quarta-feira, 16 de dezembro de 2015

Caçada XXL de Aglomerados de Galáxias

Os telescópios do ESO forneceram a uma equipe internacional de astrônomos a terceira dimensão na maior caçada até hoje das maiores estruturas gravitacionalmente ligadas do Universo: os aglomerados de galáxias.


© ESA/XMM-Newton (imagem de raios X do campo sul do XXL)

A área vista nesta imagem foi obtida com cerca de 220 observações do XMM-Newton e, vista no céu, teria uma área bidimensional, ou seja, sem considerar a profundidade explorada no rastreio, de 100 vezes a área da Lua Cheia (a qual cobre cerca de meio grau do céu). Os círculos vermelhos mostram os aglomerados de galáxias detectados pelo rastreio. Juntamente com campo norte do XXL foram descobertos cerca de 450 aglomerados neste rastreio, que os mapeou até um momento em que o Universo tinha apenas metade da sua idade atual. A imagem mostra também algumas das 12.000 galáxias detectadas no campo, que apresentam núcleos muito brilhantes contendo buracos negros.
Observações obtidas pelo VLT e pelo NTT complementam as captadas por outros observatórios em todo o mundo e no espaço, no âmbito do rastreio XXL, uma das maiores buscas destes aglomerados.
Os aglomerados de galáxias são conjuntos massivos de galáxias que abrigam enormes reservatórios de gás quente, as temperaturas são tão elevadas que se produzem raios X. Estas estruturas são úteis para os astrônomos porque se pensa que a sua construção é influenciada pelas componentes mais estranhas do Universo, a matéria escura e a energia escura. Por isso, ao estudar as suas propriedades em diferentes fases da história do Universo, os aglomerados de galáxias podem ajudar-nos a compreender melhor o lado escuro do Universo.
A equipe, composta por mais de 100 astrônomos de todo o mundo, começou uma busca destes monstros cósmicos em 2011. Apesar da radiação de raios X de alta energia que revela a sua localização ser absorvida pela atmosfera terrestre, podemos detectá-la com a ajuda de observatórios de raios X colocados no espaço. Assim, combinou-se um rastreio realizado pelo XMM-Newton da ESA, executado com a  maior quantidade de tempo de observação já concedido neste telescópio, com observações do ESO e de outros observatórios. O resultado é uma enorme e crescente coleção de dados que cobre todo o espectro eletromagnético, coletivamente chamada rastreio XXL. O rastreio XXL combinou dados de arquivo com novas observações de aglomerados de galáxias, cobrindo assim um domínio de comprimentos de onda que vai de 1x10-4 μm (raios X, observados com o XMM) a mais de 1 metro (ondas de rádio, observadas com o Giant Metrewave Radio Telescope [GMRT]).
“O objetivo principal do rastreio XXL é fornecer uma amostra bem definida de cerca de 500 aglomerados de galáxias até uma distância correspondente a uma idade do Universo de cerca de metade da sua idade atual,” explica a pesquisadora principal do XXL, Marguerite Pierre do CEA, Saclay, França.
O telescópio XMM-Newton fez imagens de duas regiões do céu, cada uma com cem vezes a área da Lua Cheia, numa tentativa de descobrir um grande número de aglomerados de galáxias previamente desconhecidos. A equipe do rastreio XXL divulgou agora os seus resultados numa série de artigos científicos sobre os 100 aglomerados mais brilhantes descobertos. Os aglomerados de galáxias de que tratam os 13 artigos científicos encontram-se a desvios para o vermelho entre z = 0,05 e z = 1,05, o que corresponde a uma idade do Universo entre 13 e 5,7 bilhões de anos, respectivamente.
Observações obtidas com o instrumento EFOSC2 instalado no New Technology Telescope (NTT), juntamente com observações do instrumento FORS montado no Very Large Telescope (VLT) do ESO, foram também utilizadas para analisar de modo cuidadoso a radiação emitida pelas galáxias destes aglomerados.  Estas observações permitiram aos astrônomos medir as distâncias precisas aos aglomerados de galáxias, dando-nos assim uma vista tridimensional do cosmos, absolutamente necessária para fazer medições da matéria escura e da energia escura. Para estudar os aglomerados de galáxias é necessário conhecer a sua distância precisa. Embora distâncias aproximadas, desvios para o vermelho fotométricos, possam ser medidas por análise das suas cores a diferentes comprimentos de onda, são necessários desvios para o vermelho espectroscópicos mais precisos. Estes desvios para o vermelho foram também obtidos nos dados de arquivo, como parte do rastreio VIPERS (VIMOS Public Extragalactic Redshift Survey), do rastreio VVDS (VIMOS-VLT Deep Survey) e do rastreio GAMA.
Espera-se que o rastreio XXL produza muitos resultados excitantes e inesperados, mas apenas com um quinto dos dados que se esperam obter no final, obtiveram-se já alguns resultados importantes e surpreendentes.
Um dos artigos científicos relata a descoberta de cinco novos superaglomerados que se juntam àqueles já conhecidos, tais como o nosso próprio superaglomerado, o Superaglomerado Laniakea.
Outro artigo trata de observações de seguimento obtidas para um aglomerado de galáxias em particular (conhecido pelo nome informal de XLSSC-116), situado a cerca de seis bilhões de anos-luz de distância. Este aglomerado de galáxias foi encontrado a um desvio para o vermelho z = 0,543. Com o instrumento MUSE do VLT observou-se neste aglomerado uma fonte de luz difusa estranhamente brilhante.
“Esta é a primeira vez que conseguimos estudar com detalhe a radiação difusa de um aglomerado de galáxias distante, pondo assim em evidência o poder do MUSE neste tipo de estudos,” explicou Christoph Adami do Laboratoire d´Astrophysique, Marseille, França.
A equipe utilizou também os dados para confirmar a ideia de que no passado os aglomerados de galáxias são muito menores que os que observamos atualmente, uma descoberta importante para a compreensão teórica da evolução dos aglomerados ao longo da vida do Universo.
O simples ato de contar os aglomerados de galáxias nos dados XXL confirmou também um resultado anterior algo estranho, existem menos aglomerados distantes do que o esperado com base nas predições dos parâmetros cosmológicos medidos pelo telescópio Planck da ESA. A razão desta discrepância não é conhecida, no entanto a equipe espera resolver esta curiosidade cosmológica quando tiver acesso à amostra total de aglomerados em 2017.
Estes quatro resultados importantes são apenas o preâmbulo do que ainda está para vir deste enorme rastreio de alguns dos mais massivos objetos do Universo.
Uma descrição do rastreio e alguns dos resultados científicos anteriores foram descritos numa série de artigos científicos que foram publicados ontem na revista especializada Astronomy & Astrophysics.

Fonte: ESO

Resolvido o mistério da água faltante em exoplanetas

Um estudo de 10 "Júpiteres quentes", feito com o Hubble e o Spitzer, conduziu à resolução de um mistério de longa data, a razão porque alguns destes mundos parecem ter menos água do que o esperado.


© NASA/ESA/D. Sing (ilustração de dez Júpiteres quentes)

Os resultados fornecem novos dados sobre a ampla gama de atmosferas planetárias na nossa Galáxia e sobre a formação de planetas.
Dos quase 2.000 planetas confirmados em órbita de outras estrelas, um subconjunto são planetas gasosos com características semelhantes às de Júpiter, mas que orbitam muito perto das suas estrelas, tornando-os muito quentes.
A sua proximidade à estrela torna difícil a observação devido ao brilho estelar. Por causa deste obstáculo, o Hubble só explorou apenas uma dezena de Júpiteres quentes no passado. Estes estudos iniciais descobriram vários planetas com menos água do que o previsto pelos modelos atmosféricos.
Uma equipe internacional de astrônomos enfrentou o problema fazendo o maior catálogo espectroscópico de atmosferas exoplanetárias. Todos os planetas no catálogo seguem órbitas orientadas de modo a que o planeta passa em frente da sua estrela progenitora, a partir da perspetiva da Terra. Durante este evento a que chamamos trânsito, alguma da luz estelar viaja através da atmosfera exterior do planeta. "A atmosfera deixa a sua impressão digital única na luz estelar, que podemos estudar quando chega até nós," explica Hannah Wakeford, do Goddard Space Flight Center da NASA.
Ao combinar dados dos telescópios espaciais Hubble e Spitzer da NASA, a equipe foi capaz de obter um espectro amplo que cobre comprimentos de onda desde o óptico até ao infravermelho. A diferença no raio planetário, conforme medido entre os comprimentos de onda visíveis e infravermelhos, foi usada para indicar o tipo de atmosfera planetária observada para cada planeta na amostra, se era muito nublado ou limpo. Um planeta nublado aparece maior no visível do que no infravermelho, que pode penetrar mais profundamente na atmosfera. Foi esta comparação que permitiu com que a equipe encontrasse uma correlação entre as atmosferas nubladas e a tênue detecção de água.
"Estou muito animado por finalmente ver os dados deste vasto grupo de planetas, pois é a primeira vez que temos cobertura suficiente para comparar várias características entre um planeta e outro," afirma David Sing da Universidade de Exeter, no Reino Unido. "Descobrimos que as atmosferas planetárias são muito mais diversificadas do que esperávamos."
"Os nossos resultados sugerem que são simplesmente as nuvens que escondem a água e, portanto, excluem a hipótese de Júpiteres quentes e secos," explica Jonathan Fortney da Universidade da Califórnia, em Santa Cruz. "A teoria alternativa é que os planetas se formam num ambiente privado de água, mas isto exigiria repensar completamente as nossas teorias atuais sobre a formação de planetas."
O estudo das atmosferas exoplanetárias está atualmente na sua infância. O sucessor do Hubble, o James Webb Space Telescope (JWST), abrirá uma nova janela infravermelha no estudo dos exoplanetas e suas atmosferas.
Os resultados foram publicados na revista Nature.

Fonte: ESA & NASA

segunda-feira, 14 de dezembro de 2015

Uma nebulosa planetária dividida

A nuvem de gás vista a seguir, observada pelo instrumento ESO Faint Object Spectrograph and Camera (EFOSC2) instalado no Observatório de La Silla do ESO, pode ser encontrada bem aninhada na constelação do Centauro no céu do hemisfério sul.


© ESO (NGC 3699)

A nuvem de gás, chamada NGC 3699, é uma nebulosa planetária, que se distingue por ter uma aparência irregular com manchas e uma linha escura, que de modo genérico a separa ao meio.
Estes objetos, que apesar do nome nada têm a ver com planetas, formam-se durante as fases finais da evolução de estrelas do tipo do Sol. O nome “nebulosa planetária” vem da época da sua descoberta por William Herschel quando, através dos telescópios existentes na época, se viam como objetos redondos parecidos a planetas.
No final das suas vidas, as estrelas do tipo solar gastam o depósito de hidrogênio situado no seu centro, o que faz parar as reações nucleares. Este aspecto dá origem à contração do núcleo da estrela sob ação da força da gravidade e aquecimento subsequente, enquanto as camadas exteriores mais frias se expandem imensamente; a superfície do Sol, por exemplo, irá muito provavelmente chegar à órbita da Terra quando o Sol atingir esta fase da sua evolução. Ventos estelares excepcionalmente fortes empurram as camadas exteriores gasosas para o espaço, deixando eventualmente a descoberto o núcleo da estrela, que começa a emitir radiação ultravioleta, ionizando o gás expelido e dando origem ao brilho etéreo da nebulosa e criando vistas bonitas e variadas, como é o caso do objeto desta imagem.

Fonte: ESO

sexta-feira, 11 de dezembro de 2015

Novas pistas sobre as manchas brilhantes de Ceres e suas origens

A sonda Dawn da NASA revelou alguns dos segredos bem guardados de Ceres, que incluem informações antecipadas sobre as brilhantes características encontradas à superfície do planeta anão.


© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA (cratera Occator em Ceres)

Num estudo, cientistas identificam este material brilhante como uma espécie de sal. O segundo estudo sugere a detecção de argilas ricas em amônia, levantando questões sobre a formação de Ceres.
Ceres tem mais de 130 áreas brilhantes e a maioria está associada com crateras de impacto. Os autores do estudo, liderados por Andreas Nathues do Instituto Max Planck para a Pesquisa do Sistema Solar, na Alemanha, escrevem que o material brilhante é consistente com um tipo de sulfato de magnésio chamado hexahidrato. Um tipo diferente de sulfato de magnésio é conhecido aqui na Terra como sal de Epsom.
Nathues e colegas, usando imagens da câmara de enquadramento da Dawn, sugerem que estas áreas ricas em sal foram deixadas para trás quando a água gelada sublimou no passado. Os impactos de asteroides terão deixado a descoberto a mistura de gelo e sal.
"A natureza global das manchas brilhantes de Ceres sugere que este mundo tem uma camada subsuperficial que contém água gelada e salgada," acrescenta Mathues.
A superfície de Ceres, cujo diâmetro médio é de 940 quil\õmetros, é geralmente escura, parecida em brilho com asfalto fresco. As manchas brilhantes que salpicam a superfície representam uma grande gama de brilho, em que as áreas mais brilhantes refletem cerca de 50% da luz solar que aí incide. Mas não houve, até ao momento, uma detecção inequívoca de água gelada em Ceres; são necessários dados de melhor resolução para resolver esta questão.
A porção interior de uma cratera chamada Occator contém o material mais brilhante em Ceres. Occator mede 90 km em diâmetro e o seu fosso central, coberto por este material brilhante, mede cerca de 10 km de largura e 0,5 km de profundidade. Estrias escuras, possivelmente fraturas, atravessam o fosso. Restos de um pico central, que teve até 0,5 km de altura, também podem ser vistos.
Com as suas orlas e paredes, "terraços" abundantes e depósitos de deslizamentos, Occator parece ser uma das características mais jovens de Ceres. Os cientistas da missão estimam que a sua idade ronde os 78 milhões de anos.
Os autores do estudo escrevem que algumas das imagens de Occator parecem mostrar uma névoa difusa, perto da superfície, que preenche o solo da cratera. Isto pode estar associado com observações de vapor de água em Ceres pelo observatório espacial Herschel, divulgadas em 2014. A névoa parece estar presente em imagens obtidas ao meio-dia, hora local, e ausente ao amanhecer e anoitecer. Isto sugere que o fenômeno se assemelha com a atividade de um cometa, no qual o vapor de água levanta partículas minúsculas de poeira e gelo residual. Os dados e análises futuras podem testar esta hipótese e revelar pistas sobre o processo que desencadeia esta atividade.
"A equipe científica da Dawn está ainda discutindo estes resultados e analisando dados para melhor compreender o que está acontecendo em Occator," afirma Chris Russell, pesquisador principal da missão Dawn, da Universidade da Califórnia em Los Angeles.
No segundo estudo, os membros da equipe científica da Dawn examinaram a composição de Ceres e descobriram evidências de argilas ricas em amônia. Usaram dados do espectrômetro de mapeamento no visível e infravermelho, um instrumento que observa luz em vários comprimentos de onda para estudar como é refletida pela superfície, permitindo a identificação de minerais.
A amônia gelada, por si só, evaporaria em Ceres no presente, porque o planeta anão é demasiado quente. No entanto, as moléculas de amônia podem permanecer estáveis quando presentes em combinação com outros minerais.
A presença de compostos de amônia levanta a possibilidade que Ceres não teve origem no cinturão de asteroides entre Marte e Júpiter, onde reside atualmente, mas ao invés pode ter-se formado no Sistema Solar exterior. Outra ideia é que Ceres formou-se mais perto da sua posição atual, incorporando materiais que viajavam desde o Sistema Solar exterior, perto da órbita de Netuno, onde os gelos de nitrogênio são termicamente estáveis.
"A presença de substâncias com amônia sugere que Ceres é composto de material acrescido num ambiente onde a amônia e o nitrogênio eram abundantes. Consequentemente, pensamos que este material é originário do mais frio Sistema Solar exterior," explica Maria Cristina De Sanctis, autora principal do estudo, do Instituto Nacional de Astrofísica em Roma, Itália.
Ao comparar o espectro de luz refletida por Ceres com o dos meteoritos, os cientistas descobriram algumas semelhanças. Especificamente, concentraram-se no espectro, impressões digitais químicas, dos condritos carbonáceos, um tipo de meteorito rico em carbono que se pensa ser análogo ao planeta anão. Mas, não perfazem boas correspondências em todos os comprimentos de onda que o instrumento estudou. Em particular, existem bandas distintas de absorção, correspondendo a misturas de minerais com amônia, associadas com comprimentos de onda que não podem ser observados a partir de telescópios terrestres.
Outra diferença que os cientistas notaram, é que estes condritos carbonáceos têm conteúdos de água de 15 a 20%, enquanto o teor de Ceres atinge os 30%.
"Ceres pode ter retido mais voláteis do que estes meteoritos, ou pode ter acrescido a água a partir de materiais ricos em voláteis," afirma De Sanctis.
O estudo também mostra que as temperaturas diurnas à superfície de Ceres vão desde os 180 até aos 240 Kelvin. As temperaturas máximas foram medidas na região equatorial. As temperaturas no equador e perto do equador são geralmente demasiado elevadas para suportar gelo à superfície durante muito tempo, mas os dados da próxima órbita da Dawn vão revelar mais detalhes.
Esta semana, a Dawn alcançou a sua órbita final em Ceres, a cerca de 385 km acima da superfície do planeta anão. Daqui a alguns dias começará a fazer observações a partir desta órbita, incluindo imagens com uma resolução de 35 metros por pixel, espectros de nêutrons, no infravermelho, em raios gama e dados de gravidade em alta resolução.
Os dois novos estudos foram publicados na revista Nature.

Fonte: NASA & Max Planck Institute for Solar System Research

Arp 87: fusão de galáxias vista pelo Hubble

Esta dança é mortal.


© Hubble (Arp 87)

Ao longo do tempo, estas duas galáxias duelam entre si, unindo-as e formando uma ponte cósmica de estrelas, gases e poeira que se espalham por 75.000 anos-luz.
A ponte propriamente dita é uma forte evidência de que estes dois sistemas estelares imensos passaram perto uma do outra e experimentaram violentas marés induzidas pela mútua gravidade.
Como evidência adicional, a galáxia espiral de frente à direita, também conhecida como NGC 3808A, exibe muitos aglomerados de estrelas azuis jovens produzidas devido a um surto de formação estelar.
A galáxia retorcida NGC 3808B à esquerda que se mostra perfilada e parece estar enrolada pelo material da ponte de galáxias e envolvida por um curioso anel polar.
Juntas, o par de galáxias desse sistema foi catalogado formalmente como Arp 87. Estas galáxias foram classificadas morfologicamente como peculiares.
Estas interações se alongam por bilhões de anos, em repetidas passagens que resultarão na morte de uma das galáxias, sendo que apenas uma galáxia eventualmente irá sobreviver. Embora este cenário possa parecer peculiar, as fusões de galáxias são fenômenos relativamente comuns, onde o Arp 87 representa um exemplo de uma fase deste processo inevitável.
O par Arp 87 está localizado a cerca de 300 milhões de anos-luz de distância na direção da constelação do Leão. Uma outra galáxia visível em destaque nesta imagem, abaixo e à esquerda, não está envolvida nesse processo pois está bem mais distante e não interfere no sistema Arp 87.

Fonte: NASA

quarta-feira, 9 de dezembro de 2015

O Very Large Telescope revisita uma interessante colisão cósmica

O Very Large Telescope (VLT) do ESO, instalado no Observatório do Paranal, obteve novas imagens que revelam a espetacular consequência de uma colisão cósmica com 360 milhões de anos.

região em torno da galáxia em interação NGC 5291

© ESO (região em torno da galáxia em interação NGC 5291)

Entre os restos da colisão encontra-se uma jovem galáxia anã rara e misteriosa. Esta galáxia fornece uma excelente oportunidade de aprender mais sobre galáxias semelhantes que se pensa serem comuns no Universo primordial, mas que são normalmente muito tênues e se encontram muito distantes para poderem ser observadas com os telescópios atuais.

A galáxia NGC 5291, a oval difusa e dourada que domina o centro da imagem acima, é uma galáxia elíptica situada a quase 200 milhões de anos-luz de distância na constelação do Centauro. Há cerca de 360 milhões de anos atrás, a NGC 5291 esteve envolvida numa colisão dramática e violenta quando outra galáxia que viajava com altas velocidades chocou contra o seu núcleo. O choque cósmico originou a ejeção de enormes quantidades de gás para o espaço próximo que, mais tarde, deram origem à formação de um anel em torno da NGC 5291, que está também atualmente em interação, embora mais suavemente, com MCG-05-33-005, ou Galáxia da Concha, a estranha galáxia em forma de vírgula que parece estar parasitando o núcleo luminoso da NGC 5291.
Com o tempo, o material deste anel juntou-se e colapsou para formar muitas regiões de formação estelar e várias galáxias anãs, que aparecem como regiões brancas e azuis pálidas espalhadas em torno da NGC 5291 nesta nova imagem obtida pelo instrumento FORS, montado no VLT. A aglomeração de matéria mais massiva e luminosa, à direita de NGC 5291, é uma destas galáxias anãs, conhecida por NGC 5291N.
Pensa-se que a Via Láctea, como todas as galáxias grandes, se formou nos primórdios do Universo a partir da fusão de várias galáxias anãs menores. Estas galáxias pequenas, se sobrevivem por si próprias até aos nossos dias, contêm normalmente muitas estrelas extremamente velhas.
No entanto, a NGC 5291N parece não conter nenhuma estrela velha. Observações detalhadas obtidas com o espectrógrafo MUSE mostraram também que as regiões mais exteriores da galáxia possuem propriedades tipicamente associadas com a formação de novas estrelas, mas o que é observado não é previsto pelos atuais modelos teóricos. Os astrônomos suspeitam que estes aspectos invulgares possam ser o resultado de colisões massivas de gás na região.
A NGC 5291N não se parece com uma galáxia anã típica, antes pelo contrário, partilha um número impressionante de semelhanças com as estruturas que aparecem em muitas galáxias com formação estelar ativa no Universo distante, o que a torna um sistema único no nosso Universo local e um importante laboratório para o estudo de galáxias primordiais ricas em gás, as quais estão normalmente demasiado distantes para se poderem observar de forma detalhada com os telescópios atuais.
Este sistema incomum já foi observado anteriormente por uma grande quantidade de observatórios colocados em solo. A NGC 5291 foi estudada pelos astrônomos em 1978 com o auxílio do telescópio de 3,6 metros do ESO instalado no Observatório de La Silla. Estas observações revelaram enormes quantidades de material no espaço intergalático em torno da galáxia, o que sabemos agora serem as regiões de formação estelar e várias galáxias anãs formadas a partir do colapso do anel gasoso da galáxia. No entanto, as capacidades do MUSE, do FORS e do VLT só agora nos permitiram determinar algumas das propriedades e história da NGC 5291N.
Observações futuras, incluindo as que serão obtidas com o European Extremely Large Telescope (E-ELT), permitirão aos astrônomos desvendar ainda melhor os restantes mistérios desta galáxia anã.

Este trabalho foi descrito no artigo científico intitulado “Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N”, de J. Fensch et al., que será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 8 de dezembro de 2015

Revelados os campos magnéticos do buraco negro no centro da Via Láctea

A maior parte das pessoas acreditam que os buracos negros são imensos aspiradores cósmicos que sugam tudo que chega perto deles.

ilustração de um buraco negro e seu horizonte de eventos

© CfA/M. Weiss (ilustração de um buraco negro e seu horizonte de eventos)

Mas os buracos negros supermassivos no centro das galáxias são mais parecidos com motores cósmicos, convertendo energia da matéria que cai na sua direção numa intensa radiação que pode brilhar de forma combinada com a luz de todas as estrelas ao redor. Se o buraco negro está girando, ele pode gerar fortes jatos que são expelidos por milhares de anos-luz e dão forma a galáxias inteiras. Estes buracos negros provavelmente são energizados por campos magnéticos. Pela primeira vez, foram detectados os campos magnéticos fora do horizonte de eventos do buraco negro localizado no centro da Via Láctea.

“Entender estes campos magnéticos é algo crítico. Ninguém tem sido capaz de resolver os campos magnéticos perto do horizonte de eventos, até agora”, disse o principal autor do estudo, Michael Johnson do Harvard-Smithsonian Center for Astrophysics (CfA).

“Estes campos magnéticos têm sido previstos, mas ninguém tinha vistos antes. Nossos dados colocam décadas de trabalhos teóricos no campo sólido observacional”, adiciona o principal pesquisador Shep Doeleman do CfA/MIT, que é diretor assistente do Observatório de Haystack do Massachusetts Institute of Technology (MIT).

Esta conquista foi obtida usando o Event Horizon Telescope (EHT), uma rede global de radiotelescópios que trabalham de forma conjunta como sendo um gigantesco telescópio do tamanho da Terra. Como, quanto maior o telescópio, mais detalhes podemos observar, o EHT irá resolver detalhes menores que 15 micro-arcos de segundos (um arco de segundo é 1/3.600 de um grau, e 15 micro-arcos de segundos é o equivalente angular ao observar uma bola de golfe na Lua).

Esta resolução é necessária pois um buraco negro é o objeto mais compacto do Universo. O buraco negro da Via Láctea, o Sgr A*, tem uma massa equivalente a 4 milhões de vezes a massa do Sol, e seu horizonte de eventos se espalha por somente 12,87 milhões de quilômetros, menor do que a distância de Mercúrio ao Sol. E, pelo fato dele estar localizado a cerca de 25.000 anos-luz de distância, seu tamanho corresponde aos incríveis 10 micro-arcos de segundos de diâmetro. Felizmente, a intensa gravidade do buraco negro distorce a luz e amplia o horizonte de eventos, de modo que ele parece maior no céu, com cerca de 50 micro-arcos de segundo, uma região que o EHT pode facilmente decifrar.

O EHT fez observações no comprimento de onda de 1,3 mm. A equipe mediu como que a luz é linearmente polarizada. Na Terra, a luz do Sol se torna linearmente polarizada por reflexões, tal como os óculos de Sol são polarizados para bloquear a luz e reduzir o brilho. No caso do Sgr A*, a luz polarizada é emitida por elétrons espiralando ao redor das linhas do campo magnético. Como resultado, essa luz traça diretamente a estrutura do campo magnético.

O Sgr A* é circundado por um disco de acreção de material orbitando o buraco negro. A equipe descobriu que os campos magnéticos em algumas regiões perto do buraco negro são desordenados, com arcos e nós lembrando fios embaraçados. Em contraste, outras regiões mostraram um padrão muito mais organizado, possivelmente na região onde os jatos seriam gerados.

Foi descoberto também que os campos magnéticos flutuaram em escalas de tempo pequena de somente 15 minutos.

Estas observações usaram as instalações astronômicas em três localizações geográficas: o telescópio Submillimeter Array e o telescópio James Clerk Maxwell, ambos em Mauna Kea, no Havaí, o telescópio Submillimeter no Monte Graham no Arizona, e o Combined Array for Research in Millimeter-wave Astronomy (CARMA), perto de Bishop, na Califórnia. À medida que o EHT adiciona mais antenas de rádio ao redor do mundo e adquiri mais dados, ele conseguirá uma resolução maior, com o objetivo de obter diretamente pela primeira vez o horizonte de eventos de um buraco negro.

“A única maneira de construir um telescópio que tenha o tamanho da Terra, é integrando grupos de cientistas ao redor do mundo trabalhando juntos. Com esse resultado, a equipe do EHT dá mais um passo na direção de resolver um paradoxo central na astronomia: por que os buracos negros são tão brilhantes?” explicou Doeleman.

Os resultados foram publicados na revista Science.

Fonte: Harvard-Smithsonian Center for Astrophysics

New Horizons observa um plutino

No mês de novembro deste ano, a New Horizons captou imagens de um objeto distante do Cinturão de Kuiper, demonstrando assim a sua capacidade para observar numerosos destes corpos durante os próximos 3 anos, caso a NASA aprove uma extensão à missão original, que incluirá o encontro em 2019 com um membro da população fria do Cinturão de Kuiper, o objeto transnetuniano 2014 MU69.

Plutino 1994 JR1

© NASA/JHUAPL/SwRI (Plutino 1994 JR1)

O objeto agora observado denomina-se (15810) 1994 JR1 e é um plutino com um comportamento dinâmico bastante peculiar. O objeto 1994 JR1 é visto acima numa sequência de 4 imagens obtidas pela câmara LORRI da sonda New Horizons, em 2 de novembro de 2015. O 1994 JR1 tem aproximadamente 127 km de diâmetro e, no momento, encontrava-se a cerca de 3,3 bilhões de quilômetros de distância do Sol.

Simulações da sua trajetória orbital sugerem que este objeto é um quase-satélite de Plutão, o primeiro e único conhecido numa órbita transnetuniana. Esta relação parece manter-se há quase 100 mil anos e deverá ser interrompida dentro de 250 mil anos, quando o 1994 JR1 alcançar o ponto langragiano L5 do sistema Sol-Plutão.

As imagens da New Horizons foram captadas a uma distância de 280 milhões de quilômetros e mostram o 1994 JR1 movendo-se sobre um fundo de estrelas brilhantes. Os responsáveis da missão pretendem usar estas observações para conhecerem melhor as características orbitais destes objetos.

Fonte: Johns Hopkins University Applied Physics Laboratory

domingo, 6 de dezembro de 2015

Cygnus: Bolha e Crescente

Estas nuvens de gás e poeira deriva através de ricos campos de estrelas ao longo do plano da Via Láctea em direção da constelação Cygnus.

Nebulosa Bolha de Sabão & Nebulosa Crescente

© Ivan Eder (Nebulosa Bolha de Sabão & Nebulosa Crescente)

Captada dentro do campo de visão telescópica estão a Nebulosa Bolha de Sabão (canto inferior esquerdo) e a Nebulosa Crescente (canto superior direito). Ambas foram formados na fase final da vida de uma estrela. A Nebulosa Crescente, também conhecida como NGC 6888, foi lapidada como um brilhante pela estrela maciça central Wolf-Rayet, WR 136, que derramou o seu envelope exterior em um forte vento estelar. Queimando seu combustível através de uma taxa prodigiosa, a WR 136 está perto do fim de uma vida curta, que deve terminar em uma espetacular explosão de supernova. Recentemente descoberta a Nebulosa Bolha de Sabão, denominada de PN G75.5+1.7, é uma nebulosa planetária, a mortalha final de uma estrela parecida com o Sol, de baixa massa e de longa vida, e por intermédio de um lento arrefecimento está destinada a se tornar uma anã branca. Embora ambas estejam a aproximadamente de 5.000 anos-luz de distância, a Nebulosa Crescente é maior com cerca de 25 anos-luz de diâmetro.

Fonte: NASA

sábado, 5 de dezembro de 2015

Metade dos candidatos a exoplanetas do Kepler são falsos positivos

Uma equipe internacional, liderada por Alexandre Santerne do Instituto de Astrofísica e Ciências do Espaço (IA), concluiu uma campanha de 5 anos para medir velocidades radiais, com o espectrógrafo SOPHIE (Observatory of Haute-Provence, França), e descobriram que 52,3% dos candidatos a exoplanetas gigantes detectados pelo telescópio espacial Kepler (NASA) são na realidade binários de eclipse, enquanto 2,3% são anãs marrons.

ilustração do exoplaneta 51 Pegasi b orbitando sua estrela

© ESO/M. Kornmesser/Nick Risinger (ilustração do exoplaneta 51 Pegasi b orbitando sua estrela)

Esta ilustração mostra o exoplaneta do tipo Júpiter quente 51 Pegasi b, que orbita uma estrela a cerca de 50 anos-luz de distância, na constelação de Pégaso. Este objeto foi o primeiro exoplaneta a ser descoberto em torno de uma estrela normal em 1995. Vinte anos mais tarde é também o primeiro exoplaneta a ser detectado diretamente no visível.

Santerne (IA e Universidade do Porto), comentou: "Pensava-se que a confiabilidade das detecções de exoplanetas do Kepler era muito boa, entre 10% e 20% não seriam planetas. A nossa extensa pesquisa espectroscópica dos exoplanetas gigantes descobertos pelo Kepler mostra que esta porcentagem é muito mais alta, até acima dos 50%. Isto tem implicações significativas na nossa compreensão da população de exoplanetas no campo do Kepler".

Os trânsitos de exoplanetas gigantes podem ser facilmente imitados por falsos positivos, o que torna essencial uma segunda análise espectroscópica, de modo a confirmar a natureza planetária desses trânsitos, e desta forma revelar, por exemplo, sistemas múltiplos.

Susana Barros (IA e Universidade do Porto), outro membro da equipe EXOEarths, comentou: "O Kepler encontrou um grande número de planetas que transitam, até ao tamanho da Terra. Contudo, observações adicionais das velocidades radiais dos candidatos, uma das áreas de especialização do grupo Origem e Evolução de Estrelas e Planetas do IA, é crucial para perceber esses sistemas planetários".

A pesquisa, que decorreu entre julho de 2010 e julho de 2015, começou com todos os 8.826 objetos de interesse do Kepler (Kepler Objects of Interest, ou KOI). A amostra foi progressivamente reduzida para 129 KOI’s, em torno de 125 estrelas, ao remover falsos positivos identificados previamente, estrelas demasiado tênues para serem observadas pelo SOPHIE e candidatos com períodos orbitais de mais de 400 dias, para garantir que se conseguiam observar no mínimo 3 trânsitos.

Santerne também pensa que: "Depois de 20 anos explorando planetas do tamanho de Júpiter, à volta de outros sóis, ainda temos imensas questões em aberto. Por exemplo, ainda não sabemos quais são os mecanismos físicos que levam à formação de gigantes com períodos orbitais de apenas alguns dias. Também não percebemos como é que alguns desses planetas estão inchados".

O diâmetro dos planetas gigantes depende da sua atmosfera e do seu interior, com a irradiação da sua estrela aquecendo a atmosfera, expandindo-a como um balão de ar quente. Mas a expansão de alguns destes planetas altamente irradiados não consegue ser modelada com processos físicos razoáveis.

Esta pesquisa espectroscópica estabeleceu limites para as massas, que combinadas com os diâmetros determinados graças aos trânsitos do Kepler, permitiram o cálculo da densidade destes exoplanetas gigantes. A equipe também descobriu um indício de uma relação entre a densidade destes planetas e a metalicidade das estrelas progenitoras, mas este resultado precisa ainda de mais confirmação.

Esta pesquisa também revelou que os planetas com irradiação moderada não se expandem. Uma caracterização detalhada da estrutura interna destes planetas deve trazer mudanças às teorias de formação e evolução.

Estes resultados foram anunciados esta semana na conferência Extreme Solar Systems III, no Havaí, que celebra 20 anos da descoberta do primeiro exoplaneta à volta de uma estrela do tipo solar.

Fonte: Instituto de Astrofísica e Ciências do Espaço

Simulação do colapso de estrelas massivas

Pela primeira vez uma equipe de cientistas, liderada por Philipp Mösta, da Universidade da California, em Berkeley, conseguiu simular em computador os processos físicos que se desencadeiam logo após o colapso do núcleo de uma estrela maciça numa supernova.

simulação do campo magnético toroidal de estrela massiva

© Robert R. Sisneros/Philipp Mösta (simulação do campo magnético toroidal de estrela massiva)

Trata-se de um feito sem precedentes e um enorme avanço na compreensão das supernovas, nomeadamente das que dão origem a explosões de raios gama (GRBs, gamma ray bursts), um dos fenômenos mais energéticos conhecidos no Universo. Os cálculos necessários para simular os primeiros 10 mili-segundos após o colapso do núcleo numa estrela de nêutrons demoraram 2 semanas para completar utilizando um dos maiores supercomputadores do mundo, o Blue Waters, com 130 mil cores, no National Center for Supercomputing Applications, na Universidade de Illinois, em Urbana-Champaign.

As explosões de raios gama foram detectadas pela primeira vez na década de 60 pelos observatórios de raios gama norte-americanos Vela, colocados em órbita da Terra para vigiar eventuais testes nucleares realizados pela URSS e outras nações. A curta duração das explosões, tipicamente alguns minutos, impedia a identificação dos objetos responsáveis pela emissão gama na esfera celeste, pelo que a sua natureza permaneceu um mistério durante décadas. No início da década de 90 havia apenas um consenso crescente de que tinham origem em regiões distantes do Universo. A situação progrediu então rapidamente na virada do século com a entrada em cena de uma armada de observatórios entre os quais o BeppoSAX, uma colaboração entre a Holanda e a Itália, e o SWIFT, da NASA. Os satélites, em especial o SWIFT, detectam explosões de raios gama e, rapidamente, calculam a sua posição precisa, notificando observatórios na Terra para que possam estudar o evento.
Em poucos anos, os astrônomos descobriram que as explosões de raios gama ocorrem durante o colapso gravitacional de estrelas muito massivas, mais abundantes quando o Universo era mais jovem. De fato, em vários casos, os cientistas observaram o aparecimento de uma supernova numa galáxia longínqua na mesma posição onde dias antes havia sido detectada uma explosão de raios gama pelo SWIFT. E descobriram algo mais interessante. A radiação gama observada resultava da propagação de jatos de partículas relativísticas pelas várias camadas de uma estrela moribunda, nos primeiros instantes de uma supernova. Mas, evidentemente, nem todas as supernovas produzem explosões de raios gama. O que teriam estas de especial? E de onde viria a energia colossal necessária para formar os jatos, liberada depois parcialmente sob a forma de raios gama?

Desde muito cedo as suspeitas recaíram sobre os poderosos campos magnéticos que se formam durante o colapso gravitacional do núcleo da estrela, o evento que dá origem à supernova. Se a rotação da estrela de nêutrons ou do buraco negro resultante do colapso fosse suficientemente rápida e se o campo magnético na região adjacente tivesse uma intensidade extrema, os cálculos teóricos sugeriam, seria possível a formação dos jatos que dão origem às explosões de raios gama. A dificuldade estava em demonstrar que, nas condições certas, o colapso gravitacional poderia gerar campos magnéticos tão intensos,  quintilhões de vezes mais intensos do que o da Terra, que move as agulhas nas bússolas e nos protege do vento solar.

O processo envolve a energia rotacional da estrela de nêutrons e do plasma muito quente que a rodeia, embebidos num campo magnético intenso. Foi demonstrado que, numa região 15 a 35 quilômetros da superfície da estrela de nêutrons, as variações na velocidade de rotação do plasma geram turbulência que, por um mecanismo de retorno positivo, amplifica o campo magnético até aos níveis necessários para a formação dos jatos.

O artigo que descreve este trabalho, intitulado “A large scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae”, foi publicado na revista Nature.

Fonte: Astronomy

Exoplaneta exilado foi provavelmente expulso da vizinhança da estrela

Um planeta descoberto o ano passado, situado a uma distância invulgarmente grande da sua estrela - 16 vezes mais distante que Plutão do Sol - pode ter sido expulso do seu local de nascimento, mais perto da estrela, num processo parecido ao que pode ter ocorrido no início da história do nosso próprio Sistema Solar.

estrela HD 106906 e o seu exoplaneta

© UC Berkeley/Paul Kalas (estrela HD 106906 e o seu exoplaneta)

A imagem acima de grande angular mostra a estrela HD 106906 obtida com o telescópio espacial Hubble e uma ampliação pelo GPI que revela um sistema dinamicamente perturbado de cometas, sugerindo uma ligação com o distante exoplaneta (para cima, à direita).

As imagens do GPI (Gemini Planet Imager) nos Andes Chilenos e do telescópio espacial Hubble mostram que a estrela tem um cinturão assimétrico de cometas, indicativa de um sistema muito perturbado e sugere que as interações planetárias que agitaram os cometas para mais perto da estrela podem ter enviado o exoplaneta também para o exílio. O exoplaneta pode até ter arrastado com ele o seu próprio anel de detritos.

"Nós pensamos que o planeta, propriamente dito, pode ter capturado material do cinturão cometário e que o planeta está rodeado por um grande anel de poeira ou por um manto de poeira," afirma Paul Kalas, professor adjunto de astronomia da Universidade da Califórnia em Berkeley, EUA. "Fizemos três testes e encontramos evidências de uma nuvem de poeira, mas ainda sem grandes certezas."

"As medições que fizemos sobre o planeta sugerem que pode ser mais empoeirado, comparativamente, do que outros objetos, e estamos fazendo observações de acompanhamento para verificar se o planeta está realmente cercado por um disco, uma possibilidade empolgante," acrescenta Abhi Rajan, aluno da Universidade Estatal do Arizona, que analisou as imagens do planeta.

Estes exoplanetas são de interesse porque, na sua juventude, o nosso próprio Sistema Solar pode ter tido planetas que foram expulsos da sua vizinhança local e que já não estão entre os oito planetas que vemos hoje.

"Será que é uma imagem do nosso Sistema Solar, quando tinha apenas 13 milhões de anos?" questiona Kalas. "Nós sabemos que a nossa própria nuvem de cometas, o Cinturão de Kuiper, perdeu uma grande fração da sua massa enquanto evoluía, mas não temos uma máquina do tempo para voltar atrás e ver como foi dizimada. Uma das maneiras, porém, é estudar estes episódios violentos de perturbações gravitacionais em torno de outras estrelas jovens que chutam para fora muitos objetos, incluindo planetas."

O distúrbio pode ter sido provocado por uma estrela que passou por perto, que acabou por perturbar os planetas interiores, ou um por um segundo planeta massivo no sistema. A equipe GPI procurou outro planeta grande mais perto da estrela, que pode ter interagido com o exoplaneta, mas não encontrou nada para além de uma órbita com o tamanho da de Urano.

A estrela, HD 106906, está localizada a 300 anos-luz de distância na direção da constelação de Cruzeiro do Sul e é parecida com o Sol, mas muito mais jovem: tem cerca de 13 milhões de anos, em comparação com os 4,5 bilhões de anos da nossa estrela. No entanto, pensa-se que os planetas se formam no início da história de uma estrela, e em 2014 uma equipe liderada por Vanessa Bailey da Universidade do Arizona descobriu o planeta HD 106906 b ao redor de uma estrela, planeta este que tem 11 vezes a massa de Júpiter e está localizado nos subúrbios distantes da estrela, à incrível distância de 650 UA da estrela (uma UA, ou unidade astronômica, é a distância média da Terra ao Sol, cerca de 150 milhões de quilômetros).

Pensa-se que os planetas não se formam tão longe da sua estrela e do seu disco protoplanetário, por isso é provável que o planeta se formou como uma estrela, através da acreção da sua própria nuvem de gás e poeira. As descobertas do GPI e do Hubble, de um cinturão cometário altamente assimétrico e de um possível anel em torno do planeta, apontam, ao invés, para uma formação normal dentro do disco de detritos em torno da estrela, mas que um episódio violento o empurrou para uma órbita mais distante.

Os astrônomos, usando o GPI, tiveram em maio de 2015 como primeiro alvo a estrela, em busca de outros planetas, e descobriram que estava rodeada por um anel de material poeirento com aproximadamente o tamanho do Cinturão de Kuiper do nosso próprio Sistema Solar. O vazio da região central, uma área com aproximadamente 50 UA de raio, um pouco maior que a região ocupada pelos planetas no nosso próprio Sistema Solar, indica a formação de um sistema planetário.

Kalas imediatamente reanalisou imagens existentes da estrela, obtidas anteriormente pelo telescópio espacial Hubble, e descobriu que o anel de material poeirento estendia-se para muito mais longe e que era altamente desigual. No lado voltado para o planeta, o material empoeirado era verticalmente fino e abrangia quase por completo a enorme distância até ao planeta conhecido, mas no lado oposto o material era verticalmente espesso e truncado.

"Estas descobertas sugerem que todo o sistema planetário foi recentemente perturbado por algo ainda desconhecido e deu origem à sua assimetria atual," diz. O planeta também é invulgar referente à sua órbita, pois está inclinada 21 graus em relação ao plano do sistema planetário interior, enquanto a maioria dos planetas normalmente encontram-se perto de um plano comum.

Kalas e seus colaboradores teorizam que o planeta pode ter sido formado bem mais perto do cinturão cometário e pode ter capturado material que ainda o orbita. Para testar esta hipótese, analisaram cuidadosamente as observações do GPI e do Hubble, revelando três propriedades acerca do planeta consistentes com um grande anel de poeira ou com um manto em seu redor. No entanto, para cada das três propriedades, explicações alternativas são possíveis.

Os pesquisadores vão fazer observações mais sensíveis com o telescópio espacial Hubble a fim de determinarem se HD 106906 b é, de fato, um dos primeiros exoplanetas que se parece com Saturno e com o seu sistema de anéis.

O cinturão interior de poeira em torno da estrela foi confirmado por uma equipe independente usando o instrumento SPHERE no VLT do ESO. A natureza assimétrica do disco de detritos, no entanto, não era evidente, até que Kalas usou imagens de arquivo do instrumento ACS (Advanced Camera for Surveys) do Hubble.

O levantamento exoplanetário do GPI, operado por uma equipe de astrônomos de 24 instituições, tem como alvo 600 estrelas jovens, todas com menos de 100 milhões de anos, a fim de compreender como é que os sistemas planetários evoluem ao longo do tempo e que dinâmicas planetárias podem dar forma aos arranjos finais de planetas como o que vemos no Sistema Solar hoje. O GPI opera no telescópio Gemini Sul e fornece imagens diretas de alto contraste e de alta resolução, espectroscopia de campo integral e polarimetria de exoplanetas.

Fonte: UC Berkeley

SOHO celebra 20 anos de ciência espacial

Depois de 20 anos no espaço, a sonda SOHO (Solar and Heliospheric Observatory) da ESA e da NASA ainda está forte.

tsunami solar

© ESA/NASA/SOHO (tsunami solar)

Esta animação mostra um tsunami solar que se expande para fora a partir de uma região ativa mesmo depois de uma erupção solar, no dia 14 de julho de 2000.

A SOHO estuda o Sol e a sua influência para além do Sistema Solar, ela revolucionou este campo da ciência, também conhecido como heliofísica, fornecendo a base para mais de 5.000 artigos científicos. A SOHO também encontrou um papel inesperado como o maior caçador de cometas de todos os tempos, atingindo 3.000 descobertas cometárias em setembro de 2015.

Quando a SOHO foi lançada em 2 de dezembro de 1995, o campo da heliofísica parecia muito diferente do que é hoje. Ainda estavam por responder questões acerca do interior do Sol, da origem do fluxo constante de material liberado pelo Sol, conhecido como vento solar, e o misterioso aquecimento da atmosfera solar. Vinte anos mais tarde, não só temos uma ideia muito melhor sobre o que alimenta o Sol, como toda a nossa compreensão de como o Sol se comporta mudou.

"A SOHO mudou a visão popular do Sol, de uma imagem de objeto estático e imutável no céu, para o monstro dinâmico que é," afirma Bernhard Fleck, cientista do projeto SOHO para a ESA e do Centro de Voo Espacial Goddard da NASA.

Até o próprio conceito de clima espacial, agora definido para abranger quaisquer eventos ou condições decorrentes do Sol que podem afetar sistemas tecnológicos espaciais e terrestres e, através destes, a vida e os esforços humanos, não era bem compreendido antes do lançamento da SOHO. Atualmente, pensava-se que as erupções solares eram o principal evento solar que afetava a Terra, em parte porque são os mais observados. Graças ao coronógrafo da SOHO, um tipo de câmara que usa um disco sólido para bloquear a face brilhante do Sol, a fim de melhor observar a comparativamente tênue atmosfera solar, conhecida como coroa, hoje sabemos que as nuvens gigantes que são expelidas pelo Sol, chamadas ejeções de massa coronal (EMCs) são uma grande parte do quebra-cabeças do clima espacial. Apesar de outros dois coronógrafos espaciais terem precedido o da SOHO, nenhum forneceu a mesma quantidade ou qualidade de observações.

"Muitas EMCs tênues escaparam à atenção dos coronógrafos mais velhos," afirma Joe Gurman, cientista do projeto SOHO em Goddard. "À luz dos dados da SOHO, percebemos que as EMCs são muito mais comuns e mais variáveis ao longo do ciclo solar."

As EMCs, nuvens enormes e velozes de material solar eletricamente carregado que contêm campos magnéticos incorporados, podem causar tempestades geomagnéticas quando colidem com o campo magnético da Terra, agitando-o e fazendo-os oscilar. A capacidade de ligar os efeitos das tempestades geomagnéticas - como as auroras, perturbações nos GPS e nas comunicações, correntes induzidas geomagneticamente, o que pode colocar em risco as redes elétricas - com eventos no Sol trouxe a ideia de clima espacial ao grosso da população.

"Graças à SOHO, há um crescente reconhecimento público de que vivemos na atmosfera alargada de uma estrela magneticamente ativa," afirma Gurman. "E as pessoas percebem que a atividade solar pode afetar a Terra."

Mas o coronógrafo da SOHO não foi o único instrumento com poder de mudança. Antes do lançamento da SOHO, transportando com ela o EIT (Extreme ultraviolet Imaging Telescope), as únicas câmaras capazes de obter imagens do Sol no ultravioleta extremo - radiação que a atmosfera da Terra bloqueia, tornando impossíveis as observações a partir do solo - eram aquelas em foguetes-sonda suborbitais, que recolhem dados durante apenas alguns minutos por hora.

"Pela primeira vez, vimos no ultravioleta extremo ondas que percorriam o Sol a 1,6 milhões de quilômetros por hora," comenta Alex Young, cientista espacial também do Centro de Voo Espacial Goddard.

Estes tsunamis à superfície solar ocorrem em estreita articulação com as EMCs. Antes da descoberta dos tsunamis solares, os cientistas não tinham, normalmente, nenhuma maneira de saber se uma EMC se dirigia na direção da Terra ou na direção oposta, uma vez que todas as EMCs na linha Terra-Sol simplesmente aparecem em imagens do coronográfo como um halo gigante em torno do Sol.

Os cientistas quase que perdiam esta e outras descobertas da SOHO. Em 1998, a sonda ficou perdida por quatro meses devido a um erro de software. Uma equipe conjunta da ESA/NASA foi finalmente capaz de recuperar a nave espacial em setembro desse ano, em parte usando o radiotelescópio gigante de Arecibo para localizá-la e para restabelecer o comando. Este salvamento foi crucial para a heliofísica, dado que grande parte do sucesso científico da SOHO pode ser atribuído aos seus 20 anos de observação quase constante.

Apesar de ter alargado o nosso conhecimento de todas as facetas da heliofísica, a SOHO foi lançada para responder a três questões principais. A primeira, qual é a estrutura interna do Sol?

Embora os cientistas já tivessem desenvolvido teorias acerca das camadas de gás ionizado e do complexo campo magnético que compõem a nossa estrela mais próxima, não tinham maneira de confirmar as suas ideias a não ser observando a superfície do Sol. Mas a SOHO transporta um instrumento que pode fazer uma espécie de sonograma solar, auxiliando os pesquisadores a compreender a estrutura interna do Sol.

Isto ajudou a resolver o que ficou conhecido como o problema dos neutrinos solares, em que o número de um certo tipo de neutrinos solares observados na Terra não coincidia com o número previsto pelas nossas teorias sobre o Sol.

Descobriu-se mais tarde que os neutrinos podem sofrer uma alteração de tipo durante a sua viagem desde o Sol, o que explica a diferença entre as previsões e as observações. Esta pesquisa ganhou o Prêmio Nobel da Física em 2015.

A segunda questão que a SOHO foi concebida para responder era sobre a aceleração do vento solar. O Sol está constantemente perdendo material em todas as direções, mas a velocidade desse fluxo de material é muito superior ao que seria de esperar de uma visão relativamente simples do Sol. As observações da SOHO mostraram como alguns dos fluxos mais velozes do vento solar são acelerados em buracos coronais, áreas no Sol onde o campo magnético está aberto para o espaço interplanetário.

Até agora, ainda ninguém conseguir responder definitivamente à terceira questão da SOHO, o que causa as extraordinariamente altas temperaturas na atmosfera do Sol, a coroa?

A coroa é incrivelmente quente, centenas de vezes mais quente que as camadas abaixo; sendo que a fonte de energia do Sol está no seu centro, basicamente seria de esperar que a coroa, a sua camada mais externa, fosse a mais fria.

As observações da SOHO forneceram a base de muitas explicações possíveis para o problema do aquecimento coronal mas, apesar de ser conhecido, ainda não foi resolvido. No entanto, a missão Solar Probe Plus da NASA, com lançamento previsto para 2018, vai voar mais perto do Sol do que qualquer outra nave a fim de investigar esta mesma questão.

A Solar Probe Plus é uma de muitas missões moldadas pela SOHO e pelas suas descobertas. Outras incluem a SDO (Solar Dynamics Observatory), as STEREO (Solar and Terrestrial Relations Observatory) e a IRIS (Interface Region Imaging Spectrograph), as três da NASA, como também a Hinode da JAXA/NASA.

Fonte: ESA

sexta-feira, 4 de dezembro de 2015

Detectadas ondas de explosão de rádio a 6 bilhões de anos-luz

Astrônomos detectaram uma rápida explosão de rádio a cerca de 6 bilhões de anos-luz de distância, uma das menos de duas dezenas desse tipo de evento descobertos nos últimos dez anos.

ilustração de uma rápida explosão de rádio

© Beijing Planetarium/Jingchuan Yu (ilustração de uma rápida explosão de rádio)

As rápidas explosões de rádio (FRBs) são misteriosas explosões de energia que ocorrem no espaço e que aparecem como rápidos flashes de ondas de rádio nos telescópios da Terra. Essas explosões têm intrigado os astrônomos desde que elas foram reportadas pela primeira vez a uma década atrás. Embora somente 16 dessas explosões tenham sido registradas, eles acreditam que possam existir milhares delas por dia.

Vasculhando mais de 650 horas de dados obtidos pelo telescópio Green Bank (GBT) do NRAO, um grupo internacional de astrônomos descobriu o mais detalhado registro já feito até hoje de uma FRB.

O grupo liderado pelo Dr. Kiyoshi Masui, da Universidade de British Columbia, analisou cerca de 40 terabytes de dados do GBT e identificou mais de 6.000 candidatos a FRB. foram analisados os dados de cada um dos sinais, até restar somente um candidato a FRB 110523.

“Escondida dentro de uma quantidade enorme de dados, nós encontramos um sinal muito peculiar que se ajusta a todas as características de uma FRB, mas com um elemento extra muito importante, que nós simplesmente nunca tínhamos visto antes,” disse o Dr. Jeffrey Peterson, membro da equipe, da Universidade de Carnegie Mellon.

De acordo com os astrônomos, a FRB 110523, originou a cerca de seis bilhões de anos-luz de distância, dentro de uma região altamente magnetizada do espaço, possivelmente interligada a uma supernova ou ao interior de uma nebulosa ativa de formação de estrelas.

Eles descobriram que essa FRB exibia uma Rotação de Faraday, ondas de rádio que se torcem como um parafuso, características que elas adquirem ao passarem através de um poderoso campo magnético.

“Nós agora sabemos que a energia dessa FRB passou através de uma região densa e magnetizada, logo depois de ter se formado. Isso significantemente estreita a definição do ambiente da fonte e o tipo de evento que pode ter originado a explosão,” disse o Dr. Masui.

Usando uma relação entre as duas coisas, os astrônomos foram capazes de determinar suas localizações relativas. A mais forte está muito perto da fonte da explosão, dentro de aproximadamente 100.000 anos-luz, colocando-a dentro da galáxia da fonte.

Somente duas coisas poderiam deixar esse tipo de impressão no sinal, notam os astrônomos: uma densa nebulosa associada com a fonte, ou um local dentro da região central da galáxia hospedeira.

“Juntos, esses dados impressionantes revelam mais sobre uma FRB do que nós já tínhamos visto antes e nos dão importantes variáveis sobre esses eventos misteriosos. Nós também temos uma nova ferramenta impressionante para vasculhar através dos arquivos de dados e descobrir mais exemplos e assim nos colocar mais perto do total entendimento da natureza dessas explosões,” completou o Dr. Masui.

Fonte: Nature

terça-feira, 1 de dezembro de 2015

Nebulosas da constelação de Auriga

Rica em aglomerados estelares e em nebulosas, a antiga constelação de Auriga, o Cocheiro, se ergue alta nos céus de inverno do hemisfério norte.

Nebulosas da Auriga

© Fritz Helmut Hemmerich (Nebulosas da constelação de Auriga)

Composta por dados obtidos através de filtros de banda curta e banda longa e se espalhando por aproximadamente 8 Luas Cheias (4 graus no céu), esta imagem telescópica profunda mostra algumas das belezas celestes da Auriga. O campo inclui a região de emissão IC 405 (na parte superior esquerda) localizada a cerca de 1.500 anos-luz de distância da Terra. Esta região é também conhecida como Nebulosa da Estrela Reluzente, onde suas nuvens vermelhas convolutas de gás hidrogênio brilhante são energizadas por estrelas quentes do tipo O AE Aurigae. A IC 410 (na parte superior direita) é significantemente mais distante, a 12.000 anos-luz de distância da Terra. A região de formação de estrelas é famosa pelo seu jovem aglomerado estelar mergulhado em seu interior, a NGC 1893, e as nuvens de poeira e gás em forma de girino. A IC 417 e a NGC 1931 na parte inferior direita da imagem, conhecidas como a Aranha e a Mosca , são também jovens aglomerados de estrelas mergulhados em suas nuvens originais que se localizam distantes da IC 405. O aglomerado de estrelas NGC 1907 está localizado perto da borda inferior da imagem, um pouco à direita do centro. O campo de visão acima repleto de objetos localiza-se ao longo do plano da Via Láctea na direção aproximada do anticentro galáctico.

Fonte: NASA