxias cuja gravidade concentra a luz emitida por corpos mais afastados, para obter informações sobre a natureza da misteriosa energia escura que está acelerando a expansão do Universo.
lente gravitacional de Abell 1689
© NASA/ESA (lente gravitacional de Abell 1689)
Os cálculos feitos a partir dos dados do Hubble, juntamente informações obtidas por outros meios, aumentou de forma significativa a precisão das medições da energia escura, diz nota divulgada pelos responsáveis pelo telescópio espacial.
Cientistas não sabem o que a energia escura é, mas sabem que ela é o principal componente do Universo, cerca de 72%. A matéria escura, perfaz 24% e também é misteriosa, mas mais fácil de estudar, porque influencia gravitacionalmente a matéria comum, que responde por apenas 4%.
No novo estudo, a equipe de cientistas usou imagens do Hubble para analisar um grande aglomerado de galáxias, Abell 1689. A gravidade do aglomerado faz com que galáxias localizadas no pano de fundo apareçam em imagens múltiplas e distorcidas.
Usando essas imagens distorcidas, cientistas foram capazes de determinar como a luz das galáxias do pano de fundo foi distorcida pelo aglomerado, uma característica que depende das propriedades da energia escura. O método também depende de medições, feitas aqui na Terra, da distância que nos separa dessas galáxias e da velocidade com que elas se afastam de nós.
Fonte: Science

terça-feira, 3 de agosto de 2010

Ondas gravitacionais primordiais do Universo

As ondulações no tecido do espaço-tempo poderão algum dia fornecer provas observáveis das atividades dos instantes iniciais do Universo, revelando processos de alta energia atualmente inacessíveis até mesmo para os colisores de partículas.
antena espacial de interferômetro a laser
© NASA (antena espacial de interferômetro a laser)
As chamadas ondas gravitacionais estão previstas na teoria geral da relatividade de Albert Einstein, onde objetos em movimento perturbam o espaço-tempo, gerando ondas semelhantes às de um barco navegando em um lago. Mas elas tendem a ser sutis e apenas os peso-pesados celestes produziriam efeitos detectáveis. Até hoje se encontraram somente evidências indiretas das ondas gravitacionais, apesar da construção de detectores extremamente sensíveis destinados a investigar provas mais diretas na forma de ondas que emanam de cataclismos próximos, como a colisão de duas estrelas de nêutron ultradensas.
Uma resenha publicada na revista Science apresenta as perspectivas de detecção de mais ondas gravitacionais primordiais, aquelas produzidas no Universo inicial e que talvez ainda possam ser detectadas pela marca que deixaram há bilhões de anos ou pelas ondulações que persistem até hoje.
Tais ondas primordiais poderiam constituir o melhor meio de se testar modelos cosmológicos como o da inflação, que sustenta que o Universo recém-nascido inflou de um minúsculo ponto para algo cerca de 1026 vezes maior em apenas um átimo de segundo. "É difícil imaginar um mecanismo que nos abra uma janela direta para um tempo próximo ao instante da criação", diz Lawrence Krauss, físico teórico da Universidade do Estado do Arizona e co-autor do estudo.
O primeiro lugar para se procurar a marca das ondas gravitacionais é no Fundo Cósmico de Microondas (CMB, na sigla em inglês), radiação remanescente de apenas 380 mil anos após o Big Bang e cujas flutuações de temperatura mapeiam regiões de maior e menor densidade do Universo jovem, fornecendo pistas importantes sobre sua formação e suas estruturas componentes. A mensuração dessas flutuações, iniciada pela Nasa por meio da Sonda Anisotrópica de Microondas Wilkinson (WMPA, na sigla em inglês), foi aprimorada em 2009 com o lançamento do satélite Planck pela Agência Espacial Europeia.
Os mapas do CMB feitos pelo WMPA deram impulso à teoria da inflação cósmica, confirmando amplamente as predições do modelo inflacionário sobre a aparência do Universo inicial, e medições mais precisas poderão trazer novas confirmações. "Os mesmos eventos que acreditamos terem formado os hot spots do fundo cósmico de microondas podem ter produzido ondas gravitacionais, cuja magnitude podemos estimar. A próxima geração de satélites talvez nos permita ao menos observar seus efeitos", diz Krauss.
Richard Easther, cosmólogo da Yale University, observa que as medições do CMB já estão fornecendo pistas, embora não completas, sobre a alvorada do Universo. "Na verdade, alguns cenários inflacionários já foram descartados porque produziriam mais ondas gravitacionais do que as mensurações atuais permitem, principalmente as da missão WMAP", diz. O Planck e outros experimentos agora estão trabalhando para superar limites ainda mais estritos. "Se a natureza nos ajudar, poderemos ter a primeira evidência das ondas gravitacionais inflacionárias já nos próximos anos", diz Easther. Mas se o Planck e seus contemporâneos não obtiverem essas provas, uma missão mais especializada de mensuração da polarização poderá ser necessária.
Fonte: Scientific American Brasil

sexta-feira, 23 de julho de 2010

A maior molécula existente no espaço

O Telescópio Espacial Spitzer, da NASA, descobriu no espaço, pela primeira vez, moléculas de carbono  chamadas de fulerenos, conhecidas como buckyballs, que consistem de 60 (C60) ou 70 (C70) átomos de carbono dispostos em estruturas esféricas tridimensionais, alternando hexágonos e pentágonos, que foram observadas pela primeira vez em laboratório há apenas 25 anos.
fulerenos
© NASA (desenho de moléculas de fulerenos)
Elas devem seu nome à semelhança com as cúpulas geodésicas do arquiteto Buckminster Fuller, que têm círculos interligados na superfície de uma meia-esfera. Os cientistas já acreditavam que elas poderiam existir flutuando no espaço, mas ninguém havia conseguido detectá-las até agora. As bolas de carbono foram localizadas em uma nebulosa planetária chamada Tc 1. Elas foram encontradas nessas nuvens, talvez refletindo uma fase curta da vida da estrela, quando ela arremessa para o espaço uma nuvem de material rico em carbono.
“Nós encontramos aquelas que são agora as maiores moléculas existentes no espaço. Estamos particularmente entusiasmados porque elas têm propriedades únicas que as torna elementos importantes para todos os tipos de processos físicos e químicos acontecendo no espaço”, disse o astrônomo Jan Cami, da Universidade de Western Ontario, no Canadá.
modos de vibração dos fulerenos
© NASA/Spitzer (espectro dos fulerenos)
Estas moléculas estão aproximadamente a temperatura ambiente, a temperatura ideal para emitir os distintos padrões de luz infravermelha que o Spitzer consegue detectar. Segundo Cami, o Spitzer olhou para o lugar certo na hora certa. Um século mais tarde, e as buckyballs poderiam estar frias demais para serem detectadas.
As buckyballs vibram em uma grande variedade de modos, são 174 maneiras diferentes de oscilar, para ser mais exato. Quatro desses modos de vibração fazem as moléculas absorver ou emitir luz infravermelha. Todos os quatro modos foram detectados pelo Spitzer.
Os astrônomos estudaram os dados, um espectro como o mostrado na figura, para identificar as assinaturas, espécies de impressões digitais das moléculas. Os quatro modos de vibração das buckyballs estão indicados pelas setas vermelhas. Da mesma forma, o Spitzer identificou os quatro modos de vibração das moléculas C70, indicados pelas setas azuis.
O professor Harold W. Kroto da Universidade Estadual da Flórida e Nobel de Química em 1996 pela descoberta dos fulerenos comemorou o fato, e disse: "Esse avanço entusiasmante fornece provas convincentes de que os fulerenos, como sempre suspeitei, existiram desde tempos imemoriais nos recantos escuros da nossa galáxia.
Fonte: Science e NASA

segunda-feira, 5 de julho de 2010

Telescópio Planck revela radiação cósmica

Pesquisadores trabalhando com o telescópio europeu Planck, o maior experimento de cosmologia em quase uma década, divulgaram seu primeiro mapa celeste completo da radiação cósmica de fundo, a "luz mais antiga" do Universo.
radiação cósmica de fundo
© ESA/Planck (radiação cósmica de fundo)
O telescópio de 600 milhões de euros, que capta radiação com frequências abaixo do infravermelho (não visível), foi lançado no ano passado e levou seis meses para montar o primeiro mapa.
A imagem mostra a Via Láctea como uma linha brilhante atravessando horizontalmente todo o centro do mapa. Acima e abaixo dessa linha, podem ser vistas grandes quantidades de pontos amarelos. Esses pontos, tanto na Via Láctea, quanto acima e abaixo dela, representam gás e poeira cósmicas. Não são estrelas, pois o telescópio não registra luz visível.
Grande parte dessa radiação, acreditam os cientistas, originou-se 380 mil após o "Big Bang", quando a matéria havia se resfriado o suficiente para que a formação de átomos fosse possível.
Antes disso, o cosmos seria tão quente que matéria e radiação estariam acopladas, e o Universo seria opaco.
Um dos principais objetivos do projeto é encontrar evidências para a "inflação", uma do incipiente Universo a velocidades acima da velocidade da luz.
Segundo a teoria, se essa "inflação" ocorreu, ela deveria estar registrada na radiação cósmica de fundo e seria passível de detecção.
O telescópio Planck é uma das principais missões da ESA (agência espacial europeia). Lançado em 2009, encontra-se a mais de um milhão de quilômetros da Terra.
Ele carrega dois instrumentos para registrar o céu em nove bandas de frequência. O instrumento de alta frequência opera entre 100 e 857 GHz; o instrumento de baixa frequência opera entre 30 e 70 GHz.
Até 2012, o aparelho terá construído quatro mapas do Universo.
Fonte: ESA e New Scientist