sexta-feira, 22 de agosto de 2025

IA ajuda na descoberta de um novo tipo de supernova

Os astrônomos descobriram o que poderá ser uma estrela massiva explodindo enquanto tenta engolir um buraco negro que a acompanha, oferecendo uma explicação para uma das mais estranhas explosões estelares alguma vez observadas.

© CfA (interação explosiva entre buraco negro e estrela massiva)

A descoberta foi feita por uma equipe liderada pelo Centro de Astrofísica do Harvard & Smithsonian e pelo MIT (Massachusetts Institute of Technology), no âmbito do levantamento YSE (Young Supernova Experiment).

A explosão, designada SN 2023zkd, foi descoberta pela primeira vez em julho de 2023 pelo ZTF (Zwicky Transient Facility). Um novo algoritmo de inteligência artificial concebido para detectar explosões incomuns em tempo real foi o primeiro a detectar a explosão, e esse alerta precoce permitiu que os astrônomos iniciassem imediatamente observações de acompanhamento, um passo essencial para captar a história completa da explosão. Quando a explosão terminou, já tinha sido observada por um grande conjunto de telescópios, tanto no solo como a partir do espaço.

Os cientistas pensam que a interpretação mais provável é que a estrela massiva estava presa numa órbita mortal com um buraco negro. À medida que a energia da órbita se perdia, a sua separação diminuiu até que a supernova foi desencadeada pelo stress gravitacional da estrela, que engoliu parcialmente o buraco negro.

Uma interpretação alternativa considerada pela equipe é que o buraco negro despedaçou completamente a estrela antes que esta pudesse explodir por si própria. Nesse caso, o buraco negro puxou rapidamente os detritos da estrela e a emissão da supernova foi gerada quando os detritos colidiram com o gás que os rodeava. Em ambos os casos, um único buraco negro, mais massivo, é deixado para trás.

Localizada a cerca de 730 milhões de anos-luz da Terra, SN 2023zkd parecia inicialmente uma supernova típica, com uma única explosão de luz. Mas quando os cientistas seguiram o seu declínio ao longo de vários meses, fez algo inesperado: voltou a brilhar. Para compreender este comportamento incomum, os cientistas analisaram dados de arquivo, que revelaram algo ainda mais estranho: o sistema aumentou lentamente de brilho ao longo de mais de quatro anos antes da explosão.

Este tipo de atividade a longo prazo, pré-explosão, é raramente visto em supernovas. Análises detalhadas revelaram que a luz da explosão foi moldada pelo material que a estrela tinha liberado nos anos anteriores à sua morte. O brilho inicial foi causado pela onda de explosão da supernova que atingiu gás de baixa densidade. O segundo pico, mais tardio, foi causado por uma colisão mais lenta, mas sustentada, com uma nuvem espessa, semelhante a um disco.

Esta estrutura e o comportamento errático da estrela antes da explosão sugerem que a estrela moribunda estava sob extrema tensão gravitacional, provavelmente de uma companheira compacta próxima, como um buraco negro. 

Esta descoberta mostra como é importante estudar a forma como as estrelas massivas interagem com as suas companheiras à medida que se aproximam do fim das suas vidas. Há já algum tempo que é conhecido que a maioria das estrelas massivas se encontram em binários, mas apanhar uma no ato de troca de massa pouco antes de explodir é incrivelmente raro. 

Com o Observatório Vera C. Rubin revelando recentemente as suas primeiras imagens e se preparando para observar todo o céu de poucas em poucas noites, esta descoberta marca um vislumbre do que está para vir. Novos e poderosos observatórios, combinados com sistemas de IA em tempo real, permitirão em breve que a descoberta de muitas mais explosões raras e complexas e comecem a mapear a forma como estrelas massivas vivem e morrem em sistemas binários.

O levantamento YSE continuará complementando o Rubin, utilizando os telescópios Pan-STARRS1 e Pan-STARRS2 para identificar supernovas pouco depois da explosão. Esta abordagem oferece uma forma econômica de estudar o Universo próximo e dinâmico.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

sábado, 16 de agosto de 2025

As primeiras estrelas eram realmente tão grandes?

Turbulência caótica em nuvens primordiais de gás pode ter impedido a formação de estrelas extremamente massivas, de acordo com novas simulações de astrônomos taiwaneses.

© NOIRLab (campo de estrelas no Universo primitivo)

Esta ilustração mostra um campo de estrelas como elas teriam aparecido apenas 100 milhões de anos após o Big Bang.

O Universo primitivo consistia principalmente de hidrogênio e hélio, que, ao contrário de elementos mais pesados, não irradiam muito. As nuvens de gás que seriam os berços das estrelas, portanto, tiveram dificuldade para resfriar o suficiente para a formação de estrelas, a força da gravidade teve que agir contra a alta pressão do gás.

É por isso que a maioria dos astrônomos acredita que as primeiras estrelas do Universo devem ter sido verdadeiros gigantes, centenas de vezes mais massivas que o Sol. Mas, de acordo com Ke-Jung Chen (Instituto de Astronomia e Astrofísica da Academia Sinica, Taiwan) e seus colegas, essa imagem simples está incompleta. Suas simulações detalhadas de computador revelam que essas nuvens em colapso experimentaram turbulência supersônica, com a maior parte do gás se movendo a cinco vezes a velocidade do som. As ondas de choque resultantes fragmentaram nuvens maiores em pedaços menores e até ajudaram a gravidade a superar a pressão do gás.

Para chegar a essa conclusão, a equipe adaptou o IllustrisTNG, uma simulação computacional do nosso cosmos. Os pesquisadores se concentraram em uma única concentração de massa no Universo primordial, o chamado diminuto halo de matéria escura, com cerca de 10 milhões de massas solares. Usando uma técnica chamada divisão de partículas, eles conseguiram rastrear partículas de apenas 0,2 massas solares (minúsculas em comparação com a simulação original, que possui partículas de 84.000 massas solares). A simulação ampliada revelou que o gás em queda torna-se altamente turbulento em escalas de centenas de anos-luz, resultando em múltiplos aglomerados densos que geram estrelas tão pequenas quanto oito massas solares.

© IllustrisTNG (simulação computacional do cosmos)

Esta imagem 3D mostra vários aglomerados densos de gás no centro do halo, representados como bolhas amarelas a vermelhas. Um desses aglomerados tornou-se denso o suficiente para começar a colapsar sob sua própria gravidade, um processo chamado instabilidade de Jeans. Ele está formando uma estrela de primeira geração (Pop III) com uma massa de cerca de 8 vezes a do nosso Sol.

Os resultados indicam que a turbulência supersônica pode ser comum em halos primordiais e pode desempenhar um papel crucial na fragmentação em escala de nuvens, fornecendo uma maneira de formar as primeiras estrelas menos massivas. No entanto, a simulação computacional não incorpora processos de radiação, algo que realmente não pode ser ignorado nessas escalas.

Nos últimos anos, surgiram outros indícios de que estrelas extremamente massivas devem ter sido relativamente raras no Universo primitivo. Espera-se que estrelas entre 80 e 260 massas solares terminem suas breves vidas nas chamadas supernovas de instabilidade de par, que devem deixar traços reveladores na composição das gerações subsequentes de estrelas. No entanto, essas impressões digitais químicas se mostram menos abundantes do que o esperado. Essas novas simulações computacionais podem explicar o porquê.

Um artigo foi publicado no periódico Astrophysical Journal Letters.

Fonte: Sky & Telescope

A influência dos planetas pode atenuar a atividade solar

O nosso Sol é cerca de cinco vezes menos magneticamente ativo do que outras estrelas semelhantes.

© Solar Dynamics Observatory (ejeção de massa coronal do Sol)

A razão para isso pode residir nos planetas do nosso Sistema Solar, afirmam pesquisadores do HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Nos últimos dez anos, desenvolveram um modelo que deriva praticamente todos os ciclos de atividade conhecidos do Sol a partir da influência cíclica das forças de maré dos planetas. Agora, também conseguiram demonstrar que essa sincronização externa reduz automaticamente a atividade solar.

De momento, o Sol está atingindo um nível máximo de atividade que só é observado a cada onze anos, aproximadamente. É por isso que nós, na Terra, observamos mais auroras polares e tempestades solares, bem como um clima espacial turbulento em geral. Isto tem impacto nos satélites espaciais e até mesmo na infraestrutura tecnológica da Terra. Apesar disso, em comparação com outras estrelas semelhantes ao Sol, as erupções de radiação mais fortes do nosso Sol são 10 a 100 vezes mais fracas.

Este ambiente relativamente tranquilo pode ser uma condição prévia importante para a Terra ser habitável. Não menos importante por esta razão, os físicos solares querem compreender o que impulsiona precisamente a atividade solar. Sabe-se que a atividade solar tem muitos padrões, flutuações periódicas mais curtas e mais longas, que variam de algumas centenas de dias a vários milhares de anos. Mas há maneiras muito diferentes de explicar os mecanismos físicos subjacentes.

O modelo desenvolvido pela equipa liderada por Frank Stefani, do Instituto de Dinâmica de Fluidos do HZDR, vê os planetas como marca-passos: segundo essa compreensão, aproximadamente a cada onze anos, Vênus, Terra e Júpiter concentram as suas forças de maré combinadas no Sol. Através de um mecanismo físico complexo, de cada vez que o fazem, dão um pequeno empurrão ao impulso magnético interno do Sol. Em combinação com o movimento orbital em forma de roseta do Sol, isto leva a flutuações periódicas sobrepostas de durações variáveis, exatamente como observado no Sol.

No trabalho recente, os pesquisadores dão o nome OQB (Oscilação Quasi-Bienal), uma flutuação aproximadamente bianual em vários aspetos da atividade solar. O ponto especial aqui é que, a OQB não só pode ser atribuída a um período preciso, mas também leva automaticamente a uma atividade solar atenuada. Até agora, os dados solares geralmente relatavam períodos de OQB de 1,5 a 1,8 anos.

Em trabalhos anteriores, alguns pesquisadores sugeriram uma ligação entre a OQB e os chamados eventos GLE (Ground Level Enhancement). São ocorrências esporádicas durante as quais partículas solares ricas em energia provocam um aumento repentino da radiação cósmica na superfície da Terra. Um estudo realizado em 2018 mostra que os eventos de radiação medidos perto do solo ocorreram mais na fase positiva de uma oscilação com um período de 1,73 anos. Ao contrário da suposição habitual de que essas erupções de partículas solares são fenômenos aleatórios, esta observação indica um processo cíclico fundamental. Foi descoberto a maior correlação para um período de 1,724 anos. 

Apesar do campo magnético do Sol oscilar entre o mínimo e o máximo ao longo de um período de onze anos, a OQB impõe um padrão adicional de curto prazo na intensidade do campo. Isto reduz a intensidade geral do campo, pois o campo magnético do Sol não mantém o seu valor máximo por tanto tempo. Um diagrama de frequência revela dois picos: um na intensidade máxima do campo e outro quando a OQB oscila de volta. Este efeito é conhecido como bimodalidade do campo magnético solar. No modelo, os dois picos fazem com que a intensidade média do campo magnético solar seja reduzida, uma consequência lógica da OQB.

Este efeito é muito importante porque o Sol é mais ativo durante as intensidades de campo mais altas. É quando ocorrem os eventos mais intensos, com enormes tempestades geomagnéticas, como o evento Carrington de 1859, quando auroras polares puderam ser vistas até em Roma e Havana, e altas tensões danificaram linhas telegráficas. Se o campo magnético do Sol permanecer em intensidades de campo mais baixas por um período significativamente mais longo, no entanto, isso reduz a probabilidade de eventos muito violentos.

Um artigo foi publicado no periódico Solar Physics.

Fonte: HZDR

O "Olho de Sauron" no espaço profundo

Localizado a bilhões de anos-luz de distância, o blazar PKS 1424+240, conhecido como "Olho de Sauron", há muito que intriga os astrônomos.

© VLBA (Olho de Sauron)

Destacava-se como o blazar emissor de neutrinos mais brilhante conhecido no céu, conforme identificado pelo Observatório de Neutrinos IceCube, e também brilhava em raios gama altamente energéticos observados por telescópios Cherenkov terrestres.

No entanto, estranhamente, o seu jato de rádio parecia mover-se lentamente, contrariando as expectativas de que apenas os jatos mais rápidos podem alimentar emissões tão intensas de alta energia. Agora, graças a 15 anos de observações rádio ultraprecisas do VLBA (Very Long Baseline Array), os pesquisadores conseguiram criar uma imagem profunda deste jato com uma resolução sem precedentes.

Como o jato está alinhado quase exatamente na direção da Terra, a sua emissão de alta energia é ampliada dramaticamente pelos efeitos da relatividade especial. Este alinhamento causa um aumento de brilho por um fator de 30 ou mais. Ao mesmo tempo, o jato parece mover-se lentamente devido aos efeitos de projeção, uma clássica ilusão de ótica.

Esta geometria frontal permitiu aos cientistas observar diretamente o coração do jato do blazar, uma oportunidade extremamente rara. Sinais de rádio polarizados ajudaram no mapeamento da estrutura do campo magnético do jato, revelando a sua provável forma helicoidal ou toroidal. Esta estrutura desempenha uma função fundamental no lançamento e na colimação do fluxo de plasma e pode ser essencial para acelerar partículas com energias extremas.

A descoberta é um triunfo para o programa MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments), um esforço de décadas para monitorar jatos relativísticos em galáxias ativas usando o VLBA. Os cientistas utilizam a técnica de interferometria de longa linha de base, que liga radiotelescópios em todo o mundo para formar um telescópio virtual do tamanho da Terra. Isto fornece a mais alta resolução disponível em astronomia, permitindo-lhes estudar os detalhes finos de jatos cósmicos distantes.

Este resultado reforça a ligação entre jatos relativísticos, neutrinos altamente energéticos e o papel dos campos magnéticos na formação de aceleradores cósmicos, um marco na astronomia multimensageira.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Max Planck Institute for Radio Astronomy

quarta-feira, 13 de agosto de 2025

A água de um cometa contém pistas sobre a vida na Terra

Uma nova pesquisa revelou evidências convincentes de que a água de um cometa é muito semelhante à encontrada nos oceanos da Terra, oferecendo um novo apoio à ideia de que os cometas podem ter desempenhado um papel crucial no fornecimento de água  ao nosso planeta, e possivelmente alguns dos ingredientes moleculares para a vida.

© NASA (cometa disseminando água na Terra)

Usando o poderoso ALMA (Atacama Large Millimeter/submillimeter Array), uma equipe internacional de cientistas liderada por Martin Cordiner, do Goddard Space Flight Center da NASA, mapeou a distribuição tanto da água comum (H2O) quanto da água "pesada" (HDO, que contém o isótopo mais pesado, deutério) na cabeleira (a nuvem de gás que envolve o núcleo) do cometa tipo-Halley, 12P/Pons-Brooks, durante a sua aproximação ao Sol.

Esta é a primeira vez que se consegue um mapeamento espacial tão detalhado destas duas formas de água num cometa. As observações do ALMA foram então combinadas com dados sobre água e outros gases, observados usando o IRTF (Infrared Telescope Facility) da NASA, para formar uma imagem mais completa do cometa. Ao combinar as capacidades complementares destes dois telescópios, os pesquisadores conseguiram medir com maior precisão a proporção de deutério para hidrogênio (D/H) na água do cometa, uma impressão digital química que ajuda a rastrear as origens e a história da água em todo o Sistema Solar.

Surpreendentemente, a proporção D/H da água no cometa 12P/Pons-Brooks foi considerada praticamente indistinguível da dos oceanos da Terra. A medição, (1,71±0,44)×10^−4, é a menor proporção já medida num cometa tipo-Halley e está na extremidade inferior dos valores observados anteriormente em outros cometas.

Cometas como este são relíquias congeladas que sobraram do nascimento do nosso Sistema Solar há 4,5 bilhões de anos. Pensa-se que a Terra se formou a partir de materiais sem água, por isso há muito que se sugere que os impactos de cometas foram a fonte da água da Terra.

Os novos resultados fornecem a evidência mais forte até agora de que pelo menos alguns cometas tipo-Halley transportavam água com a mesma assinatura isotópica encontrada na Terra, apoiando a ideia de que os cometas podem ter ajudado a tornar o nosso planeta habitável.

Os cometas tipo-Halley são uma classe de cometas com períodos orbitais intermediários (entre 20 e 200 anos) e visitam o Sistema Solar interior apenas raramente. As conclusões do estudo são significativas porque medições anteriores em outros cometas frequentemente mostravam água com uma proporção D/H diferente da da Terra, deixando em dúvida a origem cometária da água da Terra. Esta nova medição sugere que alguns cometas, particularmente aqueles como o 12P/Pons-Brooks, poderiam ter transportado água, e possivelmente outros elementos essenciais à vida, para uma Terra jovem.

A pesquisa também confirma a origem dos gases observados, fornecendo uma imagem mais precisa da verdadeira composição do cometa. Ao mapear tanto o H2O como o HDO na cabeleira do cometa, é possível dizer se estes gases provêm dos gelos dentro do corpo sólido do núcleo, em vez de se formarem a partir de processos químicos ou outros processos na coma (cabeleira) gasosa.

As observações só foram possíveis graças à sensibilidade excepcional e às capacidades únicas de imagem do ALMA, que permitiram detectar a fraca assinatura de água pesada emanada das regiões mais internas da coma, algo que nunca antes tinha sido mapeado num cometa.

Fonte: National Radio Astronomy Observatory