terça-feira, 5 de janeiro de 2016

Campos magnéticos fortes no núcleo de estrelas de massa intermediária

Um grupo internacional de astrônomos liderados pela Universidade de Sydney descobriu que campos magnéticos fortes são comuns no interior das estrelas, não tão raros quanto se pensava, o que irá afetar drasticamente a nossa compreensão de como as estelas evoluem.

super gigante vermelha Mu Cephei

  © New Forest Observatory (super gigante vermelha Mu Cephei)

Na imagem acima está a brilhante estrela super gigante vermelha Mu Cephei  na direção superior esquerda. Ela está localizada na borda externa da enorme nebulosa de emissão IC1396. Na região da extrema direita pode se vista a famosa nebulosa Tromba de Elefante (IC 1396A ou LBN 452).

Usando dados da missão Kepler da NASA, a equipe descobriu que as estrelas apenas um pouco mais massivas que o Sol têm campos magnéticos internos até 10 milhões de vezes mais poderosos do que o da Terra, com implicações importantes para a evolução e destino final das estrelas.

"Isto é tremendamente excitante e totalmente inesperado," afirma o astrofísico Dennis Stello, pesquisador principal do estudo e da Universidade de Sydney.

"Tendo em que conta que pensávamos, anteriormente, que apenas 5 a 10% das estrelas tinham campos magnéticos fortes, os modelos atuais de como as estrelas evoluem não têm campos magnéticos como um ingrediente fundamental," afirma o professor Stello. "Tais campos foram simplesmente considerados insignificantes para a nossa compreensão geral da evolução estelar."

"O nosso resultado mostra claramente que esta suposição precisa de ser revisitada."

A pesquisa é baseada num trabalho anterior pelo Instituto de Tecnologia da Califórnia (Caltech), de que fez parte o professor Stello, e que constatou que as medições de oscilações estelares, ou ondas sonoras, no interior das estrelas podem ser usadas para inferir a presença de fortes campos magnéticos.

Esta pesquisa mais recente usou esse resultado para olhar para um grande número de versões evoluídas do nosso Sol observadas pelo Kepler. Descobriu-se que mais de 700 destas gigantes vermelhas mostram a assinatura de campos magnéticos fortes, com algumas das oscilações suprimidas pela força dos campos.

"Dado que a nossa amostra é grande, fomos capazes de aprofundar a análise e concluir que os campos magnéticos fortes são muito comuns em estrelas com 1,5 a 2 vezes a massa do Sol," explica Stello.

"No passado, só podíamos medir o que acontecia à superfície das estrelas e os resultados levavam à interpretação de que os campos magnéticos eram raros."

  campos magnéticos vistos no interior das gigantes vermelhas

© University of Sydney (campos magnéticos vistos no interior das gigantes vermelhas)

Usando uma nova técnica chamada asterossismologia (ou sismologia estelar), que pode "penetrar pela superfície" de uma estrela, os astrônomos podem agora observar a presença de um campo magnético muito forte perto do núcleo estelar, que contém o motor central da queima nuclear da estrela. Isto é importante porque os campos magnéticos podem alterar os processos físicos que ocorrem no núcleo, incluindo as taxas de rotação interna, o que afeta a forma como as estrelas envelhecem.

A maioria das estrelas como o Sol oscilam continuamente devido a ondas sonoras que saltam para trás e para a frente dentro delas. "O seu interior é essencialmente como um sino tocando", comenta Stello. "E, como um sino, ou um instrumento musical, o som que produzem pode revelar as suas propriedades físicas."

Foram medidas minúsculas variações de brilho nas estrelas, variações estas provocadas pelo "badalar do sino" e descobriu que faltavam certas frequências de oscilação em 60% das estrelas porque foram suprimidas pelos fortes campos magnéticos nos núcleos estelares.

Os resultados vão permitir com que os cientistas testem mais diretamente as teorias de como os campos magnéticos se formam e evoluem, um processo conhecido como dínamo, dentro das estrelas. Isto pode, potencialmente, levar a uma melhor compreensão geral dos dínamos, incluindo aquele que controla o ciclo magnético do Sol, com a duração de 11 anos, que se sabe afetar sistemas de comunicação e a cobertura de nuvens na Terra.

"Agora é o momento de os teóricos investigarem o porquê destes campos magnéticos serem tão comuns," conclui o professor Stello.

Os resultados foram publicados ontem na revista Nature.

Fonte: University of Sydney & University of California

A Nebulosa da Lagoa colorida pelo hidrogênio, enxofre e oxigênio

A majestosa Nebulosa da Lagoa é preenchida por gás aquecido e hospeda diversas estrelas jovens.

  Nebulosa da Lagoa_M8_John Nemcik

    © John Nemcik (Nebulosa da Lagoa) 

Espalhando-se por 100 anos luz, a Nebulosa da Lagoa reside a 5.000 anos luz da Terra e é tão grande e brilhante que pode ser observada mesmo sem telescópio na direção da constelação de Sagittarius (Arqueiro).

Muitas estrelas brilhantes são visíveis no aglomerado estelar NGC 6530, um aglomerado aberto que se formou dentro da nebulosa há apenas alguns milhões de anos.

A nebulosa maior, denominada M8 ou NGC 6523, recebe o apelido de “Lagoa” por causa da faixa de poeira vista à direita do centro do aglomerado estelar NGC 6530.

A imagem em destaque foi captada por filtros que selecionam a radiação emanada pelo hidrogênio (marrom), pelo enxofre (vermelho) e pelo oxigênio (azul), mostradas em cores enriquecidas. Trata-se de um panorama recentemente processado da M8, abrangendo uma área nos céus equivalente a duas vezes o diâmetro da Lua Cheia.

Os astrônomos julgam que a formação estelar continua se desenvolvendo na Nebulosa da Lagoa devido a existência de vários glóbulos.

Fonte: NASA

sexta-feira, 1 de janeiro de 2016

Descoberta galáxia que não deveria existir

Era uma vez uma galáxia muito, muito distante, que existia quando o Universo era muito, muito jovem, apenas 400 milhões de anos após o Big Bang.

galáxia muito distante

  © Hubble/Leopoldo Infante (galáxia muito distante) 

Era uma galáxia muito antiga, a mais distante jamais observada. Seus raios de luz viajaram pelo espaço por mais de 13 bilhões de anos, 96% da idade do Universo ou três vezes a idade do Sistema Solar, até serem coletados pelos observatórios espaciais Hubble e Spitzer.

Aquela galáxia tão distante foi apelidada de Tainá, "recém-nascida", no idioma aimará, falado por povos andinos. A análise de sua luz revelou uma galáxia muito jovem e maciça, compacta e repleta de estrelas gigantes azuladas, uma galáxia que não deveria existir… pelo menos de acordo com o modelo atual da evolução do Universo.

Contra fatos e imagens não há argumentos. Sendo assim, muito embora Tainá não devesse existir, ela existe. Logo, quem está incorreta é a teoria, que parece precisar de ajustes, de acordo com o cosmologista madrilenho Alberto Molino Benito, pós-doutorando no Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG/USP). Seu pós-doutorado é apoiado pela FAPESP e supervisionado pela cosmóloga Claudia Mendes de Oliveira, que estuda a formação e a evolução das galáxias.

Apesar do poder tecnológico combinado do Hubble e do Spitzer, Tainá é tão distante e tão tênue que se torna invisível mesmo para aqueles poderosos observatórios. “Para detectar Tainá, nosso grupo teve que recorrer a técnicas sofisticadas, como a lente gravitacional”, um fenômeno previsto por Albert Einstein na sua Teoria Geral da Relatividade.

Segundo Einstein, a força gravitacional exercida por um corpo de grande massa, como um aglomerado de galáxias, distorce o espaço ao seu redor. Essa distorção acaba funcionando como uma monstruosa lente gravitacional, que deflete e amplifica a luz de objetos muito mais distantes posicionados atrás do aglomerado que se observa.

“Nós vasculhamos o espaço à procura de aglomerados de galáxias maciços que possam agir como lentes gravitacionais para conseguir observar objetos que não deveríamos enxergar de tão tênues”, explica Molino. No caso, os astrônomos usaram o aglomerado gigante de galáxias MACS J0416.1-2403, que fica a 4 bilhões de anos-luz da Terra. O aglomerado tem a massa de um quatrilhão de sóis. Essa massa descomunal funcionou como o zoom de uma câmera, tornando 20 vezes mais brilhante a luz de Tainá, posicionada exatamente atrás do aglomerado.

Uma vez que Tainá foi detectada, era preciso determinar sua distância. Para calculá-la, os astrônomos estudaram sua luz por meio de um recurso chamado “desvio para o vermelho fotométrico”.

Funciona deste jeito: quanto mais distante se localiza um objeto astronômico, menor é a frequência de sua luz que chega até nós. Em outras palavras, mais avermelhada a luz fica. Assim, calculou-se que Tainá ficava a 13,3 bilhões de anos-luz de distância da Terra. Sua luz viajou durante este tempo todo para chegar até nós. Vale dizer que observamos Tainá como ela era há 13,3 bilhões de anos, quando o Universo contava apenas 400 milhões de anos.

A luz de um objeto distante não conta apenas sua localização, idade e distância. “Seu estudo pode revelar o tamanho da galáxia, sua massa, quantas estrelas ela possui e qual a proporção de estrelas jovens e velhas nesta população estelar. Quanto mais estrelas jovens, azuis e brilhantes a galáxia possui, mais jovem ela é”, explica Molino.

No caso de Tainá, trata-se de uma galáxia repleta de estrelas gigantes azuis muito jovens e brilhantes, prontas para explodir em formidáveis supernovas para virar buracos negros. Quanto ao seu tamanho, Tainá era similar à Grande Nuvem de Magalhães, uma pequena galáxia disforme que é um satélite da nossa Via-Láctea.

“Quatrocentos milhões de anos é muito pouco tempo para a existência de uma galáxia tão bem formada”, diz Molino. “Os modelos mais recentes da evolução do Universo apontam para o surgimento das primeiras galáxias quando ele era bem mais velho.” Por mais velho, Molino entende um Universo adolescente de 1 bilhão de anos, não um recém-nascido de 400 milhões.

Só existe uma explicação para a existência de Tainá, a mais antiga das outras 22 galáxias muito tênues detectadas pelo estudo. “Elas só poderiam se formar tão rapidamente após o Big Bang se a quantidade de matéria escura no Universo fosse maior do que acreditamos”, pondera o cosmólogo.

Matéria escura é um tipo de matéria que compõe 80% da massa do Universo. Vale dizer, há cinco vezes mais matéria escura do que a massa de todos os 100 bilhões de galáxias do Universo observável. O problema é que esta matéria, como o nome indica, é escura, ou seja, invisível, ou melhor, desconhecida. Não sabemos do que é feita. Trata-se de uma das questões mais cruciais da cosmologia atual.

Há várias teorias para explicar o que seria a matéria escura. Porém, como ela não interage com a luz, não conseguimos enxergá-la nem conhecer sua substância. Sabe-se apenas que a matéria escura existe devido à sua ação gravitacional sobre as galáxias. Não fosse a matéria escura, as galáxias já teriam há muito se estilhaçado. Sem matéria escura, o Universo não seria como o conhecemos. Talvez não existíssemos.

“A única explicação para Tainá existir e ser como era quando o Universo tinha 400 milhões de anos é graças à matéria escura, que deve ter acelerado o movimento de aglomeração de estrelas para a formação das primeiras galáxias”, explica Molino. “Se existe mais matéria escura, as galáxias podem se formar mais rápido.”

Não é possível pesquisar mais a fundo sobre Tainá e suas irmãs proto-galáxias no Universo recém-nascido, pois a tecnologia à disposição foi empregada até o seu limite. “Para saber mais, para enxergar melhor as primeiras galáxias e inferir a ação da matéria escura, temos que aguardar até 2018, quando será lançado o sucessor do Hubble, o telescópio espacial de nova geração James Webb”, diz Molino.

O James Webb terá um espelho de 6,5 metros de diâmetro, muito maior que os 2,4 metros do Hubble. Esse aumento de tamanho se traduz em aumento de acuidade. Molino e seus colegas contam com a sensibilidade do futuro telescópio espacial para continuar contando galáxias distantes e formar o maior banco de dados tridimensional do Universo. “Só assim poderemos confirmar como se processou a formação e evolução do Universo.”

Um artigo sobre o assunto intitulado Young Galaxy Candidates in the Hubble Frontier Fields, de Leopoldo Infante e outros, foi publicado no periódico The Astrophysical Journal .

Fonte: FAPESP (Agência)

quinta-feira, 31 de dezembro de 2015

A ameça de gigantescos cometas do Sistema Solar externo

A descoberta de centenas de imensos cometas, denominados centauros, na parte externa do Sistema Solar nos últimos 20 anos, significa que estes antigos objetos representam uma ameaça real para a nossa civilização, conforme pesquisa de um grupo de astrônomos liderados por Bill Napier da Universidade de Buckingham.

Phoebe 

  © NASA/Cassini (Phoebe)

A  lua Phoebe de Saturno, mostrada nesta imagem, parece provável que seja um centauro que foi capturado pela gravidade do planeta em algum momento no passado.

Os centauros têm entre 50 e 100 km de diâmetro, ou até mesmo são maiores. Eles se movem em órbitas instáveis cruzando a órbita dos gigantes gasosos do Sistema Solar: Júpiter, Saturno, Urano e Netuno.

Os campos gravitacionais planetários, podem ocasionalmente desviarem estes antigos cometas colocando-os na direção do nosso planeta.

Cálculos da taxa com as quais os centauros entram no Sistema Solar interno, indicam que um é defletido na direção da órbita da Terra, uma vez a cada 40.000 a 100.000 anos.

Quando estiverem no espaço próximo da Terra, espera-se que eles se desintegrem em poeira e fragmentos maiores, inundando o Sistema Solar interno com detritos cometários fazendo com que os impactos com a Terra sejam inevitáveis.

“A desintegração destes cometas gigantes produziriam períodos intermitentes mas prolongados de bombardeios durando cerca de 100.000 anos,” disse o professor Napier e seus colegas da Universidade de Buckingham e do Observatório Armagh no Reino Unido.

“Eventos de extinção em massa e divisões de períodos geológicos na Terra, mostram um determinado padrão, do mesmo modo que os níveis de poeira e meteoroides na atmosfera superior,” acrescentou o professor Napier.

Episódios específicos ambientais ocorridos por volta de 10.800 a.C. e 2.300 a.C. são também consistentes com esse novo entendimento das populações de cometas.

Nos últimos 10.000 anos, a Terra experimentou a chegada intermitente de poeira, meteoroides e fragmentos da desintegração do cometa 2P/Encke, confinado dentro da órbita de Júpiter.

Sistema Solar exterior

© Duncan Steel (Sistema Solar exterior)

A imagem acima mostra o Sistema Solar exterior. No centro do mapa está o Sol, e próximo a ele as pequenas órbitas dos planetas terrestres: Mercúrio, Vênus, Terra e Marte. Movendo-se para o exterior e mostrados em azul claro estão as trajetórias quase circular dos planetas gigantes: Júpiter, Saturno, Urano e Netuno. A órbita de Plutão é mostrada em branco. Ficando perpetuamente além de Netuno estão os objetos transnetunianos (TNOs), em amarelo: dezessete órbitas de TNOs são mostrados aqui, cuja população total descoberta atualmente ser de mais de 1.500. Mostrados em vermelho estão as órbitas de 22 centauros (de cerca de 400 objetos conhecidos), e estes são essencialmente cometas gigantes. Por causa dos centauros cruzarem os caminhos dos grandes planetas, suas órbitas são instáveis, alguns acabarão por ser ejetados do sistema solar, mas outros serão lançados em trajetórias trazendo-os para dentro, representando um perigo para a civilização e a vida na Terra.

O Professor Napier e outros pesquisadores também descobriram evidências de campos distantes da ciência para suportar este modelo.

Por exemplo, a idade das crateras submilimétricas identificadas nas rochas lunares trazidas pelas missões Apollo são quase todas com idade inferior a 30.000 anos, indicando um vasto aumento na quantidade de poeira no Sistema Solar interno desde então.

“Nosso trabalho sugere que nós precisamos olhar além da nossa vizinhança imediata também, e olhar além da órbita de Júpiter para encontrar os centauros,” disse o professor Napier.

“Se nós estivermos corretos, então estes distantes cometas poderiam representar uma séria ameaça e este é o momento de entendermos melhor estes objetos.”

Um artigo foi publicado na revista Astronomy & Geophysics.

Fonte: Royal Astronomical Society

quarta-feira, 30 de dezembro de 2015

A Nebulosa Pele de Raposa

Este canino interestelar é formado de gás e poeira cósmica interagindo com a luz energética e ventos de estrelas jovens e quentes.

Nebulosa Pele de Raposa

© John Vermette (Nebulosa Pele de Raposa)

A forma, a textura visual e a cor se combinam para dar à região o nome popular da Nebulosa Pele de Raposa. O brilho azul característico é a poeira refletindo a luz da estrela variável brilhante S Monocerotis (S Mon), a estrela logo abaixo da borda superior da imagem em destaque. Áreas vermelhas e pretas texturizadas são uma combinação da poeira cósmica e a emissão avermelhada de gás hidrogênio ionizado. A estrela S Mon faz parte de um jovem aglomerado aberto de estrelas, NGC 2264, localizada a cerca de 2.500 anos-luz de distância na direção da constelação do Unicórnio (Monoceros).

Fonte: NASA

A poeira da Nebulosa de Órion

O que envolve um viveiro de formação de estrelas?

  Nebulosa de Órion

© Raul Villaverde Fraile (Nebulosa de Órion)

No caso da Nebulosa de Órion é a poeira. O campo inteiro de Órion, localizado a cerca de 1.600 anos-luz de distância, é inundado com filamentos intrincados e pitorescos de poeira. Opaca à luz visível, a poeira é criada na atmosfera exterior de massivas estrelas frias e expulsa por um forte vento exterior de partículas. O Trapézio e outros aglomerados de formação estelar estão embutidos na nebulosa. Os filamentos intrincados da poeira em torno de M42 e M43 aparecem em tons de marrom na imagem em destaque, enquanto o gás brilhante central é destacado em vermelho. Ao longo dos próximos milhões de anos grande parte da poeira de Órion será lentamente destruída pelas próprias estrelas que agora estão se formando, ou será dispersada dentro da nossa galáxia.

Fonte: NASA

terça-feira, 29 de dezembro de 2015

Transferência de calor e campos magnéticos em super-Terras

Usando modelos matemáticos, cientistas observaram o interior de super-Terras e descobriram que podem conter compostos proibidos pelas regras da química clássica, e a presença destas previstas substâncias pode aumentar a taxa de transferência de calor e fortalecer o campo magnético destes planetas.

  ilustração do exoplaneta Gliese 832c

    © PHL@UPR Arecibo (ilustração do exoplaneta Gliese 832c)

A equipe de pesquisadores é do Instituto de Física e Tecnologia de Moscou, liderados por Artem R. Oganov, professor do Instituto de Ciência e Tecnologia de Skolkovo. Em estudos anteriores, Oganov e colegas usaram o algoritmo USPEX para identificar novos compostos de sódio e de cloro, bem como outras substâncias exóticas.

No seu artigo mais recente, os pesquisadores tentaram descobrir quais os compostos que, a altas pressões, podem ser formados por silício, oxigênio e magnésio. Estes elementos, em particular, não foram escolhidos ao acaso.

"Os planetas parecidos com a Terra consistem de uma crosta fina de silicatos, de um manto de silicatos e óxidos, que perfaz aproximadamente 7/8 do volume da Terra e consiste de mais de 90% de silicatos e óxido de magnésio, e um núcleo de ferro. Podemos dizer que o magnésio, o oxigênio e o silício formam a base da química da Terra e dos planetas parecidos com a Terra," comenta Oganov.

Usando o algoritmo USPEX, os pesquisadores exploraram todos os compostos possíveis de Mg-Si-O que podem ocorrer a pressões que variam entre as 5 e as 30 milhões de atmosferas. Tais pressões existem no interior das super-Terras, exoplanetas rochosos com uma massa várias vezes superior à da Terra. Não existem planetas como este no Sistema Solar, mas os astrônomos conhecem vários planetas ao redor de outras estrelas que não são tão pesados quanto os gigantes gasosos, mas consideravelmente mais massivos que a Terra. A estes chamamos super-Terras. Estes planetas incluem o recentemente descoberto Gliese 832c, com cinco vezes a massa da Terra, ou a mega-Terra Kepler-10c, com 17 vezes a massa da Terra.

Os resultados da modelação computacional mostram que o interior destes planetas pode conter compostos "exóticos" como MgSi3O12 e MgSiO6. Têm muitos mais átomos de oxigênio do que o elemento MgSiO3, o composto mais abundante no interior da Terra.

Além disso, MgSi3O12 é metálico, ao passo que outras substâncias que consistem em átomos de Mg-Si-O são isoladoras ou semicondutoras.

"As suas propriedades são muito diferentes dos compostos normais de magnésio, oxigênio e silício, muitos deles são metais ou semicondutores. Isto é importante para gerar campos magnéticos nestes planetas. Dado que os campos magnéticos são produzidos por convecção de interiores planetários eletricamente condutores, a alta condutividade poderá significar um campo magnético significativamente mais poderoso," explica Oganov.

Um campo magnético mais forte significa uma proteção poderosa contra a radiação cósmica, favorável aos organismos vivos. Os pesquisadores também previram novos óxidos de magnésio e de silício que não encaixam com as regras da química clássica - SiO, SiO3 e MgO3, além dos óxidos MgO2 e Mg3O2anteriormente previstos por Oganov a pressões mais baixas.

O modelo computacional também permitiu a determinação das reações de decomposição que o MgSiO3 sofre a pressões muito elevadas nas super-Terras, chamada pós-perovskita.

"Isto afeta os limites das camadas no manto e a sua dinâmica. Por exemplo, uma mudança de fase exotérmica acelera a convecção do manto e a transferência de calor dentro do planeta, e uma transformação endotérmica abranda-as. Isto quer dizer que a velocidade do movimento das placas litosféricas no planeta pode ser mais elevada," comenta Oganov.

A convecção, que determina as placas tectônicas e a mistura do manto, pode ser ou mais rápida (acelerando a mistura do manto e a transferência de calor) ou mais lenta. Na transformação endotérmica, um possível cenário é a formação de várias camadas convectivas independentes dentro do planeta. O fato de que os continentes da Terra estão em constante movimento, "flutuando" à superfície do manto, é o que propicia o aparecimento do vulcanismo e de uma atmosfera.

Os resultados foram divulgados num artigo publicado na revista Scientific Reports.

Fonte: Moscow Institute of Physics and Technology

segunda-feira, 28 de dezembro de 2015

Duas galáxias se tornam únicas

A imagem a seguir, que foi tirada com a Wide Field Planetary Camera 2 a bordo do telescópio espacial Hubble da NASA e ESA, mostra a galáxia NGC 6052, localizada a cerca de 230 milhões de anos-luz de distância na constelação de Hércules.

NGC 6052

  © Hubble/Judy Schmidt (NGC 6052)

Seria razoável pensar nisto como uma única galáxia anormal, que foi originalmente classificada como tal. No entanto, é de fato uma nova galáxia em processo de formação. Duas galáxias separadas foram gradualmente reunidas, atraídas pela gravidade, e se colidiram. Agora, são vistas se fundindo em uma única estrutura.

Como o processo de fusão continua, estrelas individuais são jogadas fora de suas órbitas originais e colocadas inteiramente em novos caminhos, alguns muito distantes da região da própria colisão. A galáxia no momento parece ter uma forma altamente caótica, devido à luz gerada pelas estrelas. Eventualmente, esta nova galáxia vai sossegar em uma forma estável, que não se assemelhará a qualquer uma das duas galáxias originais.

Fonte: ESA

A condenada estrela Eta Carinae

A estrela Eta Carinae pode estar para explodir. Porém, ninguém sabe quando isso irá acontecer, pode ser no próximo ano, pode ser dentro de um milhão de anos.

Eta Carinae

  © Hubble/J. Morse/K. Davidson (Eta Carinae)

A massa de Eta Carinae, com cerca de 100 vezes a massa do nosso Sol, faz dessa estrela uma excelente candidata a uma supernova de grande porte.

Registros históricos efetivamente mostram que há 150 anos Eta Carinae sofreu uma explosão incomum que a tornou uma das estrelas mais brilhantes nos céus do hemisfério sul.

A estrela Eta Carinae, que reside na Nebulosa do Buraco de Fechadura (NGC 3324), é a única estrela que atualmente emite luz laser natural.

A imagem em destaque, captada pelo Hubble em 1996, trouxe detalhes da nebulosa incomum que envolve esta violenta estrela. São claramente vistos dois lóbulos distintos, uma região central muito quente e estranhos feixes radiais.

Os lóbulos estão preenchidos com filamentos de gás e poeira que absorbem a luz azul e a radiação ultravioleta emitida perto do centro. Entretanto, os feixes radiais permanecem inexplicados.

Fonte: NASA

sábado, 26 de dezembro de 2015

Abell 1033: o renascimento de uma Fênix de Rádio

Os astrônomos descobriram sinais do renascimento de uma nuvem de elétrons já muito fraca que, tal como a mítica Fênix, voltou à vida depois de dois aglomerados de galáxias terem colidido.

Abell 1033

© Chandra/VLA/SDSS (Abell 1033)

Esta Fênix de Rádio, que está localizada no aglomerado de galáxias Abell 1033, possui elétrons de alta energia que irradiam principalmente em frequências de rádio. O sistema está localizado a cerca de 1,6 bilhões de anos-luz da Terra.
Combinando dados do observatório de raios X Chandra da NASA, do Westerbork Synthesis Radio Telescope (WSRT), na Holanda, do VLA (Karl Jansky Very Large Array), e do SDSS (Sloan Digital Sky Survey), os astrônomos foram capazes de recriar a narrativa científica por detrás da intrigante história cósmica da Fênix de Rádio. Os aglomerados de galáxias são as maiores estruturas do Universo unidas pela gravidade. São compostos por centenas ou mesmo milhares de galáxias individuais, matéria escura invisível e enormes reservatórios de gás quente que brilham em raios X. Perceber como crescem os aglomerados é crucial para saber de que forma o Universo evolui ao longo do tempo.
Acredita-se que o gigantesco buraco negro que existe perto da região central de Abell 1033 entrou em erupção no passado. Fluxos de elétrons de alta energia preencheram uma região com a extensão de centenas de milhares de anos-luz e produziram uma nuvem brilhante de emissão de rádio. Esta nuvem foi enfraquecendo ao longo de milhões de anos, à medida que os elétrons foram perdendo energia e que a nuvem se foi expandindo.
A Fênix de Rádio surgiu quando um outro aglomerado de galáxias colidiu com o aglomerado original, enviando ondas de choque através do sistema. Estas ondas de choque, semelhantes a estrondos produzidos por jatos supersônicos, atravessaram a nuvem de elétrons adormecida, comprimiram-na e fornecendo nova energia aos elétrons, o que fez com que a nuvem voltasse a brilhar em frequências de rádio.
O retrato desta Fênix de Rádio foi captado numa imagem de vários comprimentos de onda do Abell 1033. Os dados de raios X do Chandra estão em rosa e os de rádio do VLA estão em verde. A imagem de fundo mostra as observações ópticas do SDSS. O mapa da densidade das galáxias, feito a partir da análise dos dados ópticos aparece em azul.
Os dados do Chandra mostram o gás quente nos aglomerados, que parece ter sido perturbado durante a mesma colisão que causou a reativação da emissão de rádio no sistema. O pico da emissão de raios X observa-se ao sul (parte inferior) do aglomerado, talvez porque o núcleo denso de gás nesta região esteja sendo removido pelo gás circundante à medida que se move. O aglomerado ao norte pode não ter entrado na colisão com um núcleo denso, ou talvez o seu núcleo tenha sido desfeito de forma significativa durante a fusão. Do lado esquerdo da imagem, uma galáxia de rádio com cauda de grande ângulo brilha em rádio. Os lóbulos de plasma ejetados pelo gigantesco buraco negro central são encurvados pela interação com o gás do aglomerado à medida que a galáxia se move através dele.
Os astrônomos acreditam que estão vendo a Fênix de Rádio logo após ter renascida, uma vez que estas fontes desaparecem muito rapidamente quando localizadas perto do centro do aglomerado, que é o que acontece em Abell 1033. Como a densidade, a pressão e os campos magnéticos são muito intensos perto da região central de Abell 1033, calcula-se que a Fênix de Rádio dure apenas umas dezenas de milhões de anos.
O artigo que descreve estes resultados foi publicado numa edição recente da revista Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 24 de dezembro de 2015

Revelada rosquinha cósmica grumosa ao redor de buraco negro

Os maiores buracos negros do Universo são muitas vezes rodeados por discos espessos de gás e poeira com a forma de um toróide.

M77 

    © NASA/JPL-Caltech (M77)

A galáxia M77 (ou NGC 1068) pode ser vista nesta ampliação obtida pelo telescópio espacial Hubble. Os olhos em raios X do NuSTAR foram capazes de obter a melhor visão, até agora, do covil escondido do buraco negro supermassivo e central da galáxia. Este buraco negro ativo, visto na ilustração em destaque, é um dos mais obscurecidos que se conhecem, o que significa que é rodeado por nuvens extremamente espessas de gás e poeira.

Este material com formato de rosquinha, em última análise, alimenta e nutre os buracos negros no interior.

Até recentemente, os telescópios não eram capazes de penetrar nestas zonas em forma de rosca.

"Originalmente, pensávamos que alguns buracos negros estavam escondidos por paredes de material que não deixavam ver o que estava por trás," afirma Andrea Marinucci da Universidade Roma Tre na Itália, autora principal de um novo estudo que descreve resultados do NuSTAR (Nuclear Spectroscopic Telescope Array) e do observatório espacial XMM-Newton, ambos da NASA.

Com a sua visão de raios X, o NuSTAR espiou recentemente um dos toróides mais densos que se sabe rodear um buraco negro supermassivo. Este buraco negro está no centro da galáxia bem estudada M77, localizada a 47 milhões de anos-luz de distância na direção da constelação da Baleia.

"O material em rotação não é um toróide simples e arredondado como originalmente se pensava, mas tem aglomerados," explica Marinucci.

Os discos de gás e poeira, em forma toroidal e em torno de buracos negros supermassivos, foram propostos pela primeira vez em meados da década de 1980 para explicar porque é que alguns buracos negros estão escondidos atrás de gás e poeira, enquanto outros não estão. A ideia é que a orientação do toróide, relativamente à Terra, afeta o modo como observamos o buraco negro e a sua intensa radiação. Se o toróide é visto de lado, o buraco negro é ocultado. Se é visto de face, conseguimos detectar o buraco negro e os seus materiais quentes nos arredores. Esta ideia é referida como o modelo unificado porque junta os vários diferentes tipos de buraco negro com base apenas na orientação.

Ao longo da última década, os astrônomos têm encontrado indícios de que estes discos de material possuem grânulos e não têm uma forma tão harmoniosa como se pensava.

M77 no visível e em raios X

    © NASA/JPL-Caltech/Universidade Roma Tre (M77 no visível e em raios X)

A galáxia M77 é vista na imagem composta acima no visível e em raios X. Os raios X altamente energéticos (magenta) capturados pelo NuSTAR, estão sobrepostos em imagens ópticas captadas pelo telescópio espacial Hubble e pelo SDSS (Sloan Digital Sky Survey). Os raios X vêm de um buraco negro supermassivo e ativo, também conhecido como quasar, no centro da galáxia. Este buraco negro supermassivo tem sido estudado extensamente devido à sua relativa proximidade com a Via Láctea.

A nova descoberta é a primeira vez que foram observadas irregularidades num disco ultra espesso e suporta a ideia que este fenômeno pode ser comum. A pesquisa é importante para a compreensão do crescimento e evolução dos buracos negros supermassivos e das suas galáxias hospedeiras.

"Nós não entendemos totalmente o porquê de alguns buracos negros supermassivos serem tão fortemente obscurecidos, ou porque é que o material em volta tem tantas irregularidades," afirma Poshak Gandhi da Universidade de Southampton no Reino Unido.

Tanto o NuSTAR como o XMM-Newton observaram o buraco negro de M77 simultaneamente em duas ocasiões entre 2014 e 2015. Numa dessas ocasiões, em agosto de 2014, o NuSTAR observou um aumento de brilho. O NuSTAR observa raios X numa gama mais energética do que o XMM-Newton, e esses raios X altamente energéticos podem penetrar as espessas nuvens ao redor do buraco negro. O aumento de raios X de alta energia foi devido a uma espécie de abertura que diminuiu a espessura do material que sepulta o buraco negro supermassivo.

"É como um dia nublado, quando as nuvens parcialmente saem da frente do Sol para deixar entrar mais luz," comenta Marinucci.

A galáxia M77 é bem conhecida pelos astrônomos pois o seu buraco negro foi o primeiro a sugerir a ideia da unificação. "Mas é somente com o NuSTAR que agora temos um vislumbre direto do buraco negro supermassivo através dessas nuvens, ainda que fugaz, permitindo um melhor teste do conceito de unificação," afirma Marinucci.

A equipe diz que a pesquisa futura irá abordar a questão do que produz a desigualdade nos discos em forma de rosquinha. A resposta pode vir em muitos sabores. É possível que um buraco negro gere turbulência à medida que "mastiga" material das redondezas. Ou, a energia emitida por estrelas jovens pode ser a responsável pela turbulência que, em seguida, pode "infiltrar-se" através do bolo cósmico. Outra possibilidade é que os aglomerados podem vir de material em queda para o toróide. À medida que as galáxias se formam, o material migra para o centro, onde a densidade e a gravidade são maiores. O material tende a cair em aglomerados, quase como uma corrente de água que se forma a partir de várias gotas quando atingem o solo.

"Estas observações coordenadas com o NuSTAR e com o XMM-Newton mostram mais uma vez a emocionante ciência possível quando estes satélites trabalham em conjunto," comenta Daniel Stern, cientista do projeto NuSTAR no JPL (Jet Propulsion Laboratory) da NASA em Pasadena, no estado americano da Califórnia.

O novo estudo foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: NASA

Explosão artística de uma jovem estrela

A explosão artística de uma estrela extremamente jovem, na sua fase de formação mais inicial, é captada nesta imagem espetacular feita pelo telescópio espacial Hubble da NASA e ESA.

 HH34

  © Hubble (HH34)

Os filamentos coloridos, observados na parte inferior esquerda da imagem, são pintados no céu por uma jovem estrela ainda no seu casulo na nuvem parcialmente iluminada de poeira escura vista na parte superior direita da imagem.

A imagem mostra um buraco feito na poeira por um jato de gás extremamente quente e azul lançado pela jovem estrela. À medida que este jato viaja pelo espaço, ele colide com um material mais frio ao redor. O resultado é um objeto colorido na parte inferior esquerda, produzido enquanto o material mais frio é aquecido pelo jato.

O objeto delgado é conhecido como HH34, e é um exemplo de um objeto Herbig-Haro. Ele está localizado a aproximadamente 1.400 anos-luz de distância da Terra, perto da Nebulosa de Órion, uma grande região de formação de estrelas dentro da Via Láctea. Os objetos Herbig-Haro existem por um tempo cósmico extremamente curto, normalmente milhares de anos, com as mudanças vistas em observações realizadas com anos de separação.

Embora o jato se estenda por toda distância existente entre a estrela e o HH34, somente uma fração dele aparece visível. Essa parte do jato possui uma estrutura intrigante de nós e ondulações, que devem ser causadas pelas diferentes explosões que foram ejetando material e que foram se colidindo com o passar do tempo.

Fonte: ESA