sexta-feira, 21 de outubro de 2011

O mistério das estrelas ‘vampiras’

Um tipo de estrela que não deveria existir pode ter sido finalmente entendido por astrônomos em um estudo recente.

aglomerado NGC 188 com as estrelas vampiras circuladas

© NOAA (aglomerado NGC 188 com as estrelas vampiras circuladas)

Entre os cientistas elas são conhecidas oficialmente como “retardatárias azuis”, mas têm o apelido de “estrelas vampiras”, por parecem mais jovens do que são.

Esses astros se destacam por parecem mais quentes e jovens do que seus vizinhos, embora tenham sido formados mais ou menos na mesma época que eles.

Estava claro para os cientistas que essas estrelas tinham mais energia do que as outras. O mistério era como isso acontecia: se através de colisões com a vizinhança ou por meio da captura de energia.

Agora, a equipe de Aaron Geller e Robert Mathieu descartou a possibilidade de colisões, ou seja, as estrelas vampiras roubariam a energia de outras para ficarem mais jovens.

A maioria delas, segundo o grupo, é parte de um sistema binário. O difícil é ver a companheira, pois uma vez que a vampira suga sua energia, o brilho fica muito fraco para ser detectado por telescópios.

A dupla pretende agora usar o telescópio espacial Hubble para confirmar seus achados.

Fonte: Nature

quinta-feira, 20 de outubro de 2011

Encontrado planeta em processo de formação

Um astrônomo da Universidade do Havaí (EUA) registrou a primeira imagem de um planeta em processo de formação em torno de uma estrela.

ilustração da formação de um novo planeta

© U. Havaí (ilustração da formação de um novo planeta)

Trata-se do planeta mais jovem já encontrado, com aproximadamente o mesmo tamanho de Júpiter. O corpo celeste recém descoberto ganhou o nome de LkCa 15 b e está cercado de poeira cósmica e gases.

Adam Kraus e seus colegas utilizaram os telescópios Keck para registrar as imagens. É a primeira vez que cientistas conseguem medir um planeta tão no início de sua formação. Kraus apresentou a descoberta em um encontro da NASA no Goddard Space Flight Center.

A pesquisa do grupo começou com o estudo de 150 jovens estrelas. Após primeiras análises, eles reduziram o campo de estudo a 12 estrelas. O LkCa 15 b era o segundo da lista e os cientistas imediatamente souberam que estavam diante de algo novo. A coleta de dados começou há um ano.

Um artigo a respeito foi submetido para o periódico The Astrophysical Journal.

Fonte: NASA

Chuva de cometas em Sistema Solar próximo

O telescópio espacial Spitzer detectou uma chuva de cometas em um sistema similar ao que teria sido o Sistema Solar há milhões de anos, no período conhecido como o Intenso Bombardeio Tardio, que possivelmente deu à Terra água e outros ingredientes vitais para a vida.

ilustração da chuva de cometas próxima de estrela

© NASA (ilustração da chuva de cometas próxima de estrela)

Esta descoberta poderia ajudar a entender melhor como foi a chuva de cometas e objetos gelados que caíram do Sistema Solar exterior batendo nos planetas interiores, deixando grandes quantidades de pó e outros elementos que causaram, por exemplo, as crateras da Lua.

O que o telescópio Spitzer detectou consiste em uma nuvem de poeira ao redor de uma estrela brilhante próxima chamada Eta Corvi, que coincide com o conteúdo de um cometa gigante destruído. Esta poeira se encontra perto suficiente da estrela para se acreditar que houve uma colisão entre um planeta e um ou vários cometas. Pesquisadores indicam que o sistema Eta Corvi, que tem aproximadamente 1 bilhão de anos, tem a idade adequada para produzir uma tempestade como esta.

Os astrônomos usaram os detectores de infravermelho do Spitzer para analisar a luz que procede do pó ao redor do Eta Corvi, nos quais encontraram sinais químicos de gelo de água, matéria orgânica, e rocha, o que significa que provém de um cometa gigante. As características da poeira também se assemelham ao meteorito Almahata Sitta, que deixou cair fragmentos na Terra em 2008, no Sudão.

Os especialistas indicam que as semelhanças entre o meteorito e o objeto destruído que rodeia o Eta Corvi implica um lugar comum de origem. O Sistema Solar tem uma região similar de asteroides, conhecido como cinturão de Kuiper, onde flutuam os restos de matéria gelada e rochosa que ficaram após a formação dos planetas há 4,5 bilhões de anos.

Fonte: NASA

quarta-feira, 19 de outubro de 2011

Descobertos novos aglomerados globulares

O aglomerado globular brilhante chamado UKS 1 domina o lado direito da primeira das novas imagens infravermelhas do telescópio de rastreio VISTA do ESO, situado no Observatório do Paranal, no Chile.

© ESO (aglomerados globulares  VVV CL001 e UKS 1)

No entanto, se desviarmos por um momento os olhos  deste objeto brilhante, uma surpresa aflora neste campo rico em estrelas - um aglomerado globular mais tênue descoberto nos dados do VISTA. Para distinguir este aglomerado estelar é necessária uma observação atenta. Este objeto, chamado VVV CL001, consiste numa pequena coleção de estrelas visível na metade esquerda da imagem.
O VVV CL001  é apenas o primeiro das descobertas globulares do VISTA. A mesma equipe descobriu um segundo objeto, VVV CL002, que aparece na imagem abaixo.

© ESO (aglomerado globular VVV CL002)

Este pequeno e tênue grupo de estrelas pode ser também um aglomerado globular, o mais próximo do centro da Via Láctea conhecido até agora. A descoberta de um novo aglomerado globular é muito rara, sendo que o último foi descoberto em 2010 e que apenas eram conhecidos 158 na nossa galáxia antes destas novas descobertas.
Estes novos aglomerados são as primeiras descobertas do rastreio do VISTA intitulado Variáveis na Via Láctea (VVV), que estuda de modo sistemático as regiões centrais da Via Láctea no infravermelho. A equipe VVV é liderada por Dante Minniti (Pontificia Universidad Católica de Chile) e por Philip Lucas (Centre for Astrophysics Research, University of Hertfordshire, RU).
Além de aglomerados globulares, o VISTA também está encontrando muitos aglomerados abertos ou galácticos, os quais contêm geralmente estrelas mais jovens e em menos quantidade do que os aglomerados globulares e são muito mais comuns. Outro aglomerado recentemente anunciado, VVV CL003, parece ser um aglomerado aberto que se encontra na direção do centro da Via Láctea, mas muito mais longe, ou seja cerca de 15.000 anos-luz além do centro.

© ESO (aglomerado globular VVV CL003)

Este é o primeiro aglomerado deste tipo a ser descoberto do lado de lá da Via Láctea.
Devido ao brilho fraco dos novos aglomerados encontrados, não é de admirar que estes tenham permanecido escondidos durante tanto tempo. Até há cerca de alguns anos atrás o UKS 1, que eclipsa totalmente em brilho estes objetos, era o aglomerado globular mais tênue conhecido na Via Láctea. Devido à absorção e avermelhamento da radiação estelar por efeito da poeira, estes objetos apenas podem ser observados no infravermelho e consequentemente o VISTA, o maior telescópio de rastreio do mundo inteiro, está idealmente preparado para procurar novos aglomerados que se encontrem escondidos por trás de poeira nas regiões centrais da Via Láctea.
Uma possibilidade interessante é que o VVV CL001 esteja gravitacionalmente ligado ao UKS 1 - tornando estes dois grupos estelares no primeiro par binário de aglomerados globulares na Via Láctea.
Fonte: ESO

terça-feira, 18 de outubro de 2011

Hubble revisita uma velha amiga

A supernova SN 1987A, é uma das mais brilhantes explosões estelares testemunhadas pelo ser humano desde a invenção do telescópio a mais de 400 anos atrás e essa supernova não é um objeto estranho para o Telescópio Espacial Hubble.
© Hubble (supernova SN 1987A)
O Hubble tem estado na linha de frente dos estudos relacionados com essa estrela moribunda brilhante desde o seu lançamento em 1990, três anos depois da supernova explodir em 23 de Fevereiro de 1987. Essa imagem do velho conhecido do Hubble, resgatada dos arquivos de dados do telescópio, pode ser a melhor imagem já feita desse objeto e nos lembra dos muitos mistérios que ainda cercam essa supernova.
Na imagem acima estão  em destaque dois laços brilhantes de material estelar e um anel muito brilhante ao redor da supernova no centro da imagem. Embora o Hubble tenha fornecido pistas importantes sobre a natureza dessas estruturas, sua origem ainda é desconhecida.
Outro mistério sobre a supernova SN 1987A é a falta de uma estrela de nêutrons. A morte violenta de uma estrela de grande massa, como o que aconteceu com a SN 1987A, deixa para trás um remanescente estelar, uma estrela de nêutrons ou um buraco negro. Os astrônomos esperam encontrar uma estrela de nêutrons na parte remanescente dessa supernova, mas eles ainda não foram capazes de observar através da densa poeira para confirmar a sua existência.
A supernova pertence à Grande Nuvem de Magalhães, uma galáxia próxima a aproximadamente 168.000 anos-luz de distância da Terra. Mesmo apesar da explosão estelar ter ocorrido por volta do ano 166.000 AC, a sua luz chegou aqui na Terra a menos de 25 anos atrás.
Fonte: ESA

segunda-feira, 17 de outubro de 2011

As supernovas mais antigas e distantes

Uma equipe de astrônomos japoneses, israelenses e americanos usaram o Telescópio Subaru para montar a maior amostra já encontrada das supernovas mais distantes, que emitiram luz a cerca de dez bilhões de anos atrás, muito antes da Terra ser formada.

Supernova Tipo Ia

© Subaru (Supernova Tipo Ia)

Os pesquisadores usaram esta amostra de supernovas antigas para determinar com que freqüência tais explosões de estrelas ocorriam no Universo jovem.
Supernovas têm uma grande importância em astrofísica. Elas são fábricas de elementos da natureza: essencialmente todos os elementos da tabela periódica que são mais pesados ​​que o oxigênio foram formados através de reações nucleares imediatamente anterior e durante essas explosões colossais. As explosões arremessam esses elementos no espaço interestelar, onde servem como matéria-prima para as novas gerações de estrelas e planetas.
Assim, os átomos em nossos corpos, como os átomos de cálcio em nossos ossos ou os átomos de ferro em nosso sangue, foram criados em supernovas. Ao rastrear a frequência e tipos de explosões de supernovas de volta no tempo cósmico, os astrônomos podem reconstruir a história do Universo, a partir da mistura simples de hidrogênio e hélio que existiu durante os primeiros bilhões de anos após o Big Bang, até a atual riqueza de elementos.
No entanto, olhar de volta no tempo requer explorar grandes distâncias, significando que essas explosões luminosas são extremamente tênues e difíceis de serem detectadas. Para superar esse obstáculo, a equipe se aproveitou de uma combinação de propriedades do Telescópio Subaru: o poder da luz captação de seu grande espelho primário de 8,2 metros; a nitidez de suas imagens, e o amplo campo de visão de sua câmera com foco principal (Suprime-Cam).
Em quatro ocasiões distintas, eles apontaram o telescópio para um único campo chamado de campo Subaru Deep, que se estende por uma área do céu semelhante à Lua cheia, permitindo que a luz tênue das supernovas nas galáxias mais distantes se acumulam ao longo de várias noites de cada vez, formando assim uma exposição muito longa e profunda do campo.
Cada um das quatro observações captou cerca de 40 supernovas no ato de explodir entre as 150.000 galáxias no campo. Ao todo, a equipe descobriu 150 explosões, incluindo uma dúzia que estão entre as mais distantes e antigas.
Análise dos dados mostrou que as supernovas do tipo chamado "termonuclear" explodiam cerca de cinco vezes mais frequentemente no Universo jovem, cerca de dez bilhões de anos atrás, do que hoje. Supernovas termonucleares, muitas vezes chamadas de Tipo Ia, são uma das principais fontes de geração do elemento ferro no Universo. E os elementos anteriores, como oxigênio e carbono de que necessitamos para existirmos também foram espalhados por estas supernovas.
Igualmente importante, essas explosões serviram como marcadores de distância cósmica para os astrônomos. Durante a última década, eles revelaram que a expansão do Universo, em que todas as galáxias estão se afastando umas das outras, está acelerando sob a influência da energia escura misteriosa.
No entanto, a natureza das supernovas termonucleares é mal compreendida, e tem havido intenso debate sobre a identidade das estrelas antes de explodirem. Ao revelar o intervalo da idade das estrelas que explodem, novas descobertas fornecem algumas pistas importantes para resolver este mistério.
Os resultados correspondem a um cenário no qual as supernovas termonucleares são o produto da fusão de um par de anãs brancas. Observações futuras com a próxima geração de imagens da câmera Subaru, a Hyper Suprime-Cam, permitirá a descoberta de amostras maiores de supernovas mais distantes.

Fonte: Monthly Notices da Royal Astronomical Society

sábado, 15 de outubro de 2011

A cauda da Estrela Maravilhosa

Em 1596, pouco antes da invenção do telescópio, o monge e astrônomo alemão David Faber, também conhecido como Fabricius, observou na constelação de Cetus, uma estrela alaranjada onde anteriormente nada havia notado e registrou sua posição. Em 1642 Johannes Hevelius denominou-a de Mira Ceti (Maravilha da Baleia), foi a primeira estrela variável a ser descoberta e, na época, esta descoberta contribuiu para a rejeição da idéia de que a abóbada celeste era eterna e imutável.

cauda de Mira

© Caltech/GALEX (cauda de Mira)

Em 2007, observações do telescópio espacial GALEX revelou uma cauda extraordinária de cometa atrás de Mira - a primeira vista atrás de uma estrela. Esta cauda tem uma extensão de 13 anos-luz. Como Mira viaja através da galáxia, o gás emana de sua superfície para o espaço, causando um brilho em comprimentos de onda ultravioleta, que vemos como uma cauda.

Mira é um sistema binário que encontra-se a 420 anos-luz do Sol e as duas estrelas estão afastadas uma da outra por cerca de 9 bilhões de quilômetros. Mira A é uma gigante vermelha que tem cerca de 600 vezes o diâmetro do Sol, enquanto que Mira B é uma anã branca com aproximadamente o tamanho da Terra. Estrelas variáveis ​​tornaram-se imensamente importante na astronomia. Uma classe, chamada de variáveis ​​Cefeidas, é útil para medir distâncias e foi crucial para revelar a grandeza do Universo.

A Mira A, no século XVII recebeu o nome de “Estrela Maravilhosa”, devido as variações no seu brilho, teria aumentado e diminuído durante um período de cerca de 333 dias, naquela época. Mira A varia seu brilho cerca de 1.500 vezes, indo da magnitude 2 em seu brilho extremo à magnitude 10, quando então torna-se visível apenas através de telescópios.

A agitação interna de Mira A pode criar distúrbios magnéticos na sua atmosfera superior, responsáveis pelas fulgurações de raios-X observadas e por fortes ventos estelares que fazem a estrela perder material de uma forma rápida. Parte do gás e poeira que escapam de Mira A é capturada pela sua companheira, Mira B. Esse material é recolhido num disco de acreção em volta desta pequena estrela, onde as colisões entre as partículas, que se movem muito rapidamente, produzem raios-X. Na imagem abaixo Mira A está à direita e Mira B à esquerda.

imagem em ultravioleta do sistema Mira

© Chandra (imagem em ultravioleta do sistema Mira)

Um dos aspectos mais intrigantes das observações deste sistema, tanto em raios-X como em ultravioleta, é o fato de se encontrarem indícios de haver uma ponte tênue de material ligando as duas estrelas. A existência de tal ponte pode ser um indício de que, além de capturar material do vento estelar, Mira B pode estar extraindo material diretamente de Mira A para o seu disco de acreção.

simulação hidrodinâmica em Mira

© Mohamed & Podsiadlowski (simulação hidrodinâmica em Mira)

Observações mais recentes pelo telescópio espacial Herschel revelaram outro detalhe curioso, que parece ser uma estrutura espiral na cabeça da nuvem de Mira. A espiral pode resultar da forma como a companheira perturba o gás derramado por Mira como ela se movesse em torno de sua órbita.

Fonte: Astronomy & Astrophysics

sexta-feira, 14 de outubro de 2011

Uma supernova remanescente intrigante

A G299.2-2.9 é uma supernova remanescente intrigante que localiza-se a cerca de 16 mil anos-luz de distância da galáxia Via Láctea.

supernova remanescente G299.2-2.9

© NASA (supernova remanescente G299.2-2.9)

Evidências apontam que a G299.2-2.9 são os restos de uma supernova Ia, onde uma anã branca tem crescido demasiadamente para causar uma explosão termonuclear. Porque é mais velho do que a maioria dos remanescentes de supernova causado por estas explosões, em uma idade de cerca de 4.500 anos, a G299.2-2.9 fornece aos astrônomos uma excelente oportunidade para estudar como esses objetos evoluem ao longo do tempo. Ele também fornece informação da explosão de uma supernova Ia, que produziu esta estrutura.
Esta imagem composta mostra a supernova G299.2-2.9 no raios-X a partir do observatório espacial Chandra e o satélite ROSAT, em laranja, que foi sobreposta em uma imagem infravermelha do Two Micron All-Sky Pesquisa, ou 2MASS. A emissão fraca de raios-X da região interior revela quantidades relativamente grandes de ferro e silício, como esperado para um remanescente de uma supernova Ia. A camada externa da parte remanescente é complexa. Tipicamente, é associada a uma estrela que explodiu no espaço onde o gás e poeira não são uniformemente distribuídas.
É muito importante compreender os detalhes das explosões das supernovas para adquirir conhecimento sobre a energia escura e a expansão do Universo. A descoberta da expansão acelerada do Universo na década de 1990 levou à recente concessão do Prêmio Nobel de Física.

Fonte: NASA

Censo da matéria escura através do Hubble

Astrônomos estão estudando 25 aglomerados de galáxias para medir a quantidade de matéria escura existente no Universo.

aglomerado de estrelas MACS 1206

© Hubble (aglomerado de estrelas MACS 1206)

Reunidos em um projeto chamado Clash, eles utilizam o Telescópio Espacial Hubble para realizar o censo.

A matéria escura não pode ser detectada diretamente. Ela existe pela influência que exerce na matéria visível e pela maneira que altera o espaço, fazendo a luz de objetos distantes ser distorcida.

Até o momento, o grupo conseguiu analisar seis aglomerados de galáxias. Essas são as maiores estruturas unidas pela gravidade que existem no Universo. Cada uma pode conter até milhares de galáxias.

Por serem gigantescos, os aglomerados de galáxias funcionam como "lentes cósmicas" imensas, que amplificam e distorcem qualquer raio de luz que passe por eles. Esse efeito é conhecido como lente gravitacional e é usado pelos astrônomos para provar a existência da matéria escura.

Quando a luz de galáxias muito distantes atravessa o aglomerado, múltiplas imagens do mesmo objeto se formam. O estudo dessa distorção permite saber quanta matéria existe dentro do aglomerado. Caso só existisse matéria visível, a distorção observada seria bem menor.

Um exemplo é do aglomerado MACS 1206, que está a 4 bilhões de anos-luz de distância da Terra. Cada ano-luz equivale a quase 10 trilhões de quilômetros. Nele, os astrônomos do Clash conseguiram ver 47 imagens múltiplas de 12 galáxias recém-descobertas. Esse tipo de observação seria impossível sem a ajuda de um telescópio de longe alcance como o Hubble.

Atualmente, os cientistas acreditam que a matéria visível represente apenas 4% do Universo. O restante seria composto por energia escura (73%) e por matéria escura (23%).

Fonte: NASA

quinta-feira, 13 de outubro de 2011

Asteroide tem montanha maior que o Everest

A sonda Dawn, da NASA, está orbitando o asteroide Vesta e revelando novos detalhes sobre a superfície da enorme rocha do cinturão de asteroides.

montanha do asteroide Vesta

© NASA/Dawn (montanha do asteroide Vesta)

A mais recente descoberta é uma enorme montanha quase três vezes o tamanho do monte Everest, a montanha mais alta da Terra, localizada no Tibete, com 8.848 metros de altura.

A montanha encontrada é localizada no pólo sul de Vesta e  sua altura é cerca de 22 km acima da superfície média ao seu redor. É quase tão alta quanto a maior montanha (e vulcão) do Sistema Solar, o Monte Olimpo, em Marte, que se estende por 24 km acima da superfície.

A sonda Dawn está circulando Vesta desde meados de julho e até agora tem enviado surpreendentes imagens do asteroide, mostrando que a superfície do local é incrivelmente diversificada.

As recentes informações revelam que a superfície de Vesta parece ser muito mais dura do que a da maioria dos asteroides do cinturão, a vasta região repleta de rochas espaciais entre as órbitas de Marte e Júpiter. Além disso, as estimativas preliminares indicam que as crateras do hemisfério sul são muito mais jovens do que as do norte, com aproximadamente apenas um a dois bilhões de anos.

Depois de um ano estudando Vesta, a sonda Dawn deve sair para explorar Ceres, o maior asteroide do Sistema Solar. Vesta, que tem aproximadamente 530 km de diâmetro, é o segundo maior corpo no cinturão de asteroides, e é o mais brilhante asteroide em nosso Sistema Solar.

Agora, os cientistas estão estudando as crateras e serras de Vesta, e esperam mapear toda a superfície iluminada do asteroide até o fim do ano.

Fonte: NASA

quarta-feira, 12 de outubro de 2011

Galáxias distantes na era da reonização

Uma equipe internacional de astrônomos utilizou o VLT como uma máquina do tempo e observou no Universo primordial várias das galáxias mais distantes já detectadas.

ilustração de galáxias no fim da era da reionização

© ESO (ilustração de galáxias no fim da era da reionização)

A equipe conseguiu medir distâncias de forma precisa e descobriu que estamos vendo estas galáxias tal como eram entre 780 milhões a 1 bilhão de anos depois do Big Bang. A galáxia mais distante de que temos conhecimento, com uma distância calculada por espectroscopia, possui um desvio para o vermelho, z, de 8.6, o que a coloca a 600 milhões de anos depois do Big Bang. Há uma galáxia que se pensa ter um desvio para o vermelho de cerca de 10 (480 milhões de anos depois do Big Bang) identificada pelo Telescópio Espacial Hubble, mas espera-se ainda confirmação deste resultado. A galáxia mais distante do estudo aqui apresentado tem um desvio para o vermelho de 7.1, encontrando-se por isso a 780 milhões de anos depois do Big Bang. O Universo tem hoje 13,7 bilhões de anos de idade.

As novas observações permitiram aos astrônomos estabelecer pela primeira vez uma linha cronológica para o que é conhecido como a Era da Reionização. Quando as primeiras estrelas e galáxias se formaram, o Universo encontrava-se cheio de hidrogênio gasoso eletricamente neutro, elemento que absorve radiação ultravioleta. À medida que a radiação ultravioleta emitida por estas galáxias primordiais excitava o gás, tornando-o eletricamente carregado (ionizado), o Universo ia ficando cada vez mais transparente à radiação ultravioleta. Durante esta fase o nevoeiro de hidrogênio gasoso estava desaparecendo, permitindo que a radiação ultravioleta atravessasse o Universo pela primeira vez sem ser impedida.

Os novos resultados que serão publicados na revista especializada Astrophysical Journal resultaram de uma procura longa e sistemática de galáxias distantes que a equipe executou ao longo dos últimos três anos.

“Os arqueólogos conseguem reconstruir uma linha cronológica do passado a partir dos artefatos que encontram em diferentes camadas no solo. Os astrônomos podem fazer melhor: podem olhar diretamente para o passado distante e observar a radiação tênue de diferentes galáxias em diferentes estados da evolução cósmica,” explica Adriano Fontana, do Observatório Astronômico de Roma, INAF, que liderou este projeto. “As diferenças entre as galáxias informam-nos sobre as condições do Universo em plena transformação durante este importante período de tempo e da rapidez com que estas mudanças ocorriam.”

Os diferentes elementos químicos brilham de modo intenso para determinadas cores. Estes picos de brilho são as chamadas linhas de emissão. Uma das mais intensas linhas de emissão no ultravioleta é a linha de Lyman-alfa, emitida pelo hidrogênio. É brilhante e facilmente reconhecível, de modo que pode ser facilmente detectada mesmo em observações de galáxias muito tênues e distantes.

Ao encontrar a linha de Lyman-alfa em cinco galáxias longínquas a equipe conseguiu descobrir dois aspectos muito importantes: primeiro, ao observar de quanto é que a linha estava deslocada para o vermelho no espectro, a equipe pôde determinar a distância às galáxias e consequentemente quão próximo depois do Big Bang estavam sendo observadas. Este fato levou-os a colocar as galáxias por ordem, criando assim uma linha cronológica que mostra como é que a luz das galáxias evoluiu no tempo. Segundo, conseguiram determinar até que ponto a emissão de Lyman-alfa - vinda do hidrogênio brilhante que se encontra no interior das galáxias - é reabsorvida pelo nevoeiro de hidrogênio neutro no espaço intergalático em diferentes alturas no tempo.

“Observamos uma enorme diferença na quantidade de radiação ultravioleta que é reabsorvida entre as mais antigas e as mais recentes galáxias da nossa amostra,” diz a autora principal do artigo científico Laura Pentericci, do Observatório Astronómico de Roma, INAF. “Quando o Universo tinha apenas 780 milhões de anos o hidrogênio neutro era muito abundante, enchendo cerca de 10 a 50% de todo o volume do Universo. Mas apenas 200 milhões de anos mais tarde a quantidade de hidrogênio neutro tinha já diminuído para um nível muito baixo, semelhante ao que observamos hoje. Pensamos por isso que a reionização deve ter ocorrido muito mais rapidamente do que os astrônomos pensavam.”

Além de sondar a taxa à qual o nevoeiro primordial desapareceu, as observações da equipe sugerem também a fonte provável de radiação ultravioleta, a qual forneceu a energia necessária à ocorrência da reionização. Existem várias teorias que competem entre si sobre a origem desta radiação - duas das principais referem a primeira geração de estrelas no Universo e a intensa radiação emitida pela matéria que cai em buracos negros.

“A análise detalhada da radiação tênue emitida pelas duas galáxias mais distantes que encontramos sugere que a primeira geração de estrelas pode ter contribuído para a energia libertada observada,” diz Eros Vanzella do INAF Observatório de Trieste, um membro da equipe de investigação. “Seriam estrelas muito jovens e de grande massa, cerca de cinco mil vezes mais jovens e com cem vezes mais massa do que o Sol. Estas estrelas teriam sido capazes de dissipar o nevoeiro primordial, tornando-o transparente.”

São necessárias medições muito precisas para confirmar ou excluir esta hipótese e mostrar que as estrelas podem produzir esta energia. Para isso precisamos de observações feitas a partir do espaço, ou então do European Extremely Large Telescope planejado pelo ESO, que será o maior olho no céu do mundo, quando estiver operacional no início da próxima década.

Estudar este período precoce da história cósmica é tecnicamente desafiante porque são necessárias observações muito precisas de galáxias extremamente distantes e pouco luminosas, uma tarefa que apenas pode ser levada a cabo pelos telescópios mais potentes. Para este estudo a equipe utilizou o enorme poder coletor dos espelhos de 8.2 metros do VLT para fazer observações espectroscópicas, tendo como alvo galáxias inicialmente identificadas pelo Telescópio Espacial Hubble da NASA/ESA e observadas em imagens profundas do VLT.

Fonte: ESO

terça-feira, 11 de outubro de 2011

Galáxias em estágios de evolução distintos

As galáxias existem numa grande variedade de formas, tamanhos e aspectos que mudam com o tempo.

região da constelação da Ursa Maior

© Hubble (região da constelação da Ursa Maior)

Algumas, como a galáxia que aparece no centro dessa imagem feita pelo Telescópio Espacial Hubble, são belas galáxias espirais com graciosos braços curvos, enquanto outras são bolas difusas como o grande objeto mostrado próximo da parte inferior direita da imagem. Outras ainda se apresentam em formas mais irregulares, como a galáxia laranja que aparece na parte superior da imagem, e que se assemelha a uma pequena corda vibrante.

Essa imagem é uma das algumas centenas de exposições feitas pela Advanced Camera for Surveys do Hubble para criar a chamada Extended Groth Strip. Essa faixa, denominada em homenagem ao astrônomo Edward Groth da Universidade de Stanford é uma imagem composta de uma região retangular do céu localizada na região da constelação da Ursa Maior. Essa faixa cobre uma área relativamente pequena do céu, equivalente grosseiramente à largura de um dedo se você esticar o seu braço em direção ao céu, mas nessa faixa relativamente restrita estão contidas 50.000 galáxias.

As imagens que geram a Extended Groth Strip permitem aos astrônomos espiarem dentro dos últimos oito bilhões de anos da história do Universo e observar assim galáxias em vários estágios de sua evolução. Os grandes objetos espirais e elípticos que nós observamos em primeiro plano nessa imagem são galáxias adultas totalmente formadas. Mais muitas das galáxias que aparecem no plano de fundo da imagem mais difusas e com formas mais peculiares representam uma época em que as galáxias ainda estavam num ativo processo de formação.

Imagens como essa ajudam os astrônomos a entenderem como as galáxias mudam em tamanho e forma e como elas se desenvolvem, desde seus anos iniciais de formação, onde passam por violentos eventos como o crescimento de grandes buracos negros em seus centros e colisões com outras galáxias, até atingirem uma maturidade mais tranquila.

Essa imagem foi criada a partir de exposições feitas na luz visível e no infravermelho com o Wide Field Channel da Advanced Camera For Surveys do Hubble.

Fonte: ESA

sábado, 8 de outubro de 2011

Colisões geraram inclinação de Urano

A inclinação extrema da rotação de Urano sempre foi um mistério. Quase perpendicular ao plano orbital, o eixo de rotação do gigante gelado é uma relíquia do passado violento do Sistema Solar.
inclinação do planeta Urano em infravermelho
© O. Keck (inclinação do planeta Urano em infravermelho)
Desde cedo, os astrônomos sugeriram que esta característica singular teria sido produto do impacto de um corpo com pelo menos a massa da Terra. No entanto, esta teoria tem um problema. Tal catástrofe deveria ter deixado as órbitas das luas uranianas nas suas inclinações originais, e não, tal como observamos hoje, em órbitas regulares no plano equatorial do planeta.
Um novo trabalho divulgado no European Planetary Science Congress parece trazer uma nova solução para este antigo problema. Através de simulações, uma equipe de cientistas liderada por Alessandro Morbidelli (Observatoire de la Cote d’Azur) testou vários cenários de impacto que pudessem reproduzir a atual inclinação do sistema uraniano. Descobriram que se o Urano tivesse sido atingindo quando ainda se encontrava rodeado por um disco protoplanetário (um disco de material donde posteriormente iria emergir o séquito de pequenas luas), então todo o sistema se reorganizaria na nova inclinação.
O novo modelo seria um sucesso, se a simulação não gerasse um outro resultado intrigante. Depois da violenta colisão, muitas das luas de Urano passavam a exibir órbitas retrógradas, ou seja, no sentido contrário ao que se observa hoje. Para ultrapassar este impasse, Morbidelli e colegas reviram os seus parâmetros, e para sua surpresa, descobriram que duas ou mais colisões menores diminuíam significativamente a probabilidade da ocorrência de órbitas retrógradas nas luas de Urano.
Estes novos resultados prometem abalar alguns dos principais aspectos da atual teoria da formação dos planetas. Segundo Morbidelli, “a teoria da formação dos planetas atualmente aceita assume que Netuno, Urano e os núcleos de Júpiter e Saturno foram formados pela acreção de apenas pequenos objetos do disco protoplanetário. Nenhum deveria ter sofrido qualquer colisão gigante. O fato de Urano ter sido atingido pelo menos duas vezes sugere que os grandes impactos foram fenômenos vulgares na formação dos planetas gigantes, consequentemente a teoria vigente tem que ser revista.”
Fonte: Europlanet e astroPT

Novos exoplanetas nos dados do Hubble

Astrônomos descobriram dois exoplanetas reanalisando os dados coletados pelo telescópio espacial Hubble em 1998. Nos mesmos dados em 2009, o astrônomo canadense David Lafreniere encontrou um planeta extrassolar no arquivo morto do Hubble.

imagem da estrela HR 8799 captada pela NICMOS

© NASA (imagem da estrela HR 8799 captada pela NICMOS)

A imagem acima é da estrela HR 8799 tomada pela câmera local Hubble Infrared and Multi-Object Spectrometer (NICMOS) em 1998. Uma máscara dentro da câmera (coronógrafo) bloqueia a maior parte da luz da estrela. Além disso, o software tem sido utilizado para digitalmente subtrair a luz das estrelas. No entanto, a luz difusa da HR 8799 domina a imagem, obscurecendo todos os detalhes.

os três planetas revelados orbitando a HR 8799

© NASA (os três planetas revelados orbitando a HR 8799)

A imagem acima mostra o recente processamento do software sofisticado dos dados NICMOS removendo a maioria da luz da estrela espalhada para revelar três planetas orbitando a HR 8799. As posições desses planetas coincidem com as órbitas dos planetas observados por telescópios terrestres em 2007 e 2008.

sistema exoplanetário HR 8799

© NASA (sistema exoplanetário HR 8799)

A ilustração acima indica o sistema exoplanetário HR 8799 com base na reanálise dos dados do Hubble NICMOS e observações terrestres. As posições das estrelas e as órbitas dos quatro planetas conhecidos são mostrados esquematicamente. O tamanho dos pontos não está em escala com a sua verdadeira dimensão. Os três planetas mais distantes, a, b e c são detectados através de dados do NICMOS e terrestres. O quarto planeta interior foi detectado em observações terrestres. As órbitas alongadas aparecem por causa de uma ligeira inclinação do plano da órbita em relação à nossa linha de visão. O tamanho do sistema HR 8799 é comparável ao nosso Sistema Solar, como indicado pela órbita de Netuno, mostrada em escala.

Os exoplanetas são encontrados por meio de variações na luz emitida por suas estrelas ou por pequenos distúrbios induzidos em sua órbita por seus planetas; desta forma, os astrônomos não conseguem vê-los diretamente, porque sua luz é fraca demais em comparação com a luz das suas estrelas.

O que os cientistas criaram uma técnica para "mascarar" a luz das estrelas, deixando os planetas visíveis.

Os dois planetas agora redescobertos já haviam sido identificados por outras técnicas, ao redor da estrela HR 8799, localizada a 130 anos-luz da Terra.

A HR 8799 tem quatro planetas gigantes gasosos identificados até o momento, dos quais três já haviam sido fotografados antes pelo Hubble, mas só foram vistos, um em 2009, e dois agora, graças ao aprimoramento das técnicas para analisar os dados já coletados.

O quarto provavelmente não poderá ser visto diretamente porque é o que orbita mais próximo da estrela, ficando na borda de sua corona, onde a luz é forte demais mesmo para as novas técnicas.

A possibilidade de visualização do planeta em múltiplas imagens ao longo do tempo também permitirá o estudo de suas órbitas, o que é crucial para o entendimento dos sistemas planetários.

Fonte: NASA

sexta-feira, 7 de outubro de 2011

O desafio do pulsar de Caranguejo

A intensidade da energia emitida pelo pulsar na nebulosa do Caranguejo, na constelação de Touro, desafia a compreensão dos astrofísicos, para os quais este fenômeno não se pode explicar pelos modelos teóricos atuais da física.
Nebulosa do Caranguejo
© ESO (Nebulosa do Caranguejo)
O pulsar de Caranguejo, uma estrela de nêutrons que gira rapidamente descoberta em 1968, parece emitir raios-gama com níveis de energia maiores aos explicados pelos modelos científicos atuais, anunciaram os surpresos autores do estudo.
Usando o conjunto de telescópios Veritas no Observatório Whipple no Arizona (EUA), astrofísicos detectaram que esta jovem estrela de nêutrons tem energia superior a 100 GeV (bilhões de elétron-volts). Esta intensidade de energia é mais de 1 bilhão de vezes superior à da luz visível do Sol.
Para Henric Krawczynski, astrofísico da Universidade de Washington em Saint Louis, coautor deste trabalho, os modelos teóricos padrão não podem explicar estas observações sem grandes mudanças.
"Estamos na presença de algumas forças extremas e estas observações mostram que nossas teorias não se encaixam e que sabemos menos sobre os pulsares do que pensávamos", disse o astrofísico.
Durante muito tempo, pensava-se que as emissões de pulsares são causadas quando o campo magnético dessas estrelas acelera partículas carregadas a uma velocidade próxima à da luz, gerando radiação eletromagnética em um amplo espectro.
"Depois de muitos anos de observações e resultados, pensávamos entender como funcionava  pulsar da nebulosa do Caranguejo, enquanto os modelos preveem uma diminuição exponencial do espectro de emissão acima dos 10 GeV", disse David Williams, professor adjunto de física na Universidade da Califórnia em Santa Cruz e coautor do estudo.
"Foi uma verdadeira surpresa descobrirmos a emissão de raios-gama em energias superiores a 100 GeV", disse Williams. O pulsar de Caranguejo se formou a partir do núcleo de uma grande estrela que explodiu em uma supernova espetacular que foi vista no ano 1054, registrada por astrônomos chineses e árabes, deixando para trás a brilhante nebulosa do Caranguejo, com o pulsar no centro. A Nebulosa do Caranguejo está localizada a 6.500 anos-luz da Terra.
Esta estrela de nêutrons relativamente jovem, um dos objetos mais estudados no céu, gira 30 vezes por segundo e tem um poderoso campo magnético, do qual emite feixes de radiação que, vistos da Terra, parecem pulsos rápidos de radiação.
Fonte: Science