sexta-feira, 19 de setembro de 2025

Imenso jato estelar na periferia da nossa Via Láctea

Bem longe, no limite da nossa Galáxia, a Via Láctea, uma jovem estrela ainda em formação está enviando um comunicado de nascimento ao Universo sob a forma de um fogo de artifício.

© NASA (Sharpless 2-284)

Os gases sobreaquecidos que caem sobre a estrela massiva são lançados para o espaço ao longo do eixo de rotação da estrela e poderosos campos magnéticos confinam os jatos em feixes estreitos. O telescópio espacial James Webb testemunhou o espetáculo em luz infravermelha. Os jatos estão penetrando na poeira e no gás interestelares, criando detalhes fascinantes captados apenas pelo Webb. 

Estendendo-se por 8 anos-luz, o comprimento da erupção estelar é aproximadamente o dobro da distância entre o nosso Sol e o vizinho sistema Alpha Centauri. Os pesquisadores dizem que o tamanho e a força deste jato estelar em particular, conhecido como Sharpless 2-284 (Sh2-284), qualifica-o como raro. O jato atravessa o espaço a centenas de milhares de quilômetros por hora. A protoestrela central, com uma massa equivalente a dez vezes a massa solar, está localizada a 15.000 anos-luz de distância, nos confins da Via Láctea. 

Esta classe única de fogos de artifício estelares, designada por objetos de Herbig-Haro (HH), são jatos de plasma altamente colimados expelidos por estrelas em formação. Parte do gás em queda, que se acumula em torno da estrela central, é projetado ao longo do eixo de rotação da estrela, provavelmente sob a influência de campos magnéticos. Atualmente, já foram observados mais de 300 objetos de HH, mas principalmente em estrelas de baixa massa. Estes jatos em forma de fuso oferecem pistas sobre a natureza das estrelas em formação. A energia, a pequena espessura e as escalas temporais evolutivas dos objetos de HH servem para restringir os modelos do ambiente e das propriedades físicas do jovem objeto estelar que alimenta o fluxo.

A detecção fornece evidências de que os jatos de HH devem aumentar com a massa da estrela que os alimenta. Quanto mais massivo for o motor estelar que impulsiona o plasma, maior será o tamanho do jato. A detalhada estrutura filamentar do jato, captada pela nítida resolução infravermelha do Webb, é evidência de que o jato está atravessando poeira e gás interestelares. Isto cria nós separados, choques em arco e cadeias lineares. As pontas do jato, situadas em direções opostas, encapsulam a história da formação da estrela.

Originalmente, o material estava perto da estrela, mas ao longo de 100.000 anos as pontas foram-se propagando para fora, e o material por trás é um fluxo mais jovem. A uma distância do Centro Galáctico quase duas vezes superior à do nosso Sol, o protoaglomerado hospedeiro do voraz jato encontra-se na periferia da Via Láctea. No interior do aglomerado ainda estão se formando algumas centenas de estrelas. Estar perto da periferia galáctica significa que as estrelas são deficientes em elementos mais pesados do que o hidrogênio e o hélio. Isto é medido como metalicidade, que aumenta gradualmente ao longo do tempo cósmico, à medida que cada geração estelar expulsa os produtos finais da fusão nuclear através de ventos e supernovas. A baixa metalicidade de Sh2-284 é um reflexo da sua natureza relativamente pristina, tornando-o um análogo local para os ambientes do Universo primitivo que também eram deficientes em elementos mais pesados.

Os jatos estelares, que são alimentados pela energia gravitacional liberada à medida que uma estrela cresce em massa, codificam a história da formação da protoestrela. As novas imagens do Webb dizem-nos que a formação de estrelas massivas nestes ambientes pode ocorrer através de um disco relativamente estável ao redor da estrela, o que é esperado nos modelos teóricos de formação estelar conhecidos como acreção do núcleo.

Há mais de 30 anos que os astrônomos discordam sobre a forma como as estrelas massivas se formam. Alguns pensam que uma estrela massiva requer um processo muito caótico, chamado acreção competitiva. No modelo de acreção competitiva, o material cai de muitas direções diferentes, de modo que a orientação do disco muda ao longo do tempo. O fluxo é lançado perpendicularmente, acima e abaixo do disco, e por isso também parece torcer e girar em direções diferentes. 

Onde há uma estrela massiva, pode haver outras nesta fronteira exterior da Via Láctea. Outras estrelas massivas podem ainda não ter atingido o ponto de disparar fluxos energéticos. Dados do ALMA (Atacama Large Millimeter Array), no Chile, também apresentados neste estudo, encontraram outro núcleo estelar denso que poderá estar numa fase anterior de construção.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal.

Fonte: ESA