Mostrando postagens com marcador Telescópios. Mostrar todas as postagens
Mostrando postagens com marcador Telescópios. Mostrar todas as postagens

quarta-feira, 2 de agosto de 2017

Primeira luz para infraestrutura de óptica adaptativa de vanguarda

O telescópio principal 4 (Yepun) do Very Large Telescope (VLT) do ESO acaba de ser transformado num telescópio completamente adaptativo.

IC 4406

© ESO (IC 4406)

Após mais de uma década de planejamento, construção e testes, a nova Infraestrutura de Óptica Adaptativa (sigla do inglês, AOF) viu sua primeira luz com o instrumento MUSE (Multi Unit Spectroscopic Explorer), tendo captado imagens extraordinariamente nítidas de nebulosas planetárias e galáxias. A junção da infraestrutura com o MUSE constitui um dos sistema tecnológicos mais avançados e poderosos construídos até hoje para a astronomia terrestre. O MUSE é um espectrógrafo de campo integral, um instrumento poderoso que produz um conjunto de dados tridimensionais do objeto pretendido, onde cada pixel da imagem corresponde a um espectro da radiação emitida pelo objeto. Isto significa que o instrumento cria milhares de imagens ao mesmo tempo, cada uma a um comprimento de onda diferente, obtendo assim uma enorme quantidade e variedade de informação.

A óptica adaptativa trabalha para compensar os efeitos de distorção da atmosfera terrestre, permitindo assim ao MUSE obter imagens muito mais nítidas e com um contraste duas vezes melhor do que anteriormente. O MUSE pode agora estudar objetos do Universo ainda mais fracos.

Na sequência de uma quantidade de testes feitos no sistema, a equipe de astrônomos e engenheiros viu o seu trabalho recompensado com uma série de belas imagens. Os astrônomos conseguiram observar as nebulosas planetárias IC 4406, situada na constelação do Lobo, e NGC 6369, situada na constelação do Serpentário (ou Ofiúco). As observações do MUSE obtidas com a AOF mostraram enormes melhorias na nitidez das imagens, revelando estruturas em concha nunca antes observadas em IC 4406.

NGC 6369

© ESO (NGC 6369)

A AOF, que tornou possíveis estas observações, é composta por muitas partes que trabalham em conjunto, incluindo a Infraestrutura de Quatro Estrelas Guia Laser (4LGSF) e o espelho secundário deformável muito fino do telescópio principal 4. A 4LGSF lança raios laser de 22 watts para o céu, fazendo brilhar os átomos de sódio que existem na atmosfera superior e produzindo pontos de luz no céu que imitam estrelas. Sensores no módulo de óptica adaptativa GALACSI (Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging) usam estas estrelas artificiais para determinar as condições da atmosfera.

O sistema AOF calcula mil vezes por segundo as correções que devem ser aplicadas para alterar a forma do espelho secundário deformável do telescópio, de modo a compensar os distúrbios atmosféricos. Em particular, o GALACSI corrige a turbulência existente na camada atmosférica que se estende até um quilômetro acima do telescópio. A turbulência atmosférica varia com a altitude, dependendo das condições, no entanto estudos mostram que a maioria dos distúrbios atmosféricos ocorrem nesta primeira camada da atmosfera. O que o sistema AOF faz é essencialmente equivalente a elevarmos o VLT 900 metros no ar, suprimindo a camada mais turbulenta da atmosfera.

As correções rápidas e contínuas aplicadas pela AOF melhoram a qualidade da imagem ao concentrarem a luz, que forma imagens mais nítidas e permite ao MUSE resolver detalhes mais minuciosos e detectar estrelas mais fracas do que anteriormente possível. Atualmente, o GALACSI corrige um grande campo de visão, mas este é apenas o primeiro passo para levar a óptica adaptativa ao MUSE. Está sendo preparado um segundo modo do GALACSI, com a primeira luz prevista para o início de 2018. Este modo de campo estreito corrigirá a turbulência a qualquer altitude, permitindo observar campos menores com ainda mais resolução.

Um dos objetivos científicos principais do sistema é observar objetos tênues no Universo longínquo com a melhor qualidade de imagem possível, o que requer tempos de exposição de muitas horas. Os astrônomos estão interessados em observar as galáxias menores e mais fracas que se encontram às maiores distâncias. Tratam-se de galáxias em formação que são cruciais para a compreensão da formação galáctica.

O MUSE não será o único instrumento a se beneficiar da AOF. Num futuro próximo, outro sistema de óptica adaptativa chamado GRAAL ficará disponível com o instrumento infravermelho HAWK-I, tornando mais nítida a sua visão do Universo. E em seguida virá um novo instrumento muito poderoso, ERIS. O desenvolvimento destes sistemas de óptica adaptativa poderão ser utilizados no Extremely Large Telescope (ELT) do ESO.

Fonte: ESO

domingo, 7 de maio de 2017

Construção do Telescópio Gigante Magalhães

Um vídeo sobre o Telescópio Gigante Magalhães (GMT), produzido pela Agência FAPESP, será exibido em breve em observatórios, planetários e associações de astrônomos amadores em todo o Brasil.

  maquete do GMT

  © GMTO (maquete do GMT)

O GMT será o primeiro de uma classe conhecida como “telescópios extremamente grandes”. Com um conjunto de sete espelhos de 8 metros e 40 centímetros cada um, os sete espelhos do GMT correspondem a um único espelho de 25 metros de diâmetro e serão capazes de explorar o cosmos com definição e sensibilidade sem precedentes.

Com um poder coletor 100 vezes maior que o Hubble e com imagens 10 vezes mais nítidas do que as obtidas por esse satélite astronômico, o GMT vai mirar no espaço longínquo para explorar o passado do Universo. Ele será tão potente que poderá chegar perto do Big Bang, quando as primeiras estrelas, galáxias e buracos negros estavam se formando.

O vídeo mostra os desafios da construção do GMT no deserto do Atacama junto ao Observatório Las Campanas, no Chile. Construir um telescópio como o GMT é um empreendimento monumental. Com um custo estimado em US$ 1 bilhão, o projeto é composto por um consórcio internacional e envolve diversos países: Austrália, Coreia do Sul, Chile, Brasil e universidades dos Estados Unidos.

O Brasil é representado pela FAPESP. Com um investimento de US$ 40 milhões, o que equivale a 4% do investimento total do projeto, a FAPESP garantirá aos pesquisadores do Estado de São Paulo 4% do tempo de operação do GMT.

Isso será muito importante para o desenvolvimento da pesquisa em Astronomia no Brasil, como destaca no vídeo João Steiner, professor no Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP) e coordenador geral do projeto GMT – FAPESP.

“O GMT tem uma série de ambições científicas que justificam o investimento e o esforço com que ele está sendo construído. Queremos descobrir, por exemplo, planetas habitáveis e caracterizá-los da melhor forma possível, isto é, descobrir se eles têm água, se eles têm oxigênio em estado livre que são essenciais para que a vida possa se reproduzir. Queremos também descobrir o que ocorreu entre o Big Bang e o Universo,” disse Steiner.

Outro professor do IAG-USP, Augusto Damineli, coordenador de educação e divulgação do projeto GMT – FAPESP, explica no vídeo como os telescópios do tipo produzem suas imagens. “A partir de Newton, os telescópios passaram a usar espelhos côncavos em vez de lentes,” disse Damineli.

Claudia de Oliveira, coordenadora de instrumentação do projeto GMT – FAPESP e também professora do IAG-USP, detalha o funcionamento dos instrumentos que comporão o telescópio, como os espectrógrafos. Esses instrumentos servirão, por exemplo, para o estudo de planetas fora do Sistema Solar.

Octavio Paschoal, gerente do projeto GMT – FAPESP destaca a possível participação de empresas brasileiras na construção de componentes do telescópio. “Olhando o projeto do GMT, percebemos que apenas a estrutura que suporta o telescópio representa cerca de mil toneladas de aço, o invólucro do telescópio são mais 4 mil toneladas de aço, e aqui eu só estou falando em aço, fora os outros materiais que compõem e que irão conter na construção desse telescópio gigante. Este é o papel do GMT – FAPESP, que é atrair a indústria do Estado de São Paulo, para oferecer partes desses sistemas, e componentes para o telescópio GMT,” comenta Paschoal.

Acesse o vídeo: Telescópio Gigante Magalhães.

Fonte: Instituto de Astronomia, Geofísica e Ciências Atmosféricas

segunda-feira, 24 de abril de 2017

As galáxias NGC 4302 e NGC 4298 no aniversário do Hubble

A galáxia espiral NGC 4302, vista de perfil (à esquerda), encontra-se a cerca de 55 milhões de anos-luz de distância na consagrada constelação Coma Berenices.

NGC 4302 e NGC 4298

© STScI/Hubble/M. Mutchler (NGC 4302 e NGC 4298)

Um membro do grande aglomerado de galáxias de Virgem, que se estende por cerca de 87.000 anos-luz, um pouco menor do que a Via Láctea. Como a Via Láctea, notam-se as raias de poeira proeminentes da NGC 4302 cortadas ao longo do centro do plano galáctico, obscurecendo e avermelhando a luz das estrelas de nossa perspectiva. A galáxia menor e companheira, a NGC 4298, é igualmente uma espiral empoeirada. Ela está mais inclinada e quase de frente para a nossa visão, NGC 4298 mostrando faixas de poeira ao longo dos braços espirais traçados pela luz azulada de estrelas jovens, bem como seu núcleo amarelado brilhante.

Em comemoração ao 27º aniversário do lançamento do telescópio espacial Hubble, em 24 de abril de 1990, os astrônomos usaram o lendário telescópio para captar este lindo retrato de luz visível do par de galáxias contrastantes.

Fonte: NASA

segunda-feira, 27 de março de 2017

Lá em cima

Nesta imagem o Very Large Telescope (VLT) do ESO parece um telescópio muito pequeno!

a Via Láctea e o Very Large Telescope

© ESO/B. Tafreshi (a Via Láctea e o Very Large Telescope)

Visto desta perspectiva, torna-se difícil distinguir as silhuetas dos quatro Telescópios Principais de 8,2 metros do VLT, que estão colocados no alto do Cerro Paranal, no deserto chileno do Atacama.

A localização do VLT foi escolhida de modo extremamente cuidadoso. É vital que o local seja tão seco quanto possível, uma vez que o vapor d'água absorve a radiação infravermelha e degrada as observações. De modo a reduzir o máximo possível os efeitos da atmosfera terrestre, o VLT situa-se 2600 metros acima do nível do mar, minimizando assim a quantidade de atmosfera até as estrelas.

Devido a esta localização remota, o Paranal é um lugar praticamente imperturbado e livre de poluição luminosa. Até as estradas serpenteantes que conduzem ao local através do deserto do Atacama estão fracamente iluminadas de modo a evitar luz desnecessária.

Nesta imagem, uma trilha de estrelas corta o céu noturno, tal como fumaça subindo através de uma chaminé celeste. Trata-se da nossa casa galática, a Via Láctea. Em direção ao topo da imagem vemos uma seção mais brilhante e larga, que corresponde ao bojo galáctico repleto de estrelas e que se situa no coração da Via Láctea.

Fonte: ESO

segunda-feira, 9 de janeiro de 2017

O Very Large Telescope vai procurar planetas no sistema Alfa Centauri

O ESO, representado pelo Diretor Geral Tim de Zeeuw, assinou um acordo com a Breakthrough Initiatives, representada por Pete Worden, Presidente da Breakthrough Prize Foundation e Diretor Executivo da Breakthrough Initiatives.

o Very Large Telescope e o sistema estelar Alfa Centauri

© ESO/Y. Beletsky (o Very Large Telescope e o sistema estelar Alfa Centauri)

O acordo atribui fundos para que o instrumento VISIR (VLT Imager and Spectrometer for mid-Infrared), montado no Very Large Telescope do ESO (VLT), possa ser modificado de modo a aumentar significativamente a sua capacidade de procurar potenciais planetas habitáveis em torno de Alfa Centauri, o sistema estelar mais próximo da Terra. O acordo atribui também tempo de telescópio suficiente para permitir a execução de um programa de busca dedicada em 2019.

A descoberta em 2016 de um planeta, Proxima b, em torno de Proxima Centauri, a terceira e menos brilhante estrela do sistema Alfa Centauri, dá ainda mais incentivo a esta busca.

Saber onde se encontram os exoplanetas mais próximos de nós é de extremo interesse para o Breakthrough Starshot, o programa de pesquisa e engenharia lançado em abril de 2016, que pretende demonstrar o conceito de novas tecnologias, promovendo voo espacial ultra-leve não tripulado, executado a 20% da velocidade da luz, que abrirão caminho para a primeira missão a Alfa Centauri, a qual poderá ocorrer dentro de uma geração.

Detectar um planeta habitável é um enorme desafio devido ao brilho da estrela hospedeira do sistema planetário, que tem tendência a ofuscar os planetas relativamente tênues. Uma maneira de tornar esta tarefa mais fácil é observar nos comprimentos de onda do infravermelho médio, onde o brilho térmico de um planeta em órbita reduz enormemente a diferença de brilhos entre o planeta e a sua estrela hospedeira. Mas, mesmo a estes comprimentos de onda, a estrela permanece milhões de vezes mais brilhante do que os planetas que pretendemos detectar, sendo preciso recorrer a uma técnica especial para reduzir a ofuscante luz estelar.

O instrumento VISIR, que opera no infravermelho médio e está montado no VLT, terá a capacidade de fornecer um tal desempenho uma vez modificado para aumentar de modo significativo a qualidade de imagem através do uso de óptica adaptativa, e alterado para utilizar uma técnica chamada coronografia, a qual permite reduzir a radiação estelar, revelando assim o possível sinal de potenciais planetas terrestres. A Breakthrough Initiatives financiará uma grande parte das tecnologias e os custos de desenvolvimento da experiência, enquanto o ESO fornecerá as capacidades e tempo de observação necessários.

O novo hardware inclui um módulo pedido à Kampf Telescope Optics (KTO), Munique, onde será colocado o sensor da frente de onda e um instrumento inovador de calibração de detectores. Adicionalmente, existem planos para o desenvolvimento de um novo coronógrafo, desenvolvimento esse que será executado em conjunto pela Universidade de Liège (Bélgica) e pela Universidade Uppsala (Suécia).

Detectar e estudar potenciais planetas habitáveis em órbita de outras estrelas será um dos principais objetivos científicos do futuro European Extremely Large Telescope (E-ELT). Apesar do enorme tamanho do E-ELT ser essencial para a obtenção de imagens de planetas situados a maiores distâncias na Via Láctea, o poder coletor do VLT é suficiente para obter imagens de um planeta situado em torno da estrela mais próxima, Alfa Centauri.

Os desenvolvimentos aplicados ao VISIR serão também benéficos para o futuro instrumento METIS, que será montado no E-ELT, uma vez que as lições aprendidas e os conceitos utilizados serão diretamente transferidos para este instrumento. O enorme tamanho do E-ELT deverá permitir ao METIS detectar e estudar exoplanetas do tamanho de Marte situados em órbita de Alfa Centauri, se estes existirem, assim como outros potenciais planetas habitáveis que existam em torno de outras estrelas próximas.

Fonte: ESO

quarta-feira, 21 de dezembro de 2016

Primeira luz da Banda 5 do ALMA

O Atacama Large Millimeter/submillimeter Array (ALMA) observa o Universo em ondas rádio, a extremidade de menor energia do espectro eletromagnético. Com os receptores de Banda 5 recentemente instalados, o ALMA pode agora “abrir os seus olhos” a uma nova região do espectro rádio, criando assim novas possibilidades de observação.

Arp 220

© ALMA/Hubble (Arp 220)

O cientista de programa europeu do ALMA, Leonardo Testi, explica o significado deste melhoramento: “Os novos receptores tornarão muito mais fácil a detecção de água, um pré-requisito para a vida tal como a conhecemos, no nosso Sistema Solar, em regiões mais distantes da nossa Galáxia e para além dela. Estes receptores permitirão também ao ALMA procurar carbono ionizado no Universo primordial.”

É a localização única do ALMA, a 5.000 metros de altitude no cimo do árido planalto do Chajnantor, no Chile, que torna, antes de mais nada, tais observações possíveis. Uma vez que a água também se encontra presente na atmosfera da Terra, os observatórios situados em locais menos elevados e em ambientes menos áridos têm muito mais dificuldade em identificar a origem da emissão que vem do espaço. A grande sensibilidade do ALMA, aliada à sua elevada resolução angular, implica que até os sinais muito fracos de água no Universo local conseguem observar-se nestes comprimentos de onda. Uma assinatura espectral determinante da água situa-se precisamente nesta região de comprimentos de onda, a 1,64 milímetros.

Os receptores de Banda 5, desenvolvidos pelo Grupo de Desenvolvimento de Receptores Avançados (GARD, acrônimo do inglês) no Observatório Espacial Onsala, Universidade de Tecnologia Chalmers, na Suécia, foram já testados no telescópio APEX, no instrumento SEPIA. Estas observações foram igualmente muito importantes para a seleção de alvos apropriados para os primeiros testes realizados com os receptores montados no ALMA.

Os primeiros receptores foram construídos e entregues ao ALMA na primeira metade de 2015 por um consórcio constituído pela NOVA (Netherlands Research School for Astronomy) e pelo GARD em parceria com o Observatório Nacional de Rádio Astronomia dos Estados Unidos da América (NRAO), que contribuiu para o projeto com o oscilador local. Estes receptores estão agora instalados e estão sendo preparados para poderem ser utilizados pela comunidade astronômica.

Para testar os receptores recentemente instalados fizeram-se observações de vários objetos incluindo as galáxias em colisão Arp 220, uma região de formação estelar massiva situada próximo do centro da Via Láctea, e também uma estrela supergigante vermelha poeirenta, que está quase atingindo a fase de supernova, terminando assim a sua vida.

Para processar os dados e verificar a sua qualidade, astrônomos e especialistas técnicos do ESO e do Centro Regional Europeu do ALMA (ARC), reuniram-se no Observatório Espacial Onsala na Suécia, para a “Semana da Banda 5”, organizada pelo nodo nórdico do ARC. Os resultados finais acabam de ser postos à disposição da comunidade astronômica mundial.

Robert Laing, membro da equipe no ESO, está otimista quanto às possibilidades que se abrem com as observações ALMA na Banda 5: “É extremamente interessante ver estes primeiros resultados da Banda 5 do ALMA, obtidos com dados coletados apenas com um conjunto limitado de antenas. No futuro, a alta sensibilidade e a resolução angular do complemento total da rede ALMA permitirá estudar detalhadamente a água numa grande variedade de objetos, incluindo estrelas em formação e evoluídas, meio interestelar e regiões próximas de buracos negros supermassivos.”

Fonte: ESO

sexta-feira, 1 de julho de 2016

Uma fauna de corpos menores do VISTA

Uma equipe de astrônomos europeus usou dados do telescópio de rastreio VISTA do ESO para catalogar uma população variada de corpos menores, que são pequenos objetos do Sistema Solar, nos comprimentos de onda do infravermelho próximo.

ilustração de núcleos de gelo no Cinturão de Kuiper

© ESO/M. Kornmesser (ilustração de núcleos de gelo no Cinturão de Kuiper)

Após a órbita  de Netuno existe um enorme disco de pequenos objetos chamado Cinturão de Kuiper, e ainda mais além dele está a nuvem de Oort, local onde habitam os cometas. A ilustração acima mostra uma parte do Cinturão de Kuiper, povoada de núcleos gelados pertencentes a potenciais cometas. Esta imagem fará parte da exposição "O Universo Vivo", que estará disponível ao público no Supernova do ESO.

Este estudo deu origem a uma coleção de medições de milhares de objetos, dados estes que poderão ajudar a responder a questões chave sobre o Sistema Solar primordial.
Sabe-se que o Sistema Solar contém cerca de 700 mil objetos pequenos, desde asteroides rochosos a cometas gelados. Ao estudar estes objetos, os astrônomos esperam compreender como é que o Sistema Solar se formou e evoluiu e, ao mesmo tempo, reunir informações importantes sobre possíveis impactos com a Terra.
A equipe examinou um subconjunto de dados do rastreio do VISTA (Visible and Infrared Survey Telescope for Astronomy), o VISTA Hemisphere Survey, que cobriu cerca de 40% do hemisfério sul do céu. Ao examinar de forma cuidada a enorme quantidade de dados deste rastreio, os pesquisadores conseguiram determinar a posição e o brilho de quase 40 mil objetos, obtendo ainda informação de cor para cerca de 35 mil deles. Esta é a primeira vez que dados de um rastreio são analisados para revelar informação sobre um tão grande número de pequenos corpos do Sistema Solar.
Os dados de cor, em particular, podem ser usados para classificar os objetos, ao derivar informação sobre a sua composição à superfície. A diversidade de objetos identificados no catálogo inclui exemplos de todas as categorias conhecidas de corpos deste tipo: asteroides próximos da Terra, objetos que cruzam a órbita de Marte, asteroides Hungaria, asteroides do cinturão principal, asteroides Cybele, asteroides Hilda, Troianos, cometas, objetos do Cinturão de Kuiper, entre outros.
O VISTA é o maior telescópio de rastreio do mundo, com um espelho de 4,1 metros de diâmetro. O seu enorme campo de visão, juntamente com os seus detectores muito sensíveis, dá aos astrônomos uma visão completamente nova do céu austral. Os rastreios do céu são uma ferramenta poderosa nos dias de hoje, em que existem detectores tão grandes e sensíveis, permitindo aos astrônomos catalogar de modo rápido um grande número de objetos celestes e fazer análises estatísticas sobre os mesmos. São ideais para os astrônomos que procuram, como neste caso, objetos próximos em movimento, tais como asteroides e cometas.

Este trabalho foi descrito no artigo científico intitulado “Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS)”, de M. Popescu et al., que foi publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

quinta-feira, 23 de junho de 2016

Primeiras observações do centro da Via Láctea obtidas com o GRAVITY

Uma equipe europeia de astrônomos usou o novo instrumento GRAVITY montado no Very Large Telescope (VLT) do ESO para obter observações do centro da Via Láctea, combinando pela primeira vez radiação coletada pelos quatro telescópios principais de 8,2 metros.

ilustração da estrela S2 passando muito perto do buraco negro supermassivo

© ESO/L. Calçada (ilustração da estrela S2 passando muito perto do buraco negro supermassivo)

Estes resultados já fornecem uma ideia da ciência inovadora que o GRAVITY irá fazer, ao sondar os campos gravitacionais extremamente fortes existentes próximo do buraco negro central supermassivo.

O GRAVITY faz parte do interferômetro do VLT. Ao combinar a radiação coletada pelos quatro telescópios, consegue atingir a mesma resolução espacial e precisão na medição de posições que um telescópio com 130 metros de diâmetro. O ganho correspondente em poder de resolução e precisão nas posições, um fator de 15 superior aos telescópios principais individuais do VLT, permitirá ao GRAVITY fazer medições extremamente precisas de objetos astronômicos.

Um dos principais objetivos do GRAVITY é fazer observações detalhadas do meio que rodeia o buraco negro de 4 milhões de massas solares que se encontra no centro da Via Láctea. O centro da Via Láctea situa-se no céu na constelação do Sagitário, a cerca de 25 mil anos-luz de distância da Terra. Embora a posição e massa do buraco negro sejam conhecidas desde 2002, ao executar medições precisas dos movimentos das estrelas que o orbitam, o GRAVITY permitirá aos astrônomos sondar o campo gravitacional que rodeia o buraco negro com um detalhe sem precedentes, fornecendo um teste único à teoria da relatividade geral de Einstein.

Nesta perspectiva, as primeiras observações do GRAVITY são já bastante entusiasmantes. A equipe do GRAVITY usou o instrumento para observar uma estrela conhecida por S2, que orbita o buraco negro no centro da nossa Galáxia num período de apenas 16 anos. Estes testes demonstraram de modo impressionante a sensibilidade do GRAVITY, uma vez que o instrumento foi capaz de ver esta fraca estrela em apenas alguns minutos de observação.

A equipe será brevemente capaz de obter posições extremamente precisas da estrela, que equivalerão a medir a posição de um objeto na Lua com a precisão de um centímetro. Esta precisão irá permitir determinar se o movimento em torno do buraco negro segue, ou não, as previsões da relatividade geral de Einstein. As novas observações mostram que o Centro Galáctico é um laboratório ideal para este tipo de testes.

“Toda a equipe desfrutou de um momento fantástico quando a radiação emitida pela estrela interferiu pela primeira vez, após 8 anos de trabalho árduo,” disse o cientista líder do GRAVITY, Frank Eisenhauer do Instituto Max Planck de Física Extraterrestre situado em Garching, na Alemanha. “Primeiro estabilizamos a interferência de forma ativa numa estrela brilhante próxima e depois, após apenas alguns minutos, conseguimos ver de fato a interferência da estrela mais fraca. À primeira vista parece que nem a estrela de referência nem a estrela em órbita do buraco negro têm companheiras massivas que poderão complicar as observações e análise,” explica Eisenhauer.

Esta indicação de sucesso preliminar chega na hora certa. Em 2018, a estrela S2 estará na sua posição mais próxima do buraco negro, a apenas 17 horas-luz de distância e viajando a quase 30 milhões de quilômetros por hora, o que corresponde a 2,5% da velocidade da luz. A esta distância, os efeitos devidos à relatividade geral serão mais pronunciados e as observações obtidas pelo GRAVITY darão os seus resultados mais importantes. Esta oportunidade só se repetirá 16 anos depois.

A equipe será capaz, pela primeira vez, de medir dois efeitos relativísticos numa estrela orbitando um buraco negro supermassivo, o desvio para o vermelho gravitacional e a precessão do pericentro. O desvio para o vermelho ocorre porque a radiação emitida pela estrela tem que se deslocar no sentido contrário ao forte campo gravitacional do buraco negro massivo de modo a escapar para o Universo. Ao fazê-lo, perde energia, o que se manifesta por um desvio para o vermelho da radiação. O segundo efeito aplica-se à órbita da estrela e leva a um desvio da elipse perfeita. A orientação da elipse roda de cerca de meio grau no plano orbital quando a estrela passa perto do buraco negro. O mesmo efeito foi observado na órbita de Mercúrio em torno do Sol, mas cerca de 6.500 vezes mais fraco por órbita do que na vizinhança extrema do buraco negro. No entanto, as maiores distâncias envolvidas tornam-no muito mais difícil de observar no Centro Galáctico do que no Sistema Solar.

Fonte: ESO

quarta-feira, 27 de abril de 2016

Quatro lasers sobre o Paranal

Ontem, o Observatório do Paranal acolheu um evento que marcou a primeira luz dos quatro poderosos lasers que formam uma parte fundamental dos sistemas de ótica adaptativa do Very Large Telescope (VLT) do ESO.

   sistema de estrela guia laser

© ESO/F. Kamphues (sistema de estrela guia laser)

Os visitantes assistiram a uma demonstração extraordinária de tecnologia laser de vanguarda lançada nos majestosos céus do Paranal. Tratam-se das mais poderosas estrelas guia laser já utilizadas em astronomia, tendo o evento marcado a primeira utilização de estrelas guia laser múltiplas no ESO.

Funcionários do ESO estiveram presentes no evento, juntamente com os representantes principais das companhias que fabricaram os diferentes componentes do novo sistema.
A Infraestrutura de Quatro Estrelas Guia Laser (4LGSF, sigla do inglês) lança quatro raios laser de 22 W (watts) para o céu, fazendo brilhar átomos de sódio que se encontram na camada superior da atmosfera, o que faz com que estes se pareçam com estrelas verdadeiras, criando assim estrelas guia artificiais. As estrelas artificiais permitem aos sistemas de óptica adaptativa compensar os efeitos de distorção causados pela atmosfera terrestre, de modo que os telescópios possam criar imagens muito nítidas. Utilizar mais de um raio laser permite aos astrônomos mapear a turbulência atmosférica com muito mais detalhes, o que melhora significativamente a qualidade da imagem num campo de visão muito maior.
A 4LGSF é um exemplo de como o ESO leva a indústria europeia a liderar complexos projetos de pesquisa e desenvolvimento. O laser de fibra utilizado na 4LGSF é também uma das mais bem sucedidas transferências de tecnologia do ESO para a indústria.
A alemã TOPTICA, a empresa contratada principal, foi responsável pelo sistema de laser e forneceu o oscilador, o duplicador de frequência e o software de controle do sistema.

A MPBC do Canadá forneceu as bombas do laser de fibra e os amplificadores Raman, os quais são baseados numa patente registada pelo ESO.

A TNO na Holanda fabricou as montagens dos tubos ópticos, que ampliam os raios laser e os dirigem para o céu.

A 4LGSF faz parte da Infraestrutura de Ótica Adaptativa do telescópio principal 4 do VLT, concebida especificamente para fornecer aos sistemas de óptica adaptativa GALACSI/MUSE e GRAAL/HAWK-I quatro estrelas guia laser de sódio. Com esta nova infraestrutura, o Observatório do Paranal continua dispondo do maior número dos mais avançados sistemas de óptica adaptativa atualmente em operação.
Os lasers da 4LGSF foram desenvolvidos pelo ESO em colaboração com a indústria e já foram pedidos, entre outros, pelo Observatório Keck (que contribuiu para o custo do desenvolvimento do laser industrial juntamente com a Comissão Europeia) e pelo telescópio Subaru. No futuro estes lasers industriais serão também colocados nos telescópios do Observatório Gemini e serão igualmente a escolha preferida de vários outros observatórios e de projetos de telescópios extremamente grandes.
As novas técnicas desenvolvidas para a 4LGSF abrem caminho para o sistema de óptica adaptativa do European Extremely Large Telescope (E-ELT), o maior olho do mundo virado para o céu.

Fonte: ESO

domingo, 24 de abril de 2016

Telescópio de água apresenta oscilações de buracos negros

O High Altitude Water Cherenkov Observatory (HAWC) lançou seu primeiro mapa do céu, incluindo as primeiras medidas de quantas vezes os buracos negros piscam. Ele também captou pulsares, remanescentes de supernovas e outros objetos cósmicos bizarros.

Markarian 421Markarian 501

© Nordic Optical Telescope/SDSS (Markarian 421 e Markarian 501)

A imagem acima mostra as galáxias Markarian 421 (esquerda) e Markarian 501 (direita) obtidas, respectivamente, pelo Nordic Optical Telescope e Sloan Digital Sky Survey (SDSS).

O HAWC está situado a 4.100 metros de altitude na Sierra Madre, no México, é composto por 300 tanques de água purificada e com sensores acoplados.

O seu objetivo é estudar as fontes de radiação mais energéticas do Universo e foi desenhado para ser sensível aos raios gama com energias entre os 0,1 e 100 Tev (teraelétron-volts). O limite máximo de energia corresponde a fótons com uma energia mais de 7 vezes superior à gerada pelas colisões mais violentas no Large Hadron Collider (LHC), no CERN. Até agora o fóton mais energético observado pelo HAWC tinha 60 TeV.

Mas o HAWC não observa os raios gama diretamente. Eles são filtrados de forma muito eficiente pela atmosfera. Em vez disso, o HAWC observa o resultado da sua colisão com átomos no topo da atmosfera terrestre. Estes eventos produzem uma chuva de partículas que frequentemente atinge a superfície. Os cientistas estimam a Terra é bombardeada por 20 mil destes chuveiros por segundo. À altitude do observatório, estes chuveiros podem ser observados com maior claridade pois percorreram ainda uma camada relativamente fina da atmosfera. As partículas atravessam os tanques e colidem com átomos das moléculas de água dando origem a pequenos flashes de luz azul, denominada radiação Cherenkov,  que são detectados por sensores. Com esta informação é possível calcular a energia do fóton de raios gama original e a posição da fonte no céu.

O observatório consegue observar dois terços da esfera celeste e funciona permanentemente; a presença do Sol não tem impacto na observação uma vez que não é uma fonte significativa de raios gama tão energéticos.

A imagem abaixo mostra o observatório HAWC próximo do vulcão Sierra Nevada, no México.

observatório HAWC

© HAWC Collaboration (observatório HAWC)

Uma análise do primeiro ano de observações do HAWC permitiu criar um mapa preliminar do céu nestas frequências. Nele foram detectadas 40 fontes de raios gama, 10 das quais desconhecidas dos até hoje. As restantes 30 foram identificadas com remanescentes de supernovas, pulsares e galáxias ativas.

Este mapa preliminar mostra as galáxias ativas Markarian 421, na Ursa Maior, e Markarian 501, em Hércules, situadas a centenas de milhões de anos-luz, e são classificadas como blazars, isto é, possuem buracos negros supermassivos nos seus núcleos. Foram observadas ejeções com a duração de apenas algumas horas em Markarian 501. Esta escala de tempo tão pequena implica que as mesmas tiveram origem numa região muito pequena, pouco maior do que o Sistema Solar até à órbita de Netuno, junto ao buraco negro. Os dados indicam também que tais ejeções são frequentes, ocorrendo entre 5 a 10 vezes num ano. As observações contínuas do HAWC durante os próximos anos permitirão caracterizar o comportamento destes objetos nesta região extrema de energias, contribuindo para uma melhor compreensão dos blazars.

Fonte: New Scientist

sexta-feira, 4 de março de 2016

Hubble quebra recorde de distância cósmica

Levando o telescópio espacial Hubble da NASA e ESA aos seus limites, uma equipe internacional de astrônomos quebrou o recorde de distância cósmica ao medir a galáxia mais longínqua já vista no Universo.

a galáxia remota GN-z11

© Hubble/P. Oesch (a galáxia remota GN-z11)

Esta galáxia surpreendentemente brilhante, chamada GN-z11, é vista como era há 13,4 bilhões de anos atrás, apenas 400 milhões de anos após o Big Bang. A galáxia GN-z11 está localizada na direção da constelação de Ursa Maior.

"Demos um grande passo para trás no tempo, para além do que esperávamos ser capazes de ver com o Hubble. Observamos a GN-z11 num momento em que o Universo tinha apenas 3% da sua idade atual," explicou Pascal Oesch, pesquisador principal que pertence à Universidade de Yale. A equipe inclui cientistas dessa universidade, do Space Telescope Science Institute (STScI) e da Universidade da Califórnia.

Os astrônomos estão aproximando-se das primeiras galáxias formadas no Universo. As novas observações do Hubble conduz para um reino que se pensava ser apenas acessível com o futuro telescópio espacial James Webb da NASA, ESA e CSA.

Esta medição fornece fortes evidências de que algumas galáxias invulgares e inesperadamente brilhantes, encontradas anteriormente em imagens do Hubble, estão na realidade a estas distâncias extraordinárias. Antes, a equipe tinha estimado a distância até a GN-z11 determinando a sua cor através de imagens com o Hubble e com o Spitzer. Agora, pela primeira vez para uma galáxia a uma distância tão extrema, foi utilizado o instrumento Wide Field Camera 3 (WFC3) para medir com precisão a distância até a GN-z11, espectroscopicamente, dividindo a luz nas suas cores componentes.

As grandes distâncias são medidas através da determinação do desvio para o vermelho (redshift) de uma galáxia. Este fenômeno é o resultado da expansão do Universo; cada objeto distante no Universo parece estar afastando-se de nós porque a sua luz é esticada para comprimentos de onda mais longos à medida que viaja através do espaço em expansão para alcançar os nossos telescópios. Quanto maior o desvio para o vermelho, mais longe está a galáxia.

"As nossas observações espectroscópicas revelam que a galáxia está ainda mais distante do que inicialmente tínhamos pensado, mesmo no limite de distância que o Hubble pode observar," afirma Gabriel Brammer do STScI.

Antes dos astrônomos determinarem a distância de GN-z11, a galáxia mais distante cuja distância tinha sido determinada espectroscopicamente tinha um desvio para o vermelho de 8,68 (13,2 bilhões de anos no passado). Agora, a GN-z11 tem um desvio para o vermelho de 11,1 (quase 200 milhões de anos mais perto do Big Bang). "Este é um feito extraordinário para o Hubble. Conseguiu bater todos os recordes de distância anteriores, detidos durante anos por telescópios terrestres muito maiores," afirma Pieter van Dokkum, pesquisador da Universidade de Yale. "Este novo recorde provavelmente vai ficar até ao lançamento do telescópio espacial James Webb."

A combinação das imagens do Hubble e do Spitzer revela que a GN-z11 é 25 vezes mais pequena que a Via Láctea e tem apenas 1% da massa da nossa Galáxia em estrelas. No entanto, a recém-nascida GN-z11 está crescendo rapidamente, formando estrelas a um ritmo cerca de 20 vezes maior do que a nossa Galáxia atualmente. Isto torna a galáxia remota brilhante o suficiente para que os astrônomos a encontrassem e realizassem observações com o Hubble e com o Spitzer.

Os resultados revelam novas pistas surpreendentes sobre a natureza do Universo primitivo. "É incrível que uma galáxia tão massiva exista apenas 200 a 300 milhões de anos após a formação das primeiras estrelas. É preciso um crescimento muito rápido, uma produção estelar a uma velocidade enorme, para formar uma galáxia com bilhões de massas solares tão cedo," explicou Garth Illingworth, pesquisador da Universidade da Califórnia em Santa Cruz.

Estes resultados fornecem uma visualização tentadora das observações que o telescópio espacial James Webb irá executar depois de ser lançado para o espaço em 2018. "O Hubble e o Spitzer já estão chegando ao território do Webb," comenta Oesch.

"Esta nova descoberta mostra que o telescópio Webb vai certamente encontrar muitas destas galáxias jovens que remontam à formação das primeiras galáxias," acrescenta Illingworth.

Esta descoberta também tem consequências importantes para o Wide-Field Infrared Survey Telescope (WFIRST) da NASA, que terá a capacidade de encontrar milhares de galáxias brilhantes e muito distantes.

Os resultados foram aceitos para publicação numa edição futura da revista The Astrophysical Journal.

Fonte: ESA

quarta-feira, 24 de fevereiro de 2016

Terminado rastreio ATLASGAL da Via Láctea

Uma nova imagem espetacular da Via Láctea foi divulgada para marcar o término do rastreio ATLASGAL (APEX Telescope Large Area Survey of the Galaxy).

o plano austral da Via Láctea

© ESO/ATLASGAL (o plano austral da Via Láctea)

O telescópio APEX, instalado no Chile, mapeou pela primeira vez no submilímetro, a região do espectro eletromagnético entre a radiação infravermelha e as ondas de rádio, a área total do plano galático visível a partir do hemisfério sul, com mais detalhes do que obtido em rastreios recentes feitos a partir do espaço. O telescópio pioneiro APEX de 12 metros permite aos astrônomos estudar o Universo frio: gás e poeira com temperaturas de apenas algumas dezenas de graus acima do zero absoluto.

O APEX, o telescópio Atacama Pathfinder EXperiment, situa-se a 5.100 metros de altitude no planalto do Chajnantor, na região chilena do Atacama. O rastreio ATLASGAL tirou partido das características únicas neste telescópio para fornecer imagens detalhadas da distribuição de gás denso e frio situado no plano da Via Láctea. O mapa foi construído a partir de observações individuais do APEX, de radiação com um comprimento de onda de 870 µm (0,87 milímetros). As novas imagens incluem a maior parte das regiões de formação estelar existentes na Via Láctea austral. A parte norte da Via Láctea já tinha sido mapeada pelo Telescópio James Clerk Maxwell e outros telescópios, no entanto o céu austral é particularmente importante uma vez que inclui o Centro Galático e está também acessível a observações de seguimento detalhadas feitas pelo ALMA.
Os novos mapas ATLASGAL cobrem uma área do céu de 140 graus de comprimentos por 3 de largura, quatro vezes maior que os primeiros mapas divulgados deste rastreio. A primeira divulgação de dados cobria uma área de aproximadamente 95 graus quadrados, era uma tira muito longa e fina de 2 graus por 40 centrada no plano galáctico. Os mapas finais cobrem agora uma área de 420 graus quadrados, o que corresponde a mais de quatro vezes o valor inicial. Os novos mapas têm também uma qualidade superior, já que algumas áreas foram novamente observadas para se obter uma qualidade de dados mais uniforme em toda a área mapeada.
O rastreio ATLASGAL é o projeto do APEX com maior sucesso, com cerca de 70 artigos científicos associados já publicados. O seu legado irá expandir-se ainda mais agora que todos os dados foram reduzidos e colocados à disposição de toda a comunidade astronômica. Os dados estão disponíveis no arquivo ESO.
No coração do APEX encontram-se os seus instrumentos muito sensíveis. Um deles, a câmera LABOCA (LArge BOlometer Camera), foi usado no rastreio ATLASGAL. A LABOCA mede a radiação captada registrando os minúsculos aumentos de temperatura que esta causa nos seus detectores, podendo assim detectar emissão das faixas escuras de poeira fria que obscurecem a radiação estelar.
Esta nova divulgação dos dados ATLASGAL vem complementar observações obtidas com o satélite Planck da ESA. Os dados Planck cobrem todo o céu, mas a sua resolução espacial é baixa. Os dados ATLASGAL cobrem apenas o plano galático mas têm maior resolução angular. Combinar ambas as observações resulta num excelente alcance dinâmico espacial. A combinação dos dados Planck e APEX permitiu aos astrônomos detectar radiação emitida ao longo de uma maior área do céu e estimar assim a fração de gás denso existente na Galáxia interna. Os dados ATLASGAL foram também utilizados para criar um censo completo de nuvens frias de grande massa, onde novas gerações de estrelas estão se formando.
“O ATLASGAL fornece importantes pistas sobre onde a próxima geração de estrelas de grande massa e aglomerados se formam. Ao combinar estas observações com os dados Planck, podemos agora obter uma conexão com as estruturas de larga escala de nuvens moleculares gigantes,” diz Timea Csengeri do Instituto Max Planck de Rádio Astronomia (MPIfR), Bonn, Alemanha, que liderou o trabalho de combinação dos dados APEX e Planck.
O telescópio APEX celebrou recentemente dez anos de pesquisas bem sucedidas do Universo frio. Este telescópio desempenha um papel importante não só como desbravador de terreno mas também como infraestrutura complementar do ALMA, o Atacama Large Millimeter/submillimeter Array, que também se encontra situado no planalto do Chajnantor. O APEX baseia-se numa antena protótipo construída para o projeto ALMA e tem encontrado muitos objetos que o ALMA pode depois estudar com mais detalhe.
Leonardo Testi do ESO, membro da equipe ATLASGAL e Cientista de Projeto europeu do ALMA, conclui: “O ATLASGAL permitiu-nos obter um novo olhar sobre o meio interestelar denso da nossa própria galáxia, a Via Láctea. A divulgação do rastreio completo abre a possibilidade de trabalhar sobre esta incrível base de dados, esperando-se novas descobertas. Muitas equipes de cientistas já estão utilizando os dados ATLASGAL para planejar novas observações com o ALMA.”

Fonte: ESO

sexta-feira, 29 de janeiro de 2016

Lançado telescópio brasileiro para observação do Sol

A NASA, agência espacial norte-americana, lançou com êxito, no dia 18 de janeiro, um balão estratosférico que transporta dois equipamentos científicos voltados a estudar o Sol. O lançamento foi feito em McMurdo, base dos Estados Unidos na Antártica.

 explosão solar

© NASA/SDO (explosão solar)

Um dos equipamentos é o Solar-T: um telescópio fotométrico duplo, projetado e construído no Brasil por pesquisadores do Centro de Radioastronomia e Astrofísica Mackenzie (CRAAM), da Universidade Presbiteriana Mackenzie, em colaboração com colegas do Centro de Componentes Semicondutores da Universidade Estadual de Campinas (Unicamp).

O outro equipamento é o experimento de raios X e gama GRIPS (sigla em inglês de Gamma-ray Imager / Polarimeter for Solar Flares), da University of California em Berkeley, nos Estados Unidos, no qual o Solar-T foi acoplado.

Desenvolvido com apoio da FAPESP, por meio de um Projeto Temático e de um Auxílio à Pesquisa-Regular, o Solar-T é o primeiro instrumento científico do gênero construído no país, após 15 anos de pesquisa e desenvolvimento.

Além da FAPESP, o projeto contou com recursos do Fundo Mackenzie de Pesquisa (MackPesquisa), do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), da NASA, do AFOSR (sigla em inglês de Air Force Office of Scientific Research), dos Estados Unidos, e do Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), da Argentina.

“O desenvolvimento do Solar-T representa uma oportunidade de qualificação brasileira em tecnologia espacial avançada que pode dar origem a novos projetos em satélites, por exemplo, e contribuições para a Estação Espacial Internacional”, disse Pierre Kaufmann, pesquisador do CRAAM e coordenador do projeto.

“Estamos desenvolvendo um projeto em colaboração com o Instituto Lebedev de Moscou para instalar telescópios de detecção de frequências em terahertz na Estação Espacial Internacional, e o sucesso da missão do Solar-T é uma condição necessária para qualificarmos a tecnologia que desenvolvemos”, afirmou.

O balão estratosférico transportando o Solar-T e o GRIPS – que juntos pesam mais de 3 toneladas – está voando a uma altitude de 40 mil metros e circum-navegará a Antártica por um período entre 20 e 30 dias.

Enquanto sobrevoar o continente gelado, o Solar-T deverá captar a energia que emana das explosões solares em duas frequências inéditas, de 3 e 7 terahertz (THz), que correspondem a uma fração da radiação infravermelha distante.

Situada no espectro eletromagnético entre a luz visível e as ondas de rádio, essa faixa de radiação permite observar mais facilmente a ocorrência de explosões associadas aos campos magnéticos das regiões ativas do Sol, que muitas vezes lançam em direção à Terra jatos de partículas de carga negativa (elétrons) aceleradas a grandes velocidades.

Nas proximidades do planeta, essas partículas atrapalham o funcionamento de satélites de telecomunicações e de GPS e produzem as auroras austrais e boreais.

A radiação das explosões nessa faixa do infravermelho distante também torna possível uma nova abordagem para investigar fenômenos que produzem energia em regiões ativas que ficam entre a superfície do Sol, a fotosfera, onde a temperatura não passa dos 5,7 mil graus, e as camadas superiores e mais quentes: a cromosfera, onde as temperaturas alcançam 20 mil graus, e a coroa, que está a mais de 1 milhão de graus.

“Essas frequências de 3 e 7 terahertz são impossíveis de serem medidas a partir do nível do solo porque são bloqueadas pela atmosfera. É necessário ir para o espaço para medi-las”, disse Kaufmann.

Para fazer as medições, o Solar-T conta com um aparato composto por dois fotômetros (medidores de intensidade de fótons), coletores e filtros para bloquear radiações de frequências indesejáveis (infravermelho próximo e luz visível), que poderiam mascarar o fenômeno, e selecionar as frequências de 3 e 7 terahertz.

Os dados coletados pelo telescópio fotométrico são armazenados em dois computadores a bordo do equipamento e transmitidos compactados à Terra, por meio de um sistema de telemetria, valendo-se da rede de satélites Iridium. Os dados transmitidos à Terra são gravados em dois computadores no CRAMM.

“A transmissão dos dados obtidos pelo Solar-T para a Terra garante a obtenção das informações coletadas caso não seja possível recuperar os computadores a bordo do equipamento, porque as chances são muito baixas”, afirmou Kaufmann. “A Antártica é maior do que o Brasil, tem pouquíssimos lugares de acesso e não há como controlar o lugar onde o balão deve cair.”

De acordo com o pesquisador, os dois fotômetros THz, os computadores de dados e o sistema de telemetria do Solar-T estão funcionando normalmente, alimentados por duas baterias carregadas com energia capturada por painéis solares.

Logo após o rastreador de explosões solares ter sido acionado, no dia seguinte ao do lançamento do balão estratosférico, o equipamento já começou a enviar dados para a Terra.

Os dados terão que ter precisão de apontamento e rastreio do Sol de mais ou menos meio grau. Esse nível de precisão deverá ser assegurado por um sistema automático de apontamento e rastreio do GRIPS, com o qual o Solar-T está alinhado.

“Por enquanto, ainda não houve nenhuma grande explosão solar captada pelo Solar-T. Mas, caso ocorra, o equipamento poderá detectá-la e enviar os dados para analisarmos”, disse Kaufmann.

Fonte: FAPESP (Agência)

quarta-feira, 13 de janeiro de 2016

Primeira luz de futura sonda de buracos negros

Observar buracos negros é o objetivo principal do instrumento GRAVITY recentemente instalado no Very Large Telescope (VLT) do ESO no Chile.

estrelas duplas do Aglomerado do Trapézio em Órion

© ESO/GRAVITY/M. McCaughrean (estrelas duplas do Aglomerado do Trapézio em Órion)

Durante as primeiras observações, o GRAVITY combinou de forma bem sucedida a radiação estelar obtida pelos quatro telescópios auxiliares do VLT. A enorme equipe de astrônomos e engenheiros, liderada pelo Instituto Max Planck de Física Extraterrestre em Garching (Alemanha), que concebeu e construiu o GRAVITY, encontra-se bastante satisfeita com o desempenho do instrumento. Durante os testes iniciais, o GRAVITY fez já algumas descobertas importantes, tratando-se do mais poderoso instrumento instalado até hoje no interferômetro do VLT.

O instrumento GRAVITY combina a radiação captada por vários telescópios para formar um telescópio virtual com um diâmetro que pode ir até aos 200 metros, utilizando uma técnica conhecida por interferometria, a qual permite aos astrônomos detectar muito mais detalhes em imagens de objetos astronômicos do que o que seria possível com um único telescópio.
Desde o verão de 2015 que uma equipe internacional de astrônomos e engenheiros, liderada por Frank Eisenhauer do Instituto Max Planck de Física Extraterrestre, está instalando o instrumento em túneis especialmente adaptados, situados por baixo do VLT no Observatório do Paranal do ESO, no norte do Chile. Esta é a primeira fase do comissionamento do GRAVITY no Interferômetro do Very Large Telescope (VLTI), tendo sido agora atingido um importante marco no programa.

“Durante a primeira luz, e pela primeira vez na história da interferometria de linha de base longa da astronomia óptica, o GRAVITY fez exposições de vários minutos, ou seja, uma centena de vezes maiores do que o que era possível anteriormente,” comentou Frank Eisenhauer. “O GRAVITY abrirá as portas da interferometria óptica a observações de objetos muito mais fracos, levando a sensibilidade e precisão da astronomia de elevada resolução angular a novos limites, para muito além do que existe atualmente.”
No âmbito das primeiras observações, a equipe observou cuidadosamente estrelas brilhantes e jovens, no conhecido Aglomerado do Trapézio, situado no coração da região de formação estelar de Órion. E logo com estes primeiros dados, o GRAVITY fez uma pequena descoberta: uma das componentes deste aglomerado é uma estrela dupla. A recentemente descoberta estrela dupla é a Theta1 Orionis F e as observações foram feitas com o auxílio da estrela próxima mais brilhante, Theta1 Orionis C, que serviu como estrela de referência.

A chave do sucesso passou por conseguir estabilizar o telescópio virtual durante tempo suficiente, com o auxílio da luz de uma estrela de referência, de modo a obter uma exposição profunda de um segundo objeto muito mais fraco. Além disso, os astrônomos conseguiram também estabilizar a radiação dos quatro telescópios em simultâneo, um fato que nunca tinha sido conseguido anteriormente.
O GRAVITY consegue medir as posições de objetos astronômicos com muita precisão e obtém também imagens e espectroscopia interferométricas. O GRAVITY pretende medir as posições de objetos com escalas da ordem dos 10 microsegundos de arco e obter imagens com uma resolução de 4 milisegundos de arco. Como referência podemos dizer que o instrumento veria objetos do tamanho de edifícios na Lua e poderia localizá-los com uma precisão de alguns centímetros. Imagens com tão elevada resolução têm imensas aplicações, mas o enfoque principal no futuro será o estudo do meio que rodeia os buracos negros.
Em particular, o GRAVITY observará o que acontece no campo gravitacional extremamente forte que existe próximo do horizonte de eventos do buraco negro supermassivo que se situa no centro da Via Láctea; daí o nome escolhido para o instrumento. Trata-se de uma região dominada pela teoria da relatividade geral de Einstein. Adicionalmente, este instrumento observará também detalhes ligados à acreção de massa e a jato, processos que ocorrem tanto em torno de estrelas jovens como em regiões que rodeiam os buracos negros supermassivos situados nos centros de outras galáxias. Será também um excelente instrumento para observar os movimentos de estrelas binárias, exoplanetas e discos estelares jovens e fazer imagens da superfície das estrelas.
Até agora, o GRAVITY foi testado com os quatro telescópios auxiliares de 1,8 metros. As primeiras observações do GRAVITY com os quatro telescópios principais de 8 metros do VLT estão planejadas para a segunda metade de 2016.

Fonte: ESO

sábado, 9 de janeiro de 2016

"Vendo" buracos negros com telescópios de uso doméstico

Para observar um buraco negro ativo nas proximidades é necessário um telescópio de 20 cm.

  observador do céu com um telescópio de tamanho médio

    © U. de Quioto/Eiri Ono (observador do céu com um telescópio de tamanho médio)

Uma equipe internacional de pesquisadores anunciou que a atividade de tais fenômenos pode ser observada no visível durante grandes explosões, e que a luz tremeluzente que emerge dos gases em torno dos buracos negros é um indicador direto disto. Os resultados da equipe indicam que a luz no óptico, não apenas os raios X, fornecem dados observacionais confiáveis da atividade dos buracos negros.

"Sabemos agora que podemos fazer observações no visível e que os buracos negros podem ser observados sem telescópios que observam em raios X ou raios gama," explica a autora principal Mariko Kimura, estudante de mestrado da Universidade de Quioto.

Uma vez em várias décadas, alguns binários de buracos negros passam por surtos de explosões, durante os quais são emitidas grandes quantidades de energia, incluindo raios X, pelas substâncias que caem para o buraco negro. Os buracos negros são normalmente rodeados por um disco de acreção, onde o gás de uma estrela companheira é lentamente atraído para o buraco negro num padrão espiral. As atividades dos buracos negros são tipicamente observadas em raios X, gerados nas porções internas dos discos de acreção onde as temperaturas atingem mais de 10 milhões Kelvin.

V404 Cygni, um dos binários de buraco negro mais próximos da Terra que está localizado a 7.800 anos-luz, "acordou" após 26 anos de dormência no dia 15 de junho de 2015 e sofreu uma tal explosão.

Liderada por astrônomos da Universidade de Quioto, a equipe conseguiu obter dados sem precedentes de V404 Cygni, detectando padrões repetitivos com escalas de tempo de alguns minutos até algumas horas. Os padrões de flutuações ópticas estavam correlacionados com os padrões de flutuações em raios X.

Com base nas análises dos dados observacionais ópticos e em raios X, os astrônomos e seus colaboradores da agência espacial japonesa (JAXA), do laboratório nacional RIKEN e da Universidade de Hiroxima, mostraram que a luz provém de raios X que emergem da região mais interior do disco de acreção ao redor de um buraco negro. Estes raios X irradiam e aquecem a região exterior do disco, fazendo com que emita luz no óptico, tornando-se assim visível ao olho humano.

A observação da explosão foi o fruto de uma colaboração internacional entre países espalhados por diferentes fusos horários.

"As estrelas só podem ser observadas depois do anoitecer, e só temos capacidade de observar durante algumas horas cada noite, mas ao fazermos observações a partir de diferentes locais em todo o mundo, somos capazes de obter dados mais compreensivos," afirma Daisaku Nogami, coautor do estudo. "Estamos muito satisfeitos que a nossa rede de observação internacional tenha sido capaz de se unir para documentar este evento raro."

O estudo também revelou que estas variações repetitivas ocorrem em taxas de acreção de massa inferiores a um-décimo do que se pensava anteriormente. Isto indica que a taxa de acreção de massa não é o principal fator desencadeador da atividade repetitiva em volta dos buracos negros, mas sim da duração dos períodos orbitais.

Os resultados da equipe foram publicados na revista Nature.

Fonte: Kyoto University

quarta-feira, 9 de dezembro de 2015

O Very Large Telescope revisita uma interessante colisão cósmica

O Very Large Telescope (VLT) do ESO, instalado no Observatório do Paranal, obteve novas imagens que revelam a espetacular consequência de uma colisão cósmica com 360 milhões de anos.

região em torno da galáxia em interação NGC 5291

© ESO (região em torno da galáxia em interação NGC 5291)

Entre os restos da colisão encontra-se uma jovem galáxia anã rara e misteriosa. Esta galáxia fornece uma excelente oportunidade de aprender mais sobre galáxias semelhantes que se pensa serem comuns no Universo primordial, mas que são normalmente muito tênues e se encontram muito distantes para poderem ser observadas com os telescópios atuais.

A galáxia NGC 5291, a oval difusa e dourada que domina o centro da imagem acima, é uma galáxia elíptica situada a quase 200 milhões de anos-luz de distância na constelação do Centauro. Há cerca de 360 milhões de anos atrás, a NGC 5291 esteve envolvida numa colisão dramática e violenta quando outra galáxia que viajava com altas velocidades chocou contra o seu núcleo. O choque cósmico originou a ejeção de enormes quantidades de gás para o espaço próximo que, mais tarde, deram origem à formação de um anel em torno da NGC 5291, que está também atualmente em interação, embora mais suavemente, com MCG-05-33-005, ou Galáxia da Concha, a estranha galáxia em forma de vírgula que parece estar parasitando o núcleo luminoso da NGC 5291.
Com o tempo, o material deste anel juntou-se e colapsou para formar muitas regiões de formação estelar e várias galáxias anãs, que aparecem como regiões brancas e azuis pálidas espalhadas em torno da NGC 5291 nesta nova imagem obtida pelo instrumento FORS, montado no VLT. A aglomeração de matéria mais massiva e luminosa, à direita de NGC 5291, é uma destas galáxias anãs, conhecida por NGC 5291N.
Pensa-se que a Via Láctea, como todas as galáxias grandes, se formou nos primórdios do Universo a partir da fusão de várias galáxias anãs menores. Estas galáxias pequenas, se sobrevivem por si próprias até aos nossos dias, contêm normalmente muitas estrelas extremamente velhas.
No entanto, a NGC 5291N parece não conter nenhuma estrela velha. Observações detalhadas obtidas com o espectrógrafo MUSE mostraram também que as regiões mais exteriores da galáxia possuem propriedades tipicamente associadas com a formação de novas estrelas, mas o que é observado não é previsto pelos atuais modelos teóricos. Os astrônomos suspeitam que estes aspectos invulgares possam ser o resultado de colisões massivas de gás na região.
A NGC 5291N não se parece com uma galáxia anã típica, antes pelo contrário, partilha um número impressionante de semelhanças com as estruturas que aparecem em muitas galáxias com formação estelar ativa no Universo distante, o que a torna um sistema único no nosso Universo local e um importante laboratório para o estudo de galáxias primordiais ricas em gás, as quais estão normalmente demasiado distantes para se poderem observar de forma detalhada com os telescópios atuais.
Este sistema incomum já foi observado anteriormente por uma grande quantidade de observatórios colocados em solo. A NGC 5291 foi estudada pelos astrônomos em 1978 com o auxílio do telescópio de 3,6 metros do ESO instalado no Observatório de La Silla. Estas observações revelaram enormes quantidades de material no espaço intergalático em torno da galáxia, o que sabemos agora serem as regiões de formação estelar e várias galáxias anãs formadas a partir do colapso do anel gasoso da galáxia. No entanto, as capacidades do MUSE, do FORS e do VLT só agora nos permitiram determinar algumas das propriedades e história da NGC 5291N.
Observações futuras, incluindo as que serão obtidas com o European Extremely Large Telescope (E-ELT), permitirão aos astrônomos desvendar ainda melhor os restantes mistérios desta galáxia anã.

Este trabalho foi descrito no artigo científico intitulado “Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N”, de J. Fensch et al., que será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

sábado, 5 de dezembro de 2015

SOHO celebra 20 anos de ciência espacial

Depois de 20 anos no espaço, a sonda SOHO (Solar and Heliospheric Observatory) da ESA e da NASA ainda está forte.

tsunami solar

© ESA/NASA/SOHO (tsunami solar)

Esta animação mostra um tsunami solar que se expande para fora a partir de uma região ativa mesmo depois de uma erupção solar, no dia 14 de julho de 2000.

A SOHO estuda o Sol e a sua influência para além do Sistema Solar, ela revolucionou este campo da ciência, também conhecido como heliofísica, fornecendo a base para mais de 5.000 artigos científicos. A SOHO também encontrou um papel inesperado como o maior caçador de cometas de todos os tempos, atingindo 3.000 descobertas cometárias em setembro de 2015.

Quando a SOHO foi lançada em 2 de dezembro de 1995, o campo da heliofísica parecia muito diferente do que é hoje. Ainda estavam por responder questões acerca do interior do Sol, da origem do fluxo constante de material liberado pelo Sol, conhecido como vento solar, e o misterioso aquecimento da atmosfera solar. Vinte anos mais tarde, não só temos uma ideia muito melhor sobre o que alimenta o Sol, como toda a nossa compreensão de como o Sol se comporta mudou.

"A SOHO mudou a visão popular do Sol, de uma imagem de objeto estático e imutável no céu, para o monstro dinâmico que é," afirma Bernhard Fleck, cientista do projeto SOHO para a ESA e do Centro de Voo Espacial Goddard da NASA.

Até o próprio conceito de clima espacial, agora definido para abranger quaisquer eventos ou condições decorrentes do Sol que podem afetar sistemas tecnológicos espaciais e terrestres e, através destes, a vida e os esforços humanos, não era bem compreendido antes do lançamento da SOHO. Atualmente, pensava-se que as erupções solares eram o principal evento solar que afetava a Terra, em parte porque são os mais observados. Graças ao coronógrafo da SOHO, um tipo de câmara que usa um disco sólido para bloquear a face brilhante do Sol, a fim de melhor observar a comparativamente tênue atmosfera solar, conhecida como coroa, hoje sabemos que as nuvens gigantes que são expelidas pelo Sol, chamadas ejeções de massa coronal (EMCs) são uma grande parte do quebra-cabeças do clima espacial. Apesar de outros dois coronógrafos espaciais terem precedido o da SOHO, nenhum forneceu a mesma quantidade ou qualidade de observações.

"Muitas EMCs tênues escaparam à atenção dos coronógrafos mais velhos," afirma Joe Gurman, cientista do projeto SOHO em Goddard. "À luz dos dados da SOHO, percebemos que as EMCs são muito mais comuns e mais variáveis ao longo do ciclo solar."

As EMCs, nuvens enormes e velozes de material solar eletricamente carregado que contêm campos magnéticos incorporados, podem causar tempestades geomagnéticas quando colidem com o campo magnético da Terra, agitando-o e fazendo-os oscilar. A capacidade de ligar os efeitos das tempestades geomagnéticas - como as auroras, perturbações nos GPS e nas comunicações, correntes induzidas geomagneticamente, o que pode colocar em risco as redes elétricas - com eventos no Sol trouxe a ideia de clima espacial ao grosso da população.

"Graças à SOHO, há um crescente reconhecimento público de que vivemos na atmosfera alargada de uma estrela magneticamente ativa," afirma Gurman. "E as pessoas percebem que a atividade solar pode afetar a Terra."

Mas o coronógrafo da SOHO não foi o único instrumento com poder de mudança. Antes do lançamento da SOHO, transportando com ela o EIT (Extreme ultraviolet Imaging Telescope), as únicas câmaras capazes de obter imagens do Sol no ultravioleta extremo - radiação que a atmosfera da Terra bloqueia, tornando impossíveis as observações a partir do solo - eram aquelas em foguetes-sonda suborbitais, que recolhem dados durante apenas alguns minutos por hora.

"Pela primeira vez, vimos no ultravioleta extremo ondas que percorriam o Sol a 1,6 milhões de quilômetros por hora," comenta Alex Young, cientista espacial também do Centro de Voo Espacial Goddard.

Estes tsunamis à superfície solar ocorrem em estreita articulação com as EMCs. Antes da descoberta dos tsunamis solares, os cientistas não tinham, normalmente, nenhuma maneira de saber se uma EMC se dirigia na direção da Terra ou na direção oposta, uma vez que todas as EMCs na linha Terra-Sol simplesmente aparecem em imagens do coronográfo como um halo gigante em torno do Sol.

Os cientistas quase que perdiam esta e outras descobertas da SOHO. Em 1998, a sonda ficou perdida por quatro meses devido a um erro de software. Uma equipe conjunta da ESA/NASA foi finalmente capaz de recuperar a nave espacial em setembro desse ano, em parte usando o radiotelescópio gigante de Arecibo para localizá-la e para restabelecer o comando. Este salvamento foi crucial para a heliofísica, dado que grande parte do sucesso científico da SOHO pode ser atribuído aos seus 20 anos de observação quase constante.

Apesar de ter alargado o nosso conhecimento de todas as facetas da heliofísica, a SOHO foi lançada para responder a três questões principais. A primeira, qual é a estrutura interna do Sol?

Embora os cientistas já tivessem desenvolvido teorias acerca das camadas de gás ionizado e do complexo campo magnético que compõem a nossa estrela mais próxima, não tinham maneira de confirmar as suas ideias a não ser observando a superfície do Sol. Mas a SOHO transporta um instrumento que pode fazer uma espécie de sonograma solar, auxiliando os pesquisadores a compreender a estrutura interna do Sol.

Isto ajudou a resolver o que ficou conhecido como o problema dos neutrinos solares, em que o número de um certo tipo de neutrinos solares observados na Terra não coincidia com o número previsto pelas nossas teorias sobre o Sol.

Descobriu-se mais tarde que os neutrinos podem sofrer uma alteração de tipo durante a sua viagem desde o Sol, o que explica a diferença entre as previsões e as observações. Esta pesquisa ganhou o Prêmio Nobel da Física em 2015.

A segunda questão que a SOHO foi concebida para responder era sobre a aceleração do vento solar. O Sol está constantemente perdendo material em todas as direções, mas a velocidade desse fluxo de material é muito superior ao que seria de esperar de uma visão relativamente simples do Sol. As observações da SOHO mostraram como alguns dos fluxos mais velozes do vento solar são acelerados em buracos coronais, áreas no Sol onde o campo magnético está aberto para o espaço interplanetário.

Até agora, ainda ninguém conseguir responder definitivamente à terceira questão da SOHO, o que causa as extraordinariamente altas temperaturas na atmosfera do Sol, a coroa?

A coroa é incrivelmente quente, centenas de vezes mais quente que as camadas abaixo; sendo que a fonte de energia do Sol está no seu centro, basicamente seria de esperar que a coroa, a sua camada mais externa, fosse a mais fria.

As observações da SOHO forneceram a base de muitas explicações possíveis para o problema do aquecimento coronal mas, apesar de ser conhecido, ainda não foi resolvido. No entanto, a missão Solar Probe Plus da NASA, com lançamento previsto para 2018, vai voar mais perto do Sol do que qualquer outra nave a fim de investigar esta mesma questão.

A Solar Probe Plus é uma de muitas missões moldadas pela SOHO e pelas suas descobertas. Outras incluem a SDO (Solar Dynamics Observatory), as STEREO (Solar and Terrestrial Relations Observatory) e a IRIS (Interface Region Imaging Spectrograph), as três da NASA, como também a Hinode da JAXA/NASA.

Fonte: ESA

segunda-feira, 19 de outubro de 2015

SPHERE revela disco espiral em torno de estrela próxima

O SPHERE do ESO, um instrumento que procura planetas instalado no Very Large Telescope (VLT) no Chile, descobriu uma estrutura invulgar em torno de uma estrela jovem próxima chamada HD 100453.

SPHERE

© K. Wagner/D. Apai/M. Kasper/M. Robberto (SPHERE)

A HD 100453 situa-se a cerca de 350 anos-luz de distância na constelação do Centauro e está imersa num disco de gás e poeira em rotação, visível em vermelho e branco nesta imagem. Surpreendentemente podemos ver dois tênues braços em espiral estendendo-se a partir do disco, possivelmente formados devido à influência de planetas, ainda não descobertos, que se encontram no seu interior. Este disco espiral é bastante simétrico, sendo um dos mais pequenos discos espirais observados em torno de outra estrela; uma bela demonstração das capacidades do SPHERE.
O SPHERE é um poderoso descobridor de planetas, obtendo imagens diretas de mundos alienígenas e dos discos de poeira nos quais estes se formam em torno de estrelas da Via Láctea. O instrumento bloqueia a luz extremamente brilhante da estrela progenitora, que apareceria no centro da imagem (no lugar do disco preto, que está tapando a estrela e o seu meio circundante próximo). Explorar as regiões em torno de estrelas jovens, tal como a HD 100453, pode fornecer-nos pistas cruciais de como é que os planetas e estrelas se formam e crescem na nossa Galáxia.

Fonte: ESO

sexta-feira, 28 de agosto de 2015

O primeiro ano de observações científicas do Gaia

Há uma semana o observatório espacial Gaia da ESA completou o seu primeiro ano de observações científicas no seu modo principal de levantamento.

Nebulosa Olho de Gato

© Hubble/Gaia (Nebulosa Olho de Gato)

Depois do lançamento, no dia 19 de dezembro de 2013, e de uma longa órbita de seis meses durante o período de comissionamento, o satélite começou as suas observações científicas de rotina no dia 25 de julho de 2014. Localizado no ponto L2 de Lagrange, a 1,5 milhões de quilômetros da Terra, o Gaia estuda estrelas e muitos outros objetos astronômicos enquanto gira, observando porções circulares do céu. Ao medir repetidamente as posições das estrelas com uma precisão extraordinária, o Gaia pode desvendar as suas distâncias e movimentos através da Via Láctea.

Durante os primeiros 28 dias, o Gaia operou num modo especial de estudo em que recolheu amostras de grandes círculos no céu, mas sempre incluindo os polos da eclíptica. Isto significa que o satélite observou as estrelas nessas regiões muitas vezes, fornecendo uma base de dados de valor inestimável para a calibração inicial do Gaia.

No final desta fase, no dia 21 de agosto de 2014, o Gaia deu início à sua operação primária, empregando um levantamento projetado para alcançar a melhor cobertura possível de todo o céu.

Desde o início da sua fase de rotina, o satélite registou 272 bilhões de medições posicionais ou astrométricas, 54,4 bilhões de pontos de dados fotométricos ou de brilho, e 5,4 bilhões de espectros.

A equipe do Gaia durante um ano processou e a analisou estes dados, a caminho de desenvolver os principais produtos científicos do Gaia, enormes catálogos públicos das posições, distâncias, movimentos e outras propriedades de mais de bilhões de estrelas. Devido ao imenso volume de dados e à sua natureza complexa, isto requer um enorme esforço por parte de cientistas e de criadores de software por toda a Europa, que constituem o DPAC (Data Processing and Analysis Consortium) do Gaia.

"Os últimos doze meses foram muito intensos, mas estamos aprendendo a lidar com os dados e estamos ansiosos pelos próximos quatro anos de operações nominais," afirma Timo Prusti, cientista do projeto Gaia da ESA.

"Estamos apenas a um ano de distância da primeira divulgação de dados do Gaia, um catálogo intermediário planejado para o verão de 2016. Com o primeiro ano de dados nas nossas mãos, estamos agora a meio caminho desse marco e somos capazes de apresentar alguns instantâneos preliminares que mostram que o observatório está trabalhando bem e que o processamento de dados está no caminho certo."

Como um exemplo da validação em curso, a equipe do Gaia foi capaz de medir a paralaxe para uma amostra inicial de dois milhões de estrelas.

A paralaxe é o movimento aparente de uma estrela contra um fundo distante observado ao longo de um período de um ano e resulta do movimento real da Terra em torno do Sol; isto é também observado pelo Gaia, uma vez que orbita o Sol ao lado da Terra. Mas a paralaxe não é o único movimento observado pelo Gaia: as estrelas também se movem através do espaço, o que chamamos de movimento próprio.

O Gaia fez uma média de aproximadamente 14 medições para cada estrela no céu, até agora, mas este número não é geralmente suficiente para separar a paralaxe dos movimentos próprios.

Para superar isto, os cientistas combinaram dados do Gaia com posições extraídas do catálogo Tycho-2, com base em dados obtidos entre 1989 e 1993 pelo antecessor do Gaia, o satélite Hipparcos.

Isto restringe a amostra a apenas dois milhões das mais de bilhões de estrelas que o Gaia observou até agora, mas gera algumas ideias iniciais e úteis da qualidade dos seus dados.

Quanto mais perto uma estrela está do Sol, maior a sua paralaxe e, portanto, a paralaxe medida para uma estrela pode ser usada para determinar a sua distância. Por sua vez, a distância pode ser usada para converter o brilho aparente da estrela no brilho verdadeiro ou "luminosidade absoluta".

Os astrônomos traçam as magnitudes absolutas das estrelas contra as suas temperaturas, estimadas a partir das cores das estrelas, para gerar o "diagrama Hertzsprung-Russell", cujo nome honra dois cientistas do século XX que reconheceram que um tal diagrama poderia ser usado como uma ferramenta para compreender a evolução estelar.

diagrama Hertzsprung-Russell

© ESA (diagrama Hertzsprung-Russell)

Este gráfico mostra a luminosidade absoluta de quase um milhão de estrelas observadas pelo Gaia em função da sua cor. Os pontos de dados parecem preencher algumas regiões características do diagrama, a maioria deles distribuídos diagonalmente desde o canto superior esquerdo até ao canto inferior direito: esta é a chamada sequência principal de estrelas, identificando todas as estrelas que queimam hidrogênio nos seus núcleos, uma fase que corresponde à maior parte do tempo de vida de uma estrela. Ao longo da sequência principal, as estrelas mais brilhantes e mais massivas estão localizadas na seção superior esquerda do diagrama, e as estrelas mais pequenas e menos brilhantes estão localizadas na seção inferior direita.
O grande grupo de pontos de dados na metade direita do gráfico identifica estrelas gigantes vermelhas: estrelas evoluídas que já esgotaram o hidrogênio nos seus núcleos. À medida que os seus núcleos colapsam sob o seu próprio peso, as camadas exteriores dessas estrelas incham, criando invólucros enormes, frios e avermelhados.

"O nosso primeiro diagrama Hertzsprung-Russell, com luminosidades absolutas baseadas no primeiro ano do Gaia e no catálogo Tycho-2, e informações de cor obtidas em observatórios terrestres, dá-nos uma amostra do que a missão vai proporcionar nos próximos anos," afirma Lennart Lindegren, professor na Universidade de Lund e um dos proponentes originais da missão Gaia.

Dado que o Gaia tem vindo a realizar estudos repetidos do céu para medir os movimentos das estrelas, também tem sido capaz de detectar se alguma mudou de brilho e, ao fazê-lo, começou a descobrir alguns objetos astronômicos muito interessantes.

O Gaia detectou centenas de fontes transientes até agora, sendo a primeira uma supernova no dia 30 de agosto de 2014. Estas deteções são rotineiramente partilhadas com a comunidade em geral, logo que são avistadas sob a forma de "alertas científicos", permitindo o acompanhamento rápido por telescópios terrestres a fim de determinar a sua natureza.

Uma dessas fontes transientes foi observada passando por uma explosão repentina e dramática que aumentou o seu brilho por um fator de cinco. Concluiu-se que o Gaia tinha descoberto o que se chama de "variável cataclísmica", um sistema binário no qual uma das estrelas, uma anã branca quente, devora massa da companheira estelar normal, levando a explosões de luz à medida que o material é ingerido. O sistema também acabou por ser um binário eclipsante, em que a relativamente maior estrela normal passa diretamente em frente da mais pequena, mas mais brilhante, anã branca, tapando-a periodicamente a partir do ponto de vista da Terra.

Invulgarmente, ambas as estrelas neste sistema parecem ter uma abundância de hélio mas pouco hidrogênio. Os dados da descoberta do Gaia e observações de acompanhamento podem ajudar os astrônomos a melhor compreender como as duas estrelas perderam o seu hidrogênio.

O Gaia também descobriu uma grande variedade de estrelas cujo brilho sofre mais alterações regulares ao longo do tempo. Muitas destas descobertas foram feitas entre julho e agosto de 2014, enquanto o Gaia realizava bastantes observações subsequentes de algumas áreas do céu perto dos polos eclípticos. Esta sequência de observações e amostras tornou possível a descoberta e o estudo de estrelas variáveis localizadas nestas regiões.

A famosa Grande Nuvem de Magalhães (LMC), uma galáxia anã satélite da Via Láctea, está localizada perto do polo sul da eclíptica. O Gaia forneceu curvas de luz detalhadas de dúzias de estrelas variáveis do tipo RR Lyrae na LMC e os detalhes revelados nas mesmas atestam a alta qualidade dos dados.

Outro objeto curioso estudado durante a mesma fase da missão: a Nebulosa Olho de Gato, vista no topo desta postagem. Também conhecida como NGC 6543, é uma nebulosa planetária situada perto do polo norte da eclíptica.

As nebulosas planetárias são formadas quando as camadas exteriores de uma velha estrela de baixa massa são expelidas e interagem com o meio interestelar circundante, deixando para trás uma anã branca compacta. O Gaia fez mais de 200 observações da Nebulosa Olho de Gato e registou mais de 84.000 deteções que traçam com precisão os intricados filamentos gasosos por que tais objetos são famosos. À medida que as observações continuam, o Gaia será capaz de ver a expansão dos nós nebulares, nesta e noutras nebulosas planetárias.

Mais perto de casa, o Gaia detectou uma grande quantidade de asteroides, pequenos corpos rochosos que povoam o nosso Sistema Solar, principalmente entre as órbitas de Marte e Júpiter. Tendo em conta que estão relativamente próximos e que orbitam o Sol, os asteroides movem-se contra o fundo estelar nas imagens astronômicas, aparecendo num instantâneo de um determinado campo, mas não em imagens do mesmo campo obtidas em momentos posteriores.

Os cientistas do Gaia desenvolveram um software especial para procurar estes dados extremos, combinando-os com as órbitas de asteroides conhecidos a fim de os remover dos dados que estão sendo usados para estudar estrelas. Mas, por sua vez, esta informação será utilizada para caracterizar asteroides conhecidos e para descobrir milhares de novos.

Finalmente, além das medições astrométricas e fotométricas, o Gaia tem recolhido espectros de muitas estrelas. Estes dados serão utilizados para determinar os movimentos das estrelas ao longo da linha de visão medindo ligeiras mudanças nas posições das linhas de absorção no seu espectro devido ao efeito Doppler. Mas nos espectros de algumas estrelas quentes, o Gaia também observou linhas de absorção em gás de material interestelar de primeiro plano, o que permitirá aos cientistas medir a sua distribuição.

"Estes estudos iniciais demonstram a qualidade dos dados recolhidos até agora pelo Gaia e as capacidades de processamento. Os produtos finais dos dados ainda não estão prontos, mas estamos trabalhando arduamente para fornecer o primeiro no próximo ano," conclui Timo.

Fonte: ESA

sábado, 25 de abril de 2015

O aglomerado de formação estelar Westerlund 2

A tapeçaria brilhante de jovens estrelas ganha vida nessa nova imagem feita pelo telescópio espacial Hubble e lembra a explosão de fogos de artifícios no céu.

aglomerado estelar Westerlund 2

© Hubble (aglomerado estelar Westerlund 2)

Essa vibrante imagem do aglomerado estelar, conhecido como Westerlund 2, foi lançada para celebrar o vigésimo quinto aniversário do Hubble na órbita da Terra e um quarto de século de novas descobertas, imagens impressionantes e uma ciência inigualável. O aglomerado estelar Westerlund 2 foi descoberto na década de 1960 pelo o astrônomo sueco Bengt Westerlund.

No dia 24 de Abril de 1990, o telescópio espacial Hubble foi colado em órbita pelo ônibus espacial Discovery, tornando-se o primeiro telescópio espacial deste tipo. Ele ofereceu uma nova visão do Universo, e durante este tempo tem alcançado e superado todas as expectativas, enviando para a Terra, dados e imagens que têm mudado a maneira com a qual os cientistas entendem o Universo e a percepção que o público tem dele.

região central do aglomerado estelar Westerlund 2

© Hubble (região central do aglomerado estelar Westerlund 2)

Nessa imagem, o centro brilhante do gigantesco aglomerado estelar Westerlund 2 contém cerca de 3.000 estrelas. O aglomerado reside num local estelar muito fértil, conhecido como Gum 29, localizado a cerca de 20.000 anos-luz de distância da Terra, na constelação de Carina.

O berçário estelar é difícil de ser observado pois ele fica envolto por poeira, mas a Wide Field Camera 3 do Hubble consegue espiar através do véu empoeirado usando para isso os seus detectores de radiação infravermelha, dando assim aos astrônomos uma visão clara do aglomerado. A visão nítida do Hubble resolve a densa concentração de estrelas no aglomerado central, que mede somente cerca de 10 anos-luz de diâmetro.

O gigantesco aglomerado de estrelas tem somente dois milhões de anos de vida, mas contém algumas das mais brilhantes, quentes e massivas estrelas já descobertas. Algumas dessas estrelas estão cavando as profundas cavidades no material ao redor, lançando correntes de radiação ultravioleta e fluxos de alta velocidade de partículas carregadas, conhecidos como ventos estelares. Esses ventos, por sua vez estão soprando para longe a nuvem de gás hidrogênio onde as estrelas estavam nascendo e são responsáveis pelas estranhas e maravilhosas formas das nuvens de gás de poeira observadas na imagem.

Os pilares na imagem são compostos de densas concentrações de gás e poeira, e são resistentes à erosão da forte radiação e dos poderosos ventos. Esses monolitos gasosos possuem alguns anos-luz de altura e apontam para a região central do aglomerado. Outras regiões gasosas circundam os pilares, incluindo filamentos escuros de poeira e gás.

Além de esculpir a região gasosa, as brilhantes estrelas podem também ajudar a criar uma nova geração de novas estrelas. Quando o vento estelar atinge as densas paredes de gás, é criada uma onda de choque, que gera uma nova onda de formação de estrelas, ao longo da parede da cavidade. Os pontos vermelhos espalhados através da paisagem cósmica são ricas populações de estrelas em formação que ainda estão embrulhadas nos seus casulos de gás e poeira. Esses fetos estelares ainda não iniciaram em seu interior a fusão do hidrogênio, para então brilharem como estrelas. Contudo a visão do Hubble no infravermelho próximo permite que os astrônomos identifiquem esses bebês estelares. As estrelas azuis brilhantes vistas através da imagem são na sua maioria estrelas de primeiro plano e que não pertencem ao aglomerado.

A região central da imagem, contendo o aglomerado estelar, só é visível pois foi feita uma mistura dos dados em luz visível obtidos pela Advanced Camera for Surveys e pelas exposições em infravermelho próximo feitas pela Wide Field Camera 3. A região ao redor é vista graças às observações feitas na luz visível pela Advanced Camera for Surveys do Hubble.

Essa imagem é um testamento sobre o poder observacional do Hubble, e demonstra que, mesmo com 25 anos de operação, a história do Hubble está longe de acabar. O Hubble está preparando o palco para o seu companheiro o telescópio espacial James Webb, programado para ser lançado em 2018, mas ele não será imediatamente substituído por essa nova maravilha da engenharia, mas sim irão trabalhar em conjunto. Agora, 25 anos depois do seu lançamento, é o momento de celebrar o potencial futuro do Hubble bem como lembrar a sua história marcante.

Fonte: Space Telescope Science Institute