quinta-feira, 7 de dezembro de 2017

Primeira luz do ESPRESSO

O instrumento ESPRESSO (Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations) acaba de fazer as suas primeiras observações.

dados espectroscópicos da primeira luz do instrumento ESPRESSO

© ESO (dados espectroscópicos da primeira luz do instrumento ESPRESSO)

Nesta imagem colorida nota-se que a radiação emitida por uma estrela é dispersada nas suas componentes de cor. Esta imagem foi colorida para indicar como é que os comprimentos de onda variam ao longo dela, não sendo no entanto estas cores que se veriam visualmente. Uma visualização cuidada mostra muitas linhas espectrais escuras no espectro estelar, assim como os pontos duplos regulares resultantes da fonte de luz de calibração. Os espaços escuros são estruturas que não são reais, criadas quando da obtenção dos dados.

Instalado no Very Large Telescope (VLT) do ESO no Observatório do Paranal no norte do Chile, o ESPRESSO irá procurar exoplanetas com uma precisão sem precedentes, ao detectar variações minúsculas da luz das estrelas hospedeiras. Pela primeira vez, um descobridor de planetas poderá combinar a luz coletada pelos quatro telescópios do VLT.

Este novo espectrógrafo de terceira geração é o sucessor do instrumento HARPS do ESO, instalado no Observatório de La Silla. O HARPS, um instrumento de grande sucesso, atinge uma precisão de cerca de um metro por segundo em medições de velocidade, enquanto que o ESPRESSO pretende atingir uma precisão de apenas alguns centímetros por segundo, usando os últimos avanços da tecnologia e aproveitando o fato de estar instalado num telescópio muito maior.

O ESPRESSO pode detectar variações minúsculas no espectro das estrelas à medida que seus planetas as orbitam. Este método das velocidades radiais funciona bem porque a atração gravitacional de um planeta influencia a sua estrela hospedeira, fazendo com que esta “oscile” ligeiramente. Quanto menos massivo for o planeta, menor será esta oscilação, por isso, para que possamos detectar exoplanetas rochosos capazes de suportar vida tal como a conhecemos, necessitamos de um instrumento de alta precisão. Com este método, o ESPRESSO será capaz de detectar alguns dos planetas mais leves já encontrados. O método das velocidades radiais permite aos astrônomos medir a massa e a órbita de um planeta. Combinando este método com outros, tais como o método dos trânsitos, podemos inferir ainda mais informação, por exemplo, o tamanho e a densidade do exoplaneta. O rastreio NGTS (Next-Generation Transit Survey), realizado no Observatório do Paranal do ESO, procura exoplanetas deste modo.

As observações de teste incluiram observações de estrelas e sistemas planetários conhecidos. Comparações feitas com dados HARPS existentes, mostraram que o ESPRESSO consegue obter dados de qualidade semelhante para tempos de exposição muito menores.

Apesar do objetivo principal do ESPRESSO ser levar a procura de planetas ao próximo nível, ao encontrar e caracterizar planetas menos massivos e as suas respectivas atmosferas, o instrumento terá também muitas outras aplicações. Será a ferramenta mais potente para testar se as constantes físicas da natureza variaram desde a época em que o Universo era jovem. Tais variações pequenas estão previstas em algumas teorias da física fundamental, mas nunca foram observadas de forma convincente.

Quando o Extremely Large Telescope (ELT) do ESO estiver operacional, o instrumento HIRES, que se encontra atualmente em estudo, poderá detectar exoplanetas ainda menores, de tamanho semelhante à Terra, usando o método das velocidades radiais.

Fonte: ESO

segunda-feira, 4 de dezembro de 2017

Tendências explosivas de uma galáxia

Não se deixe enganar! O assunto desta imagem, o ESO 580-49, pode parecer tranquilo e modesto, mas esta galáxia espiral realmente exibe algumas tendências explosivas.

ESO 580-49

© Hubble (ESO 580-49)

Em outubro de 2011, uma explosão cataclísmica de radiação de raios gama de alta energia, conhecida como gamma-ray burst (GRB), foi detectada proveniente da região do céu contendo o ESO 580-49. Os astrônomos acreditam que a galáxia foi a anfitriã da GRB, uma vez que a chance de um alinhamento coincidente entre os dois é de aproximadamente 1 em 10 milhões. A uma distância de cerca de 185 milhões de anos-luz da Terra, foi a segunda explosão de raios gama já detectada.

As rajadas de raios gama estão entre os eventos mais brilhantes do cosmos, ocasionalmente superando a produção combinada de raios gama de todo o Universo observável por alguns segundos. A causa exata da GRB que provavelmente ocorreu dentro desta galáxia, catalogada como GRB 111005A, continua sendo um mistério. Vários eventos são conhecidos por gerar as GRBs, mas nenhuma destas explicações parece satisfazer neste caso. Os astrônomos sugeriram que o ESO 580-49 hospedou um novo tipo de explosão de GRB, que ainda não foi caracterizado.

Fonte: ESA

O SPHERE do VLT observa mundos rochosos

Estas imagens foram obtidas pelo instrumento SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) do ESO, instalado no Very Large Telescope (VLT), no Observatório do Paranal, no Chile.

asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia

© ESO/VLT/SPHERE (asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia)

Estas imagens extremamente detalhadas revelam 4 dos milhões de corpos rochosos que compõem o cinturão principal de asteroides, um anel de asteroides entre Marte e Júpiter que separa os planetas interiores rochosos do Sistema Solar dos planetas exteriores gasosos e gelados.

Inicialmente, em cima à esquerda e no sentido dos ponteiros do relógio, temos os asteroides 49 Amphitrite, 324 Bamberga, 2 Pallas e 89 Julia. Com o nome da deusa grega Pallas Atena, 2 Pallas tem uma dimensão de cerca de 510 km, tratando-se do terceiro maior asteroide do cinturão principal e um dos maiores asteroides de todo o Sistema Solar, com 7% da massa de todo o cintuãoa de asteroides, tão pesado que foi anteriormente classificado como um planeta. Com um terço do tamanho de 2 Pallas, 89 Julia retira o seu nome de Santa Júlia da Córsega. A sua composição rochosa levou a classificá-lo como sendo um asteroide do tipo S. Outro asteroide do tipo S é 29 Amphitrite, descoberto apenas em 1854. O 324 Bamberga, um dos maiores asteroides do tipo S no cinturão de asteroides, foi descoberto ainda mais tarde, em 1892 por Johann Palisa.

Atualmente, pensa-se que os asteroides do tipo C são na realidade corpos pertencentes ao Sistema Solar exterior que seguiram a migração dos planetas gigantes. Consequentemente, podem conter gelo no seu interior.

Apesar de, na ficção científica, o cinturão de asteroides ser frequentemente apresentado como um local de colisões violentas, repleta de enormes rochas demasiado perigosas até para o mais ágil dos pilotos espaciais, na realidade esta região é bastante esparsa. No total, o cinturão de asteroides contém apenas 4% da massa da Lua, com cerca de metade desta massa confinada nos 4 maiores residentes: Ceres, 4 Vesta, 2 Pallas e 10 Hygiea.

Fonte: ESO

domingo, 3 de dezembro de 2017

WASP-18b tem sufocante estratosfera sem água

Uma equipe liderada pela NASA encontrou evidências de que o planeta gigante WASP-18b está envolvido numa estratosfera sufocante carregada com monóxido de carbono e desprovida de água.

ilustração de exoplaneta com estratosfera carregada com CO

© Goddard Space Flight Center (ilustração de exoplaneta com estratosfera carregada com CO)

Os resultados provêm de uma nova análise das observações feitas pelos telescópios espaciais Hubble e Spitzer.

A formação de uma camada estratosférica na atmosfera de um planeta é atribuída a moléculas parecidas com um "protetor solar", que absorvem os raios ultravioleta (UV) e a luz visível provenientes da estrela e, em seguida, liberam energia sob a forma de calor. O novo estudo sugere que o "Júpiter quente" WASP-18b, um planeta gigante que orbita muito perto da sua estrela hospedeira, tem uma composição incomum, e a formação deste mundo pode ter sido bastante diferente da de Júpiter, bem como da dos gigantes gasosos em outros sistemas planetários.

"A composição de WASP-18b desafia todas as expetativas," comenta Kyle Sheppard do Goddard Space Flight Center da NASA. "Nós não conhecemos nenhum outro exoplaneta onde o monóxido de carbono domina completamente a atmosfera superior."

Na Terra, o ozônio absorve os raios UV na estratosfera, protegendo o nosso planeta de grande parte da radiação prejudicial do Sol. Para o punhado de exoplanetas com estratosferas, normalmente o composto absorvente é uma molécula como o óxido de titânio, um parente próximo do dióxido de titânio, usado na Terra como pigmento de tinta e ingrediente dos protetores solares.

Os cientistas analisaram os dados recolhidos para WASP-18b, localizado a 325 anos-luz da Terra, como parte de uma pesquisa para encontrar exoplanetas com estratosferas. O planeta gigante, com uma massa equivalente a 10 Júpiteres, já foi observado repetidamente, permitindo com que os astrônomos acumulassem uma quantidade relativamente grande de dados. Este estudo analisou cinco eclipses nos dados de arquivo do Hubble e dois nos do Spitzer.

A partir da luz emitida pela atmosfera do planeta em comprimentos de onda infravermelhos, além do visível, é possível identificar as impressões espectrais da água e de algumas outras moléculas importantes. A análise revelou a peculiar impressão digital do WASP-18b, que não se assemelha com nenhum exoplaneta estudado até agora. Para determinar quais as moléculas mais prováveis aí existentes, a equipe realizou uma extensa modelagem de computador.

"A única explicação consistente para os dados é uma superabundância de monóxido de carbono e muito pouco vapor de água na atmosfera de WASP-18b, além da presença de uma estratosfera," afirma Nikku Madhusudhan, da Universidade de Cambridge. "Esta rara combinação de fatores abre uma nova janela para a nossa compreensão dos processos físico-químicos nas atmosferas exoplanetárias."

Os achados indicam que o WASP-18b possui monóxido de carbono quente na estratosfera e monóxido de carbono mais frio na camada atmosférica logo abaixo, chamada troposfera. A equipe determinou isto detectando dois tipos de assinaturas para o monóxido de carbono, uma assinatura de absorção a um comprimento de onda de aproximadamente 1,6 micrômetros e uma assinatura de emissão a cerca de 4,5 micrômetros. Esta é a primeira vez que os pesquisadores detectaram os dois tipos de impressões digitais para um único tipo de molécula na atmosfera de um exoplaneta.

Em teoria, outro possível ajuste para as observações é o dióxido de carbono, que tem uma impressão digital similar. Mas os cientistas descartaram esta explicação porque se existisse oxigênio suficiente para formar dióxido de carbono, a atmosfera também deveria ter algum vapor de água.

Para produzir as assinaturas espectrais vistas pela equipe, a atmosfera superior do WASP-18b terá que estar abarrotando com monóxido de carbono. Em comparação com outros Júpiteres quentes, a atmosfera deste planeta provavelmente contém 300 vezes mais "metais", elementos mais pesados do que o hidrogênio e hélio. Esta metalicidade extremamente elevada pode indicar que o WASP-18b acumulou quantidades maiores de gelos sólidos durante a sua formação do que Júpiter, sugerindo que talvez não se tenha formado como outros Júpiteres quentes.

"O lançamento esperado do telescópio espacial James Webb e de outros futuros observatórios espaciais vão dar-nos a oportunidade de fazer observações de acompanhamento com instrumentos ainda mais poderosos e de continuar explorando a incrível variedade de exoplanetas que existem por aí," conclui Avi Mandell, cientista exoplanetário do Goddard Space Flight Center.

O artigo científico foi publicado na revista The Astrophysical Journal Letters.

Fonte: Goddard Space Flight Center

Estrelas jovens próximo do buraco negro supermassivo da Via Láctea

No centro da nossa Galáxia, nas imediações do seu buraco negro supermassivo, está situada uma região arruinada por poderosas forças de maré e banhada por intensa radiação ultravioleta e raios X.

lóbulos duplos produzidos por jatos de estrela recém-nascida

© ALMA (lóbulos duplos produzidos por jatos de estrela recém-nascida)

Estas difíceis condições, pensam os astrônomos, não favorecem a formação estelar, especialmente estrelas de baixa massa como o nosso Sol. Inesperadamente, novas observações pelo ALMA (Atacama Large Millimeter/submillimeter Array) sugerem o contrário.

O ALMA deu a conhecer os sinais reveladores de onze estrelas de baixa massa formando-se perigosamente perto - até 3 anos-luz - do buraco negro supermassivo da Via Láctea, conhecido pelos astrónomos como Sagittarius A* (Sgr A*). A esta distância, as forças de maré exercidas pelo buraco negro supermassivo devem ser energéticas o suficiente para rasgar nuvens de poeira e gás antes que possam formar estrelas.

A presença destas recém-descobertas protoestrelas, o estágio de formação entre a densa nuvem de gás e uma estrela jovem e brilhante, sugere que as condições necessárias para o nascimento de estrelas de baixa massa podem existir mesmo nas regiões mais turbulentas da nossa Galáxia e possivelmente em locais idênticos por todo o Universo.

"Apesar da sua improbabilidade, temos as melhores evidências até à data da formação de estrelas de baixa massa surpreendentemente perto do buraco negro supermassivo no centro da Via Láctea," afirma Farhad Yusef-Zadeh, astrônomo da Universidade Northwestern em Evanston, no estado norte-americano do Illinois. "Este é um resultado genuinamente imprevisto e que demonstra o quão robusta a formação estelar pode ser, mesmo nos lugares mais inverosímeis."

Os dados do ALMA também sugerem que estas protoestrelas têm cerca de 6.000 anos. "Isto é importante porque é a fase mais precoce da formação estelar que encontramos neste ambiente altamente hostil," acrescenta Yusef-Zadeh.

A equipe de pesquisadores identificou estas protoestrelas através da observação dos clássicos "lóbulos duplos" de material que rodeiam cada uma delas, esculpindo uma "ampulheta cósmica" de gás que assinala os estágios iniciais da formação estelar. Nestes lóbulos, moléculas como o monóxido de carbono (CO) resplandecem em comprimentos de onda milimétricos que o ALMA pode observar com uma notável precisão e sensibilidade.

As protoestrelas formam-se a partir de nuvens interestelares de poeira e gás. Nestas nuvens, regiões densas de material colapsam sob a sua própria gravidade e crescem através da acumulação de cada vez mais material formador de estrelas oriundo das suas nuvens natais. No entanto, uma porção deste material em queda nunca chega à superfície da estrela. Ao invés, é ejetado como um par de jatos de alta velocidade dos polos norte e sul da estrela. Ambientes extremamente turbulentos podem interromper a liberação normal do material de volta à protoestrela, enquanto a intensa radiação de estrelas gigantes vizinhas e de buracos negros supermassivos podem destruir a nuvem natal, impedindo a formação de praticamente todas as estrelas à exceção das mais massivas.

O Centro Galáctico da Via Láctea, com o seu buraco negro com 4 milhões de massas solares, está localizado a aproximadamente 25.000 anos-luz de distância da Terra na direção da constelação de Sagitário. Esta região é obscurecida por vastos reservatórios de poeira interestelar, escondendo-o dos telescópios ópticos. As ondas de rádio, incluindo os comprimentos de onda milimétricos e submilimétricos que o ALMA observa, são capazes de penetrar esta poeira, dando aos radioastrônomos uma imagem mais clara da dinâmica do conteúdo deste ambiente adverso.

Observações anteriores, com o ALMA, da região em torno de Sgr A* por Yusef-Zadeh e sua equipe revelaram várias estrelas infantis com uma idade estimada em aproximadamente 6 milhões de anos. Estes objetos, conhecidos como "proplyds", são características comuns em regiões de formação estelar, como por exemplo a Nebulosa de Órion. Embora o Centro Galáctico seja um ambiente desafiador para a formação estelar, é possível que núcleos particularmente densos de hidrogênio gasoso superem o limite necessário e fabriquem novas estrelas, apesar das condições extremas.

No entanto, as novas observações do ALMA revelaram algo ainda mais espetacular, sinais de onze protoestrelas de baixa massa formando-se até 1 parsec do buraco negro central da Galáxia. Os astrônomos usaram o ALMA para confirmar que as massas e transferências de momento, a capacidade dos jatos das protoestrelas para penetrar o material interestelar circundante, são consistentes com as protoestrelas jovens encontradas por todo o disco da nossa Galáxia.

"Esta descoberta fornece evidências de que está ocorrendo formação estelar em nuvens surpreendentemente perto de Sagittarius A*," comenta Al Wooten do National Radio Astronomy Observatory. "Embora as condições estejam longe das ideais, podemos argumentar várias ideias para o nascimento destas estrelas."

Para que isso ocorra, as forças externas teriam que comprimir as nuvens de gás perto do centro da nossa Galáxia a fim de superar a natureza violenta da região e permitir com que a gravidade se encarregue de formar estrelas. Os astrônomos especulam que velozes nuvens de gás que se deslocam pela área podem auxiliar à formação estelar comprimindo outras nuvens à medida que forçam o caminho através do meio interestelar. É também possível que os jatos do próprio buraco negro possam "lavrar" as nuvens de gás circundantes, comprimindo o material e desencadeando esta explosão de formação estelar.

"O próximo passo é olhar mais de perto para confirmar que estas estrelas recém-formadas são orbitadas por discos empoeirados de gás," conclui Mark Wardle, astrônomo da Universidade Macquarie em Sydney, Austrália. "Se assim for, é provável que a partir deste material se formem, eventualmente, planetas, como é o caso nas estrelas jovens no disco galáctico."

Os resultados foram publicados na revista The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

sábado, 2 de dezembro de 2017

As nebulosas da América do Norte e do Pelicano

Observadores na Terra podem reconhecer estas nuvens cósmicas.

NGC 7000 e IC 5070

© Paolo Moroni (NGC 7000 e IC 5070)

No lado esquerdo, a emissão brilhante delimitada por linhas de poeira escura, parece traçar uma forma continental conhecida e por isso leva o nome popular de Nebulosa da América do Norte, sendo que o nome oficial catalogado é NGC 7000.

No lado direito, como se estivesse na costa leste da América do Norte, está a IC 5070, cujo perfil também tem uma forma conhecida e por isso é conhecida como a Nebulosa do Pelicano.

As duas nebulosas brilhantes estão localizadas a cerca de 1.500 anos-luz de distância e fazem parte da mesma grande e complexa região de formação de estrelas, que é quase tão perto daqui como a Nebulosa de Órion. A esta distância, o campo de visão, que no céu se espalha por 6 graus, representa 150 anos-luz.

Este belo retrato cósmico usou imagens obtidas com filtros de banda estreita para destacar as frentes brilhantes de ionização, e o característico brilho vermelho do gás hidrogênio atômico. Estas nebulosas podem ser vistas com binóculos em locais bem escuros. Para encontra-las você deve olhar um pouco a nordeste da brilhante estrela Deneb, na constelação de Cygnus, o Cisne.

Fonte: NASA

sexta-feira, 1 de dezembro de 2017

Novo método para medir o tamanho das estrelas de nêutrons

As estrelas de nêutrons são feitas de matéria ultradensa. O modo como esta matéria se comporta é um dos maiores mistérios da física nuclear moderna.

ilustração de uma estrela de nêutrons

© Rodion Kutsaev (ilustração de uma estrela de nêutrons)

Pesquisadores desenvolveram um novo método para medir o raio das estrelas de nêutrons, o que os ajuda a entender o que acontece com a matéria dentro da estrela sob pressão extrema.

Foi desenvolvido um novo método para medir o tamanho das estrelas de nêutrons num estudo liderado por um grupo de pesquisa de astrofísica de alta-energia na Universidade de Turku, Finlândia. O método baseia-se na modelagem de como as explosões termonucleares que ocorrem nas camadas mais altas da estrela emitem raios X. Ao comparar os raios X emitidos pelas estrelas de nêutrons com os modelos teóricos de radiação atuais, os cientistas foram capazes de colocar restrições no tamanho da fonte emissora. Esta nova análise sugere que o raio da estrela de nêutrons deve ser cerca de 12,4 km.

"As medições anteriores mostraram que o raio de uma estrela de nêutrons estava situado entre os 10 e os 16 km. Nós reduzimos este intervalo até cerca de 12 km com cerca de 400 metros de precisão, talvez 1.000 metros se quisermos ter a certeza. Portanto, a nova medição é uma melhoria clara em relação à anterior," comenta Joonas Nättilä, candidato a doutoramento que desenvolveu o método.

As novas medições ajudam os ipesquisadores a estudar o tipo de condições físicas nucleares presentes no interior de estrelas de nêutrons extremamente densas. Estão particularmente interessados em determinar a equação do estado de matéria de nêutrons, que mostra quão comprimível é a matéria a densidades extremamente elevadas.

"A densidade da matéria nas estrelas de nêutrons é cerca de 100 milhões de toneladas por centímetro cúbico. De momento, as estrelas de nêutrons são os únicos objetos naturais com os quais podemos estudar estes tipos extremos de matéria," acrescenta Juri Poutanen, líder do grupo de pesquisa.

Os novos resultados também ajudam a compreender as recém-descobertas ondas gravitacionais que tiveram origem na colisão de duas estrelas de nêutrons. É por isso que o consórcio LIGO/Virgo, que descobriu estas ondas, foi rápido em comparar as suas observações recentes com as novas restrições obtidas pelos cientistas finlandeses.

"A forma específica do sinal de onda gravitacional é altamente dependente dos raios e da equação de estado das estrelas de nêutrons. É muito emocionante como estas duas medições completamente diferentes contam a mesma história acerca da composição das estrelas de nêutrons. O próximo passo lógico é combinar estes dois resultados," conclui Nättilä.

Fonte: University of Turku

quinta-feira, 30 de novembro de 2017

O eco de luz da supernova SN 2014J na galáxia Messier 82

As vozes que reverberam em montanhas e o som de rebatendo nas paredes são exemplos de um eco. O eco acontece quando as ondas sonoras ricocheteiam as superfícies e retornam ao ouvinte.

propagação do eco de luz da SN2014J na M82

© Hubble (propagação do eco de luz da SN 2014J na M82)

O espaço tem sua própria versão de um eco. Não é feito com som, mas com luz, e ocorre quando a luz são refletidas por nuvens de poeira.

O telescópio espacial Hubble acaba de captar um destes ecos cósmicos, na galáxia M82, localizada a 11,4 milhões de anos-luz de distância da Terra, na direcção da constelação da Ursa Maior.

Uma animação reunida a partir de mais de dois anos de imagens obtidas com a Advanced Camera for Surveys do Hubble, entre 6 de Novembro de 2014 e 28 de Abril de 2017, revela uma emissão de luz de uma explosão de supernova que atravessa o espaço interestelar três anos após a descoberta da explosão estelar. A luz "ecoando" parece uma ondulação se expandindo em uma lagoa. A supernova, chamada SN 2014J, foi descoberta em 21 de janeiro de 2014.

efeito do eco de luz da SN 2014J na M82

©  (efeito do eco de luz da SN 2014J na M82)

Um eco de luz ocorre porque a luz da explosão estelar viaja a diferentes distâncias para chegar à Terra. Alguma luz vem para a Terra diretamente da explosão da supernova. Outra porção da luz está atrasada porque viaja indiretamente. Neste caso, a luz está sendo desviada de uma enorme nuvem de poeira que se estende de 300 a 1.600 anos-luz em torno da supernova e está sendo refletida para a Terra.

Até agora, os astrônomos descobriram apenas 15 ecos de luz em torno de supernovas fora da nossa galáxia Via Láctea. As detecções de ecos de luz das supernovas raramente são vistas porque elas devem estar próximas para que haja resolução suficiente de um telescópio.

Fonte: Space Telescope Science Institute

Medidos os primeiros movimentos próprios de estrelas fora da Via Láctea

Graças à combinação de dados do telescópio espacial Hubble e da missão Gaia, astrônomos da Universidade de Groningen conseguiram medir o movimento próprio de quinze estrelas da Galáxia Anã do Escultor, a primeira medição do gênero para uma galáxia pequena além da Via Láctea.

Galáxia Anã do Escultor

© ESO (Galáxia Anã do Escultor)

Os resultados mostram uma preferência inesperada na direção do movimento, o que sugere que o modelo teórico padrão usado para descrever o movimento das estrelas e do halo de matéria escura em outras galáxias pode ser inválido.

Há muito que os astrônomos são capazes de medir o movimento das estrelas na nossa "linha de visão" através do desvio para o vermelho, provocado pelo efeito Doppler. No entanto, a medição do movimento no plano do céu, chamado "movimento próprio", é muito mais difícil. Para detectar este movimento são necessárias múltiplas medições muito precisas da posição de uma estrela ao longo de vários anos. Devido à imensa distância que nos separa, muitas estrelas da nossa Galáxia têm movimentos extremamente pequenos a partir do ponto de vista do céu da Terra. Para estrelas fora da nossa Galáxia, este movimento é ainda menor.

A missão Gaia da ESA, atualmente em andamento, está concebida para medir a posição exata de mais de um bilhões de estrelas, principalmente na Via Láctea. "Mas o Gaia também mede posições estelares em galáxias próximas," explica o astrônomo Davide Massari da Universidade de Groningen. "E para algumas destas estrelas, também temos a localização medida pelo telescópio espacial Hubble, há cerca de 12 anos."

Massari e colegas do Instituto Astronômico Kapteyn propuseram combinar ambos os conjuntos de dados. Esta não é uma tarefa fácil, pois ambas as missões medem a posição de maneiras diferentes. Ao usar galáxias de fundo que não mudaram de posição nos doze anos, a equipe foi capaz de combinar os dados. "Tivemos que ter muito cuidado para excluir quaisquer erros sistemáticos," comenta Massari. Mas foram bem-sucedidos e das 120 estrelas medidas, tanto pelo Hubble como pelo Gaia na Galáxia Anã do Escultor, descobriram quinze observações emparelhadas extremamente precisas.

"Em seguida, determinamos como as estrelas se movem nesta galáxia pequena, que é quantificado pelo parâmetro de anisotropia. Se alto, as estrelas têm trajetórias muito alongadas, se muito pequeno, têm órbitas circulares. Com este conhecimento conseguimos determinar as propriedades do halo de matéria escura no qual a galáxia está embebida. Mas o nosso valor medido foi muito surpreendente, não é permitido pelos modelos padrão. Isto significa que alguns dos pressupostos em que estes modelos se baseiam devem estar errados."

Uma possível explicação é que o modelo assume que todas as estrelas pertencem a uma única população. Mas nós sabemos que a Anã do Escultor é uma galáxia complexa e tem pelo menos dois componentes estelares (um mais compacto e outro mais estendido). Na verdade, existe um modelo que inclui este parâmetro e a anisotropia que Massari e colegas observaram é, de fato, por ele prevista, caso a maioria das estrelas medidas pertençam ao componente mais compacto.

O movimento das estrelas depende principalmente do halo invisível de matéria escura em torno de uma galáxia. É por isso que é tão importante determinar o parâmetro de anisotropia, pois pode ser usado para determinar a distribuição da matéria escura nesta galáxia, que por sua vez depende da natureza da própria matéria escura. "Os nossos resultados mostram que, por meio dos dados do Gaia, combinados com outros conjuntos de dados, podemos medir o movimento próprio de estrelas fora da Via Láctea e assim melhorar os modelos que descrevem a forma como a matéria escura está distribuída nestas outras galáxias."

Um segundo resultado importante é uma medição mais precisa da órbita da Galáxia Anã do Escultor em torno da Via Láctea. "Esta órbita é muito maior do que o esperado. Anteriormente, pensava-se que a atual forma esferoidal era, em parte, o resultado de algumas passagens próximas, mas as nossas medições mostram que não é o caso." Massari e a equipe do Instituto Kapteyn estão ansiosos por ampliar a sua amostra de estrelas fora da Via Láctea com movimento próprio conhecido após o novo lançamento de dados do Gaia, no início do próximo ano.

Os resultados foram publicados na revista Nature Astronomy.

Fonte: University of Groningen

quarta-feira, 29 de novembro de 2017

O mais profundo rastreio espectroscópico executado até hoje

A equipe, liderada por Roland Bacon da Universidade de Lyon (CRAL, CNRS), na França, utilizou o instrumento MUSE (Multi Unit Spectroscopic Explorer) para observar o HUDF (Hubble Ultra Deep Field), uma região do céu na constelação austral da Fornalha bastante estudada.

Hubble Ultra Deep Field

© ESO/MUSE (Hubble Ultra Deep Field)

Obtiveram-se assim as observações espectroscópicas mais profundas até hoje; foram medidas informações espectroscópicas precisas para 1.600 galáxias muito fracas, o que corresponde a dez vezes o número de galáxias que se tinham conseguido medir neste campo durante a última década, com telescópios situados no solo.

As imagens HUDF originais, publicadas em 2004, são observações de campo profundo obtidas com o telescópio espacial Hubble da NASA/ESA. Eram as mais profundas obtidas até então e revelaram uma enorme quantidade de galáxias, observadas quando o Universo tinha menos de um bilhão de anos. A região foi subsequentemente observada muitas vezes, tanto com o Hubble como com outros telescópios, resultando na imagem mais profunda do Universo obtida até então. Agora, e apesar da profundidade das observações Hubble, o MUSE conseguiu revelar 72 galáxias nunca antes observadas nesta minúscula área do céu.

Roland Bacon explica melhor: ”O MUSE consegue fazer algo que o Hubble não é capaz, ou seja, separa a luz vinda de cada ponto da imagem nas suas componentes de cor, criando um espectro. Isso permite medir distâncias, cores e outras propriedades de todas as galáxias que observamos, incluindo algumas invisíveis ao próprio Hubble!”

Os dados MUSE dão uma nova visão de galáxias muitos distantes e fracas, observadas próximo do início do Universo, há cerca de 13 bilhões de anos atrás. Este instrumento detectou galáxias 100 vezes mais fracas do que os rastreios anteriores, acrescentando assim a um campo observado já muito rico e aprofundando o nosso conhecimento das galáxias ao longo dos tempos.

O rastreio descobriu 72 candidatas a galáxias do tipo Lyman-alfa, objetos que emitem apenas em radiação Lyman-alfa. Os elétrons carregados negativamente que orbitam os núcleos carregados positivamente de um átomo, têm níveis de energia quantificados. Isto significa que apenas podem existir em estados de energia específicos e apenas podem transitar entre estes estados ganhando ou perdendo quantidades precisas de energia. A radiação de Lyman-alfa é produzida quando elétrons nos átomos de hidrogênio decaem do segundo nível de energia mais baixa para o primeiro nível de energia mais baixa. Esta quantidade de energia precisa que se perde, é liberada sob a forma de radiação com um comprimento de onda particular na região ultravioleta do espectro eletromagnético, a qual é detectada pelos astrônomos com telescópios no espaço, ou no solo, no caso de se tratarem de objetos que apresentam desvios para o vermelho. Para estes dados, com desvios para o vermelho entre 3 e 6,6, a radiação de Lyman-alfa é observada na luz visível ou infravermelha próxima.

A nossa compreensão atual da formação estelar não explica completamente este tipo de galáxias, que parecem apenas brilhar intensamente nesta cor. Uma vez que o MUSE dispersa a luz nas suas componentes de cor, estes objetos tornam-se aparentes, mas permanecem invisíveis em imagens diretas profundas, como é o caso das do Hubble.

“O MUSE tem a capacidade única de extrair informação sobre algumas das galáxias mais precoces do Universo, mesmo numa região do céu já tão bem estudada,” explica Jarle Brinchmann, da Universidade de Leiden, na Holanda, e do Instituto de Astrofísica e Ciências do Espaço, Porto, Portugal. “Usando espectroscopia podemos aprender mais sobre estas galáxias, tais como o seu conteúdo químico e movimentos internos, não para cada galáxia de cada vez, mas para todas as galáxias ao mesmo tempo!”

Outro resultado importante deste estudo foi a detecção sistemática de halos de hidrogênio luminoso em torno de galáxias do Universo primordial, o que dá aos astrônomos uma nova maneira promissora de estudar como é que o material flui para dentro e para fora das galáxias primitivas.

Numa série de artigos científicos são exploradas muitas outras aplicações potenciais desta base de dados, incluindo o papel de galáxias tênues durante a reionização cósmica (que começou apenas 380 mil anos após o Big Bang), taxas de fusão de galáxias quando o Universo era jovem, ventos galáticos, formação estelar e mapeamento dos movimentos das estrelas no Universo primordial.

“Notavelmente, estes dados foram todos obtidos sem o uso do recente melhoramento do MUSE relativo à Infraestrutura de óptica adaptativa. A ativação desta infraestrutura, após uma década de trabalho intenso por parte dos astrônomos e engenheiros do ESO, promete dados ainda mais revolucionários no futuro,” conclui Roland Bacon.

A Infraestrutura de óptica adaptativa com o MUSE revelou já anéis em torno da nebulosa planetária IC 4406, estruturas nunca antes observadas.

Este trabalho foi descrito numa série de 10 artigos científicos que estão sendo publicados num número especial da revista especializada Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 28 de novembro de 2017

Raias e listras em aglomerado de galáxias

Esta vista pitoresca do telescópio espacial espacial Hubble se aproxima do Universo distante para revelar um aglomerado de galáxias chamado Abell 2537.

Abell 2537

© Hubble (Abell 2537)

Aglomerados de galáxias, como este, contêm milhares de galáxias de todas as idades, formas e tamanhos, totalizando uma massa de milhares de vezes maior que a da Via Láctea. Estes agrupamentos de galáxias são colossais, pois são as maiores estruturas do Universo para serem mantidas unidas por sua própria gravidade.

Os aglomerados de galáxias são úteis para sondar fenômenos cósmicos misteriosos como matéria escura e energia escura, o último dos quais possivelmente pode definir a geometria do Universo. Há tanta matéria preenchida no aglomerado de galáxias Abell 2537 que sua gravidade tem efeitos visíveis em seus arredores.

A gravidade de Abell 2537 liga a própria estrutura do seu ambiente (espaço-tempo), fazendo com que a luz percorra caminhos distorcidos através do espaço. Este fenômeno de lente gravitacional pode produzir um efeito de ampliação, permitindo-nos ver objetos que ficam atrás do aglomerado e, portanto, não são observáveis ​​da Terra. O Abell 2537 é uma lente particularmente eficiente, conforme demonstrado pelas listras esticadas e arcos com raias visíveis na imagem. Estas formas manchadas são de fato galáxias, sua luz fortemente distorcida pelo campo gravitacional de Abell 2537.

Esta cena espetacular foi captada pela Advanced Camera for Surveys e Wide-Field Camera 3 como parte de um programa de observação chamado RELICS (Reionization Lensing Cluster Suervey).

Fonte: ESA

segunda-feira, 27 de novembro de 2017

Estrelas estão sendo geradas em Chamaeleon I

Uma nuvem escura quando observada por telescópios ópticos, a região conhecida como Chamaeleon I, se revela como uma região muito ativa onde estrelas se formam, nesta imagem em infravermelho obtida pelo observatório espacial Herschel da ESA.

Chamaeleon I

© ESA/Herschel (Chamaeleon I)

Localizada a somente 550 anos-luz de distância da Terra, na constelação de Chamaeleon, esta é uma das áreas mais próximas da Terra, onde as estrelas estão sendo produzidas.

Lançado em 2009, o Herschel observou o céu nos comprimentos de onda do infravermelho e no submilimétrico até 2013. Sensível ao calor que emana de pequenas porções de poeira fria misturada com as nuvens de gás onde as estrelas se formam, ele forneceu uma visão sem precedentes do material interestelar que permeia a Via Láctea.

O Herschel descobriu uma vasta e intrigante rede de estruturas filamentares, em todo o canto da galáxia, confirmando que os filamentos são elementos cruciais no processo de formação de estrelas.

Depois que a rede filamentar nasce dos movimentos turbulentos do gás no material interestelar, a gravidade toma conta da situação, mas somente nos filamentos mais densos que se tornam instáveis e se fragmentam em objetos compactos, que seriam as sementes para a formação de novas estrelas.

A região Chamaeleon I não é uma exceção, com algumas estruturas alongadas atravessando a nuvem. A maior parte da atividade de formação de estrelas está acontecendo na convergência dos filamentos, na área brilhante no topo da imagem e numa região mais vasta à esquerda do centro da imagem, estas regiões mostram estrelas recém-nascidas que estão aquecendo o material ao redor.

Analisando imagens parecidas, os astrônomos identificaram mais de 200 estrelas jovens nesta nuvem que tem cerca de dois milhões de anos de existência. A maior parte das estrelas ainda estão circundadas pelo disco do material que ficou nelas depois do processo de formação; sendo que tais discos podem evoluir para a formação de planetas.

Devido ao fato de estar relativamente próxima da Terra, a Chamaeleon I é um laboratório ideal para explorar os discos protoplanetários e suas propriedades usando os dados do Herschel.

Fonte: ESA

domingo, 26 de novembro de 2017

O caso da anã branca encolhendo

Considere uma estrela parecida com o Sol, uma gigante vermelha e uma anã branca. Todas parecem bastante diferentes. Mas na verdade, uma estrela pode ser todas estas três ao longo de sua vida.

ilustração de anã branca e sua companheira

© F. Mereghetti (ilustração de anã branca e sua companheira)

Em cerca de 5 bilhões de anos, o Sol se transformará em uma gigante vermelha, inchando até alcançar a Terra. Então, cerca de um bilhão de anos depois, ela se expandirá muito longe e perderá suas camadas externas, deixando apenas seu núcleo quente e denso. Este núcleo será uma anã branca.

Muitas anãs brancas foram descobertas ao longo dos anos, mas um estudo recente apresentou a primeira evidência observacional de um anã branca se contraindo consistentemente nos últimos 2 milhões de anos.

De acordo com a teoria, uma anã branca típica pode encolher seu raio por várias centenas de quilômetros durante seu primeiro milhão de anos, mas nunca foi testemunhado este comportamento antes. "Por décadas, é teoricamente claro que anãs brancas jovens estão se contraindo," disse o astrofísico Sergei Popov, da Moscow State University.

Isto é em parte porque muitas anãs brancas observadas até agora são extremamente antigas, então acabaram de diminuir há muito tempo. Mas também é incrivelmente difícil para os astrônomos medir mudanças minúsculas no raio de uma anã branca, já que o núcleo estelar é muito distante e muito compacto. (Uma anã branca aproximadamente com massa do Sol teria o tamanho da Terra).

A estrela retraída é realmente parte de um sistema binário de raios X, o HD 49798/RX J0648.0-4418, que está localizado a cerca de 2.000 anos-luz de distância na constelação de Puppis. A equipe foi capaz de medir com precisão as mudanças na anã branca devido à singularidade do sistema binário que a anã branca estava literalmente iluminada, relativo ao acúmulo de matéria da estrela vizinha.

"Em outros sistemas semelhantes, o acréscimo é muito mais poderoso, conforme gira a anã branca torna-se impossível notar a beleza da contração," disse Popov.

A rotação da anã branca HD 49798/RX J0648.0-4418 não foi significativamente influenciada pela infaltração de gás da sua companheira. A equipe percebeu que qualquer alteração na taxa de rotação da anã branca provavelmente resultaria na mudança de tamanho.

O astrônomo Sandro Mereghetti, do Istituto Nazionale di Astrofisica em Milão, descobriu que a velocidade rotacional da anã branca não era apenas a mais rápida já observada para este remanescente, mas também acelerou nos últimos 20 anos. Ele descobriu que o período original de 13 segundos da anã branca, está diminuindo em cerca de sete nanosegundos por ano.

Embora alguns nanossegundos por ano possam não parecer muito, para um objeto tão massivo e comprimido como uma anã branca, isso corresponde a uma mudança significativa no momento angular, algo que não poderia ser realizado através da acumulação de matéria. Em vez disso, os pesquisadores demonstraram que o giro mais rápido da anã branca poderia ser facilmente explicado se a estrela estivesse se contraindo, bem como a forma como um patinador gira mais rápido quando ele fecha os braços.

Com base em cálculos evolutivos, os pesquisadores determinaram que a anã branca tem cerca de 2 milhões de anos de idade. E a teoria prevê que deveria encolher em cerca de um centímetro por ano, o que se encaixa perfeitamente com o aumento da taxa de rotação observada pela equipe.

"Graças a esta descoberta, os astrofísicos poderão estudar e avaliar os padrões de evolução de anãs brancas jovens e buscar com sucesso sistemas similares na galáxia", disse Popov.

Se os astrônomos puderem localizar outros sistemas como o HD49798/RX J0648.0-4418, eles não só aprenderão mais sobre como as anãs brancas jovens evoluem, mas também poderão explorar ainda mais a função da acreção nestes sistemas.

O estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Astronomy