terça-feira, 7 de outubro de 2025

Descobertos novos filamentos perto de Centaurus A

Esta extraordinária imagem profunda de Centaurus A (NGC 5128) revela intrincadas estruturas de Hα (hidrogênio-alfa) dentro dos 8 a 10 quiloparsecs internos da galáxia, documentadas com grande detalhe, ainda não descritas na literatura.

© Rolf W. Olsen (Centaurus A)

Esta imagem oferece um raro vislumbre do coração dinâmico de uma galáxia ativa em turbulência. 

As nuvens de emissão brilhantes estendem-se do núcleo e da faixa de poeira da galáxia até a Região de Transição Norte, traçando o mesmo caminho dos conhecidos filamentos de jato óptico de Centaurus A.

Localizada a cerca de 12 milhões de anos-luz de distância, Centaurus A é uma das radiogaláxias ativas mais próximas, constituída por um buraco negro supermassivo que se alimenta de material em queda. Os jatos relativísticos resultantes interagem com o gás circundante, acendendo vastas nuvens de hidrogênio e oxigênio em tons brilhantes de vermelho e azul.

A nebulosidade se origina perto da faixa de poeira central, estendendo-se principalmente para leste e nordeste. Ela aparece como regiões de emissão de Hα irregulares e tênues que se estendem da faixa de poeira através do filamento óptico interno, localizado a aproximadamente 8 kpc (25.000 anos-luz) do núcleo. A emissão de Hα continua para nordeste, conectando-se com o filamento óptico externo a uma distância projetada de 15 kpc (49.000 anos-luz). A área ao redor do filamento externo também mostra muitas estruturas de Hα tênues.

Embora essas características sejam visíveis em conjuntos de dados profissionais, como o Canada–France–Hawaii Telescope (CFHT), algumas não foram captadas anteriormente em astrofotografia amadora, incluindo a imagem anterior de 320 horas em 2024, obtida por Rolf W. Olsen.

Para detectar a emissão ultrafina de Hα próxima ao núcleo, especialmente dentro do halo estelar brilhante, foi realizada uma cuidadosa subtração contínua. Esse processo remove gradientes de fluxo de banda larga, isolando apenas a emissão da linha estreita de Hα.

Nos últimos 11 anos, Olsen coletou centenas de horas de dados sobre Centaurus A no seu observatório em Auckland, Nova Zelândia. Esse esforço de longo prazo levou a vários resultados notáveis, incluindo a primeira detecção óptica da luz do jato do sul, de outra forma invisível, e a descoberta de novas estruturas de Hα e [O III] associadas aos filamentos ópticos do jato do norte.

A exposição total (LRGBHaOIII) desta imagem recente é de 454 horas. Até o momento, foi acumulado um total de 220 horas de exposição em Hα, representando a imagem Hα mais profunda de Centaurus A já tirada, por amadores ou profissionais.

Fonte: Amateur Astronomy Photo of the Day

segunda-feira, 6 de outubro de 2025

A matéria escura e a energia escura podem ser apenas uma ilusão cósmica

Os astrônomos pensam, há décadas, que a matéria escura e a energia escura constituem a maior parte do Universo. No entanto, um novo estudo sugere que poderão não existir de todo.

© Hubble (NGC 7038)

Em vez disso, o que nos parece ser matéria e energia escuras pode ser simplesmente o efeito das forças naturais do Universo enfraquecendo lentamente à medida que este envelhece.

Liderado por Rajendra Gupta, professor no Departamento de Física da Universidade de Ottawa, o estudo afirma que se as forças básicas da natureza (como a gravidade) mudarem lentamente ao longo do tempo e no espaço, podem explicar os estranhos fenômenos que observamos, tais como a forma como as galáxias evoluem e giram e como o Universo se expande.

"As forças do Universo enfraquecem, em média, à medida que este se expande", explica o professor Gupta. "Este enfraquecimento faz com que pareça que existe um impulso misterioso que faz com que o Universo se expanda mais rapidamente (que é identificado como a energia escura). No entanto, à escala das galáxias e dos aglomerados de galáxias, a variação destas forças no espaço gravitacionalmente limitado resulta numa gravidade extra (que se considera ser devida à matéria escura). Mas estas coisas podem ser apenas ilusões, resultantes da evolução das constantes que definem a força das forças".

E acrescenta: "Há dois fenômenos muito diferentes que devem ser explicados pela matéria escura e pela energia escura: o primeiro é à escala cosmológica, ou seja, a uma escala superior a 600 milhões de anos-luz, assumindo que o Universo é homogêneo e igual em todas as direções. O segundo é à escala astrofísica, ou seja, a uma escala menor o Universo é muito irregular e depende da direção. No modelo padrão, os dois cenários requerem equações diferentes para explicar as observações usando matéria escura e energia escura. O nosso é o único que as explica com a mesma equação e sem necessidade de matéria ou energia escuras".  "O que é realmente excitante é que esta nova abordagem permite-nos explicar o que vemos no céu: a rotação das galáxias, o agrupamento de galáxias e até a forma como a luz se curva em torno de objetos massivos, sem termos de imaginar que há algo escondido lá fora. Tudo isto é apenas o resultado da variação das constantes da natureza à medida que o Universo envelhece e se torna irregular".

No ano passado, o professor Gupta pôs em causa a existência da matéria escura no Universo no seu estudo à escala cosmológica. Neste trabalho à escala astrofísica, questionou os modelos teóricos atuais para as curvas de rotação das galáxias.

No novo modelo, o parâmetro frequentemente designado por α emerge do fato de se permitir a evolução das constantes de acoplamento. Com efeito, α comporta-se como uma "componente" extra nas equações gravitacionais que produz efeitos semelhantes aos que os astrônomos atribuem à matéria escura e à energia escura.

Em escalas cosmológicas, α é tratado como uma constante, por exemplo, determinado pelo ajuste de dados de supernovas. Mas localmente (à escala astrofísica), numa galáxia, dado que a distribuição da matéria comum (buracos negros, estrelas, planetas, gás, etc.) varia drasticamente, α varia, fazendo com que o efeito gravitacional extra dependa da localização dessa matéria. Assim, a nova teoria prevê que, em regiões onde existe muita matéria comum, o efeito gravitacional extra é menor, e onde a densidade de matéria detectável é baixa, é maior.

Em vez de adicionar halos de matéria escura à volta das galáxias, a atração gravitacional extra vem de α no novo modelo. Reproduz as "curvas de rotação planas" observadas (estrelas que se movem mais depressa do que o esperado nas partes exteriores das galáxias).

O professor Gupta pensa que esta ideia pode resolver alguns dos maiores quebra-cabeças da astronomia. "Durante anos, lutamos para explicar como é que as galáxias do Universo primitivo se formaram tão rapidamente e se tornaram tão massivas", afirma. "Com o nosso modelo, não é necessário assumir quaisquer partículas exóticas ou quebrar as regras da física. A linha temporal do Universo simplesmente estica-se, quase duplicando a idade do Universo e abrindo caminho para tudo o que observamos".

Efetivamente, a linha temporal alargada para a formação de estrelas e galáxias torna muito mais fácil explicar como é que estruturas grandes e complexas como galáxias e buracos negros podem ter aparecido tão cedo no Universo. Esta teoria pode mudar completamente a forma como pensamos sobre o Universo. Dá mesmo a entender que a procura de partículas de matéria escura, algo em que os cientistas gastaram anos e bilhões de dólares, poderá afinal não ser necessária. Mesmo que as partículas exóticas sejam encontradas experimentalmente, teriam de constituir cerca de seis vezes a massa da matéria comum. Talvez os maiores segredos do Universo sejam apenas constituídos pelas constantes evolutivas da natureza.

Um artigo foi publicado no periódico Galaxies.

Fonte: University of Ottawa

Gaia descobre uma grande onda na Via Láctea

A nossa Galáxia nunca está parada: gira e oscila. E agora, dados do telescópio espacial Gaia da ESA revelam que a Via Láctea também tem uma onda gigante que ondula do seu centro para fora.

© ESA / Gaia (ondulação de lado na Via Láctea)

Há cerca de cem anos que sabemos que as estrelas da Via Láctea giram em torno do seu centro e o Gaia mediu as suas velocidades e movimentos. Desde a década de 1950 que sabemos que o disco da Via Láctea está deformado. Depois, em 2020, o Gaia descobriu que este disco oscila ao longo do tempo, de forma semelhante ao movimento de um pião.

E agora tornou-se claro que uma grande onda agita o movimento das estrelas da Via Láctea ao longo de distâncias de dezenas de milhares de anos-luz do Sol. Tal como uma pedra atirada para um lago, fazendo ondulações para fora, esta onda galáctica de estrelas abrange uma grande parte do disco exterior da Via Láctea.

A inesperada ondulação galáctica é vista com as posições de milhares de estrelas brilhantes que são mostradas em vermelho e azul, sobrepostas nos mapas da Via Láctea pelo Gaia. Mesmo que nenhuma nave espacial possa viajar para além da nossa Galáxia, a visão excepcionalmente precisa do Gaia, nas três direções espaciais (3D) e nas três velocidades (movendo-se em direção a nós e para longe de nós, e pelo céu) está permitindo aos cientistas fazer estes mapas de cima para baixo e de lado. A partir deles, podemos ver que a onda estende-se por uma enorme porção do disco galáctico, afetando estrelas a pelo menos 30 a 65 mil anos-luz de distância do centro da Galáxia (para efeitos de comparação, a Via Láctea tem cerca de 100 mil anos-luz de diâmetro).

Os astrônomos conseguiram descobrir este movimento surpreendente estudando as posições e movimentos pormenorizados de jovens estrelas gigantes e estrelas Cefeidas. Estas últimas são estrelas que variam de brilho de uma forma previsível e que podem ser observadas por telescópios como o Gaia a grandes distâncias. Dado que as jovens estrelas gigantes e as Cefeidas movem-se com a onda, os cientistas pensam que o gás no disco também pode estar participando nesta ondulação em grande escala. É possível que as estrelas jovens retenham a memória da onda a partir do próprio gás no qual nasceram.

Uma colisão passada com uma galáxia anã poderia ser uma explicação possível, mas os cientistas precisam de mais investigações. A grande onda pode também estar relacionada com um movimento ondulatório de menor escala observado a 500 anos-luz do Sol e que se estende por 9.000 anos-luz, a chamada Onda Radcliffe. No entanto, a Onda Radcliffe é um filamento muito menor e está localizada numa parte diferente do disco da Galáxia, em comparação com a onda estudada (muito mais perto do Sol do que a grande onda). As duas ondas podem ou não estar relacionadas. 

O quarto lançamento de dados do Gaia incluirá posições e movimentos ainda melhores das estrelas da Via Láctea, incluindo estrelas variáveis como as Cefeidas. Isto ajudará na obtenção de mapas ainda melhores, avançando assim na compreensão destas características da Via Láctea.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESA

Centro de explosão de estrelas

A galáxia brilhante nesta imagem do telescópio espacial Hubble é a galáxia NGC 6951, que reside a cerca de 70 milhões de anos-luz de distância, na constelação de Cefeu.

© Hubble (NGC 6951)

Como mostra esta imagem do Hubble, a NGC 6951 é uma galáxia espiral com inúmeras estruturas intrigantes. O que mais chama a atenção são seus braços espirais, pontilhados por nebulosas vermelhas brilhantes, estrelas azuis brilhantes e nuvens de poeira filamentosas.

Os braços espirais circundam o centro galáctico, que possui um brilho dourado proveniente de uma população de estrelas mais velhas. O centro da galáxia também é nitidamente alongado, revelando a presença de uma barra de estrelas em rotação lenta.

A barra da NGC 6951 pode ser responsável por outra característica notável: um anel branco-azulado que envolve o próprio coração da galáxia. Isso é chamado de anel de explosão estelar circumnuclear; essencialmente, um círculo de formação estelar intensificada ao redor do núcleo de uma galáxia.

A barra canaliza o gás em direção ao centro da galáxia, onde se acumula em um anel com cerca de 3.800 anos-luz de diâmetro. Duas faixas escuras de poeira paralelas à barra marcam os pontos onde o gás da barra entra no anel. O gás denso de um anel de explosão estelar circumnuclear é o ambiente perfeito para a formação de um número impressionante de estrelas.

Usando dados do Hubble, astrônomos identificaram mais de 80 potenciais aglomerados estelares dentro do anel da NGC 6951. Muitas das estrelas se formaram há menos de 100 milhões de anos, mas o anel em si tem vida mais longa, podendo ter existido por 1 a 1,5 bilhão de anos.

Astrônomos têm obtido imagens da NGC 6951 com o Hubble por uma ampla variedade de razões, incluindo o mapeamento da poeira em galáxias próximas, o estudo dos centros de galáxias de disco e o monitoramento de supernovas recentes, das quais a NGC 6951 hospedou cinco ou seis.

Fonte: ESA

quinta-feira, 2 de outubro de 2025

Descoberto planeta errante que cresce a um ritmo recorde

Os astrônomos identificaram um enorme surto de crescimento num planeta errante.

© ESO (ilustração do planeta errante)

Ao contrário dos planetas do nosso Sistema Solar, estes objetos não orbitam estrelas, flutuando livremente por si mesmos.

As novas observações, efetuadas com o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), revelam que este planeta flutuante está consumindo gás e poeira do meio que o rodeia numa taxa elevada. Esta é a taxa de crescimento mais elevada alguma vez registada para um planeta errante, ou, aliás, qualquer tipo de planeta, fornecendo assim informações preciosas sobre a formação e evolução dos planetas.

O objeto em estudo, com uma massa cinco a dez vezes superior à de Júpiter, situa-se a cerca de 620 anos-luz de distância da Terra, na constelação do Camaleão. Com o nome oficial de Cha 1107-7626, este planeta errante ainda se encontra em formação, sendo alimentado por um disco de gás e poeira que o circunda. O planeta, que flutua livremente no espaço, atrai o material para si num processo conhecido por acreção.

No entanto, foi descoberto que a taxa de acreção deste jovem planeta não é constante. Em Agosto de 2025, o planeta estava acumulando massa cerca de oito vezes mais depressa do que apenas alguns meses antes, a uma taxa de seis bilhões de toneladas por segundo!

A descoberta foi realizada com o auxílio do espectrógrafo X-shooter montado no VLT do ESO, no deserto chileno do Atacama. A equipe utilizou igualmente dados do telescópio espacial James Webb, assim como dados de arquivo do espectrógrafo SINFONI do VLT do ESO.

A origem dos planetas errantes continua sendo uma questão em aberto: terão uma formação semelhante a estrelas mas com massas muito pequenas ou serão planetas gigantes ejetados dos seus sistemas de origem?

Os resultados indicam que, pelo menos alguns planetas errantes, parecem partilhar uma formação semelhante ao das estrelas, uma vez que enormes taxas de acreção repentinas semelhantes a esta foram já observadas em estrelas jovens.

Ao comparar a luz emitida antes e durante a enorme subida da taxa de acreção, os astrônomos reuniram pistas sobre a natureza do processo de acreção. Notavelmente, a atividade magnética parece ter desempenhado um papel importante na enorme taxa de acreção da matéria, algo que só havia sido anteriormente observado em estrelas, sugerindo que mesmo objetos de pequena massa podem ter campos magnéticos fortes, capazes de alimentar tais eventos de acreção.

A equipe também descobriu que a química do disco em torno do planeta mudou durante o episódio de acreção, com vapor de água sendo detectado durante o evento, mas não antes. Este fenômeno já tinha sido observado anteriormente em estrelas, mas nunca em nenhum tipo de planeta.

Os planetas errantes são difíceis de detectar, já que são muito tênues, no entanto o futuro Extremely Large Telescope (ELT) do ESO, que operará sob os céus mais escuros do planeta, poderá fazer uma grande diferença. Os seus poderosos instrumentos e enorme espelho principal permitirão aos astrônomos descobrir e estudar mais destes planetas solitários, ajudando-nos a compreender melhor o quão semelhantes poderão ser com estrelas.

Este trabalho foi publicado no periódico The Astrophysical Journal Letters.

Fonte: ESO

segunda-feira, 29 de setembro de 2025

A descoberta de uma rara Cruz de Einstein

Utilizando observatórios como o Atacama Large Millimeter/submillimeter Array (ALMA), astrônomos avistaram uma rara Cruz de Einstein.

© ALMA / NOEMA (galáxia HerS-3 e Cruz de Einstein)

O painel esquerdo mostra a galáxia HerS-3, amplificada gravitacionalmente em uma Cruz de Einstein com uma quinta imagem central brilhante, conforme observado pelo Northern Extended Millimeter Array (NOEMA) no contínuo milimétrico (contornos amarelos), sobreposta à imagem do infravermelho próximo do telescópio espacial Hubble, identificando as quatro galáxias principais (G1 a G4) do grupo de galáxias. A estrela amarela indica a posição do halo de matéria escura (DM) associado ao grupo. O painel direito exibe a morfologia detalhada de cada uma das cinco imagens da Cruz de Einstein, conforme reveladas pelo ALMA.

A Cruz de Einstein formada a partir de cinco imagens da mesma galáxia distante, marca a primeira vez que astrônomos observaram tal característica em comprimentos de onda submilimétricos e de rádio. A descoberta tem o potencial de contribuir para o longo debate sobre o valor da constante de Hubble.

A galáxia de fundo, conhecida como HerS-3, está a 11,6 bilhões de anos-luz de distância. Em seu caminho para a Terra, a luz da HerS-3 encontrou um grupo de quatro galáxias massivas, bem como pelo menos outras 10 galáxias, localizadas a 7,8 bilhões de anos-luz de nós. A gravidade desse grupo em primeiro plano desdobrou a luz da HerS-3 em cinco imagens separadas, em um fenômeno conhecido como lente gravitacional. O resultado é um formato distinto conhecido como cruz de Einstein.

Juntamente com o ALMA, a equipe utilizou dados do NOEMA, na França, do Very Large Array (VLA), no Novo México, e do telescópio espacial Hubble. Eles usaram o NOEMA e o ALMA para mapear o gás molecular frio presente no HerS-3, que alimenta a formação estelar, o VLA para rastrear a emissão de rádio e o Hubble para fornecer a visão óptica de alta resolução necessária para determinar as posições e formas das galáxias que atuam como lentes.

O que foi descoberto é incomum. Normalmente, as cruzes de Einstein consistem em quatro imagens principais. Uma quinta imagem central, quando aparece, geralmente é muito tênue, pois a distribuição de massa interna da lente pode tanto diminuí-la quanto ofuscá-la. Com o HerS-3, no entanto, a quinta imagem foi nítida. Além disso, os pesquisadores, liderados por Pierre Cox (Instituto de Astrofísica de Paris), descobriram que a gravidade das galáxias visíveis do aglomerado interveniente não conseguia, por si só, explicar o arranjo exato das cinco imagens.

A única maneira de reproduzir a configuração notável observada foi adicionar um componente invisível e massivo: um halo de matéria escura no centro do grupo de galáxias. Este halo pesa vários trilhões de vezes a massa do nosso Sol. Isso significa que o centro de massa do aglomerado está deslocado da galáxia mais brilhante, tornando a quinta imagem tênue visível.

O alinhamento casual pode proporcionar um presente fortuito: a ampliação pode permitir estudos incomumente detalhados de uma galáxia starburst com desvio para o vermelho ~3 (quando o Universo tinha menos de um quinto de sua idade atual), incluindo seu gás, formação estelar e possíveis ejeções. 

A HerS-3 também pode ser útil no longo debate sobre o valor da constante de Hubble, a taxa de expansão atual do Universo. Mas diferentes maneiras de medi-la produzem resultados conflitantes sobre a velocidade com que o espaço está se expandindo atualmente. A HerS-3 poderia ser usada como outra forma de medir a constante de Hubble. Se a luz do objeto de fundo varia ao longo do tempo, o intervalo de tempo entre o aparecimento dessa variação em cada uma das imagens com lentes registradas depende, em parte, da expansão do Universo. Normalmente, são usados quasares para isso, já que eles naturalmente variam rapidamente em função do tempo. Mas a HerS-3 está formando estrelas, levantando a perspectiva de detectar uma supernova que chegaria a cada imagem em momentos diferentes, dando o intervalo de tempo e, portanto, as restrições à constante de Hubble. 

O que começou como uma forma interessante no céu pode acabar escondendo pistas mais profundas sobre um dos mistérios duradouros do Universo.

Os resultados foram publicados no periódico The Astrophysical Journal.

Fonte: Sky & Telescope

Da Flor à Cabeça de Alho

Esta imagem na constelação de Cassiopeia mostra a região formada por NGC 7822 e Sh2-170 que delineia o famoso ponto de interrogação cósmico.

© Julien De Winter (Sh2-170 e Abell 85)

Esta imagem foca no "ponto": Sh2-170, no canto superior esquerdo, uma nebulosa circular de emissão frequentemente apelidada de Pequena Roseta. Em contraste, no canto inferior direito se estende o vasto remanescente de supernova Abell 85 (CTB 1). Esta bolha filamentosa, com idade entre 20.000 e 30.000 anos, abrange mais de 100 anos-luz de diâmetro. Suas estruturas são particularmente tênues: os filamentos (OIII), extremamente fracos, foram revelados aqui graças a um processamento paciente e meticuloso, destacando a onda de choque da explosão interagindo com o gás circundante.

Entre esses dois objetos, uma rede de nuvens filamentosas de hidrogênio completa o campo. A origem dessa estrutura se assemelha fortemente a uma SNR (remanescente de supernova). 

Esta cena, composta por Sh2-170 e Abell 85, ilustra duas facetas opostas da evolução estelar: a formação de novas estrelas dentro de uma nebulosa compacta e a morte violenta de uma estrela massiva em um remanescente de supernova. 

A nebulosa Sh2-170, que foi descoberta por Stewart Sharpless em 1959, é uma nebulosa de emissão localizada a aproximadamente 7.500 anos-luz da Terra. Ela se estende por quase 70 anos-luz, mas sua aparência circular e compacta lhe rendeu o apelido de "Pequena Roseta", em referência à famosa Nebulosa da Roseta em Monoceros. É um berçário estelar, onde novas gerações de estrelas nascem em meio a nuvens de gás e poeira.

O remanescente de supernova Abell 85, que foi descoberto em meados do século XX, foi inicialmente classificada como uma nebulosa planetária por George O. Abell em seu catálogo de 1955, devido à sua aparência difusa e anular em Hα. No entanto, observações de rádio subsequentes revelaram sua verdadeira natureza: um remanescente de supernova, agora conhecido como CTB 1. Localizado a cerca de 9.000 anos-luz de distância, Abell 85 é um dos maiores remanescentes de supernova visíveis da Terra. Seus filamentos mais brilhantes estão concentrados na parte leste, onde a onda de choque encontra um meio interestelar mais denso, enquanto a parte oeste revela apenas filamentos extremamente tênues, cuja detecção em (OIII) é um verdadeiro desafio para a obtenção de imagens.

A aquisição da imagem levou quase 27 horas de exposição para detectar os objetos. Uma testemunha magnífica da morte de uma estrela massiva, Abell 85 nos lembra que cada cicatriz cósmica preserva a memória de um antigo cataclismo.

Fonte: Amateur Astronomy Photo of the Day