A equipe, composta por mais de 100 astrônomos de todo o mundo, começou uma busca destes monstros cósmicos em 2011. Apesar da radiação de raios X de alta energia que revela a sua localização ser absorvida pela atmosfera terrestre, podemos detectá-la com a ajuda de observatórios de raios X colocados no espaço. Assim, combinou-se um rastreio realizado pelo XMM-Newton da ESA, executado com a maior quantidade de tempo de observação já concedido neste telescópio, com observações do ESO e de outros observatórios. O resultado é uma enorme e crescente coleção de dados que cobre todo o espectro eletromagnético, coletivamente chamada rastreio XXL. O rastreio XXL combinou dados de arquivo com novas observações de aglomerados de galáxias, cobrindo assim um domínio de comprimentos de onda que vai de 1x10-4 μm (raios X, observados com o XMM) a mais de 1 metro (ondas de rádio, observadas com o Giant Metrewave Radio Telescope [GMRT]).
“O objetivo principal do rastreio XXL é fornecer uma amostra bem definida de cerca de 500 aglomerados de galáxias até uma distância correspondente a uma idade do Universo de cerca de metade da sua idade atual,” explica a pesquisadora principal do XXL, Marguerite Pierre do CEA, Saclay, França.
O telescópio XMM-Newton fez imagens de duas regiões do céu, cada uma com cem vezes a área da Lua Cheia, numa tentativa de descobrir um grande número de aglomerados de galáxias previamente desconhecidos. A equipe do rastreio XXL divulgou agora os seus resultados numa série de artigos científicos sobre os 100 aglomerados mais brilhantes descobertos. Os aglomerados de galáxias de que tratam os 13 artigos científicos encontram-se a desvios para o vermelho entre z = 0,05 e z = 1,05, o que corresponde a uma idade do Universo entre 13 e 5,7 bilhões de anos, respectivamente.
Observações obtidas com o instrumento EFOSC2 instalado no New Technology Telescope (NTT), juntamente com observações do instrumento FORS montado no Very Large Telescope (VLT) do ESO, foram também utilizadas para analisar de modo cuidadoso a radiação emitida pelas galáxias destes aglomerados. Estas observações permitiram aos astrônomos medir as distâncias precisas aos aglomerados de galáxias, dando-nos assim uma vista tridimensional do cosmos, absolutamente necessária para fazer medições da matéria escura e da energia escura. Para estudar os aglomerados de galáxias é necessário conhecer a sua distância precisa. Embora distâncias aproximadas, desvios para o vermelho fotométricos, possam ser medidas por análise das suas cores a diferentes comprimentos de onda, são necessários desvios para o vermelho espectroscópicos mais precisos. Estes desvios para o vermelho foram também obtidos nos dados de arquivo, como parte do rastreio VIPERS (VIMOS Public Extragalactic Redshift Survey), do rastreio VVDS (VIMOS-VLT Deep Survey) e do rastreio GAMA.
Espera-se que o rastreio XXL produza muitos resultados excitantes e inesperados, mas apenas com um quinto dos dados que se esperam obter no final, obtiveram-se já alguns resultados importantes e surpreendentes.
Um dos artigos científicos relata a descoberta de cinco novos superaglomerados que se juntam àqueles já conhecidos, tais como o nosso próprio superaglomerado, o Superaglomerado Laniakea.
Outro artigo trata de observações de seguimento obtidas para um aglomerado de galáxias em particular (conhecido pelo nome informal de XLSSC-116), situado a cerca de seis bilhões de anos-luz de distância. Este aglomerado de galáxias foi encontrado a um desvio para o vermelho z = 0,543. Com o instrumento MUSE do VLT observou-se neste aglomerado uma fonte de luz difusa estranhamente brilhante.
A equipe utilizou também os dados para confirmar a ideia de que no passado os aglomerados de galáxias são muito menores que os que observamos atualmente, uma descoberta importante para a compreensão teórica da evolução dos aglomerados ao longo da vida do Universo.
O simples ato de contar os aglomerados de galáxias nos dados XXL confirmou também um resultado anterior algo estranho, existem menos aglomerados distantes do que o esperado com base nas predições dos parâmetros cosmológicos medidos pelo telescópio Planck da ESA. A razão desta discrepância não é conhecida, no entanto a equipe espera resolver esta curiosidade cosmológica quando tiver acesso à amostra total de aglomerados em 2017.
Estes quatro resultados importantes são apenas o preâmbulo do que ainda está para vir deste enorme rastreio de alguns dos mais massivos objetos do Universo.