quinta-feira, 5 de julho de 2012

Estrela semelhante ao Sol perde brilho

Uma estrela semelhante ao Sol sofreu um dramático escurecimento em um curto espaço de tempo, aponta estudo realizado pela Universidade da Califórnia, dos Estados Unidos.

estrea emitindo radiação infravermelha

© Lynette Cook (estrea emitindo radiação infravermelha)

Um disco de poeira em torno da estrela TYC 8241 2652, localizada a 456 anos-luz da Terra, foi visto pela primeira vez pelo IRAS (Infrared Astronomical Satellite) da NASA em 1983, e continuou com seu brilho intensamente por 25 anos.

O primeiro indício forte do desaparecimento do disco surgiu de imagens tiradas em janeiro de 2010 pelo WISE (Wide-field Infrared Survey Explorer) da NASA, que realiza um amplo levantamento de campo infravermelho. Uma imagem infravermelha obtida pelo telescópio Gemini, no Chile, em 1 de Maio de 2012, confirmou que a poeira já havia sido dispersada.

A pesquisa relata que a estrela TYC 8241 26521 perdeu em 30 vezes seu fluxo de radiação infravermelha em apenas dois anos e houve ainda um rápido desaparecimento dos restos de poeira em uma região equivalente ao nosso Sistema Solar.

sistema após o desaparecimento da poeira

© Lynette Cook (sistema após o desaparecimento da poeira)

Com os resultados, os cientistas sugerem que o sistema passou por um acontecimento dramático, mas afirmam que não existe atualmente nenhuma explicação ou modelo que detalhe tais observações.

Uma possibilidade é que o gás produzido no impacto que lançou o pó ajudou a arrastar rapidamente as partículas de poeira para dentro da estrela gerando sua condenação. Em outra possibilidade, colisões de grandes rochas que sobraram de um impacto inicial maior proporcionaram uma nova infusão de partículas de poeira no disco, fazendo com que os grãos de poeira rompessem em pedaços cada vez menores.

Fonte: Nature

O comportamento de estrelas recém-nascidas

O trabalho conjunto de telescópios revelou características do corportamento considerado agressivo de estrelas recém-nascidas.

núcleo e disco de poeira e gás da estrela V1647 Ori

© ESA (núcleo e disco de poeira e gás da estrela V1647 Ori)

Estas estrelas giram em alta velocidade e expelem plasma em alta temperatura, o que pode ajudar na compreensão de um dos mais fundamentais assuntos da astronomia, o nascimento de estrelas como o Sol.

As imagens foram registradas pelos telescópios Chandra da NASA, do XMM-Newton da ESA e Suzaku do Japão. Todos operam com tecnologia de identificação de raios X, o que permite monitorar variações nas intensidades desse tipo de emissões, mesmo que estejam enconbertas por nuvens de gás ou poeira cósmica, como ocorre no caso de estrelas jovens.

Estrelas recém-nascidas se formam com resíduos de poeira e gases, que se agrupam em torno do centro gravitacional formando um disco residual, criando assim uma protoestrela. Os componentes desse disco viajam em direção ao núcleo, no processo de expansão comum, mas uma pequena fração desses resíduos acaba sendo expelido em forma de jatos nas extremidades dos astros. Esses jatos são bastante variáveis e apontam a atividade energética nas regiões internas de cada estrela.

As equipes monitoraram a jovem estrela V1647 Ori, que está na nebulosa de McNeil, situada a cerca de 1,3 mil anos-luz da Terra. A observação dos telescópios teve duas etapas, uma que durou de 2003 a 2006 e outra que começou em 2008 e dura até agora. Nesses períodos, a estrela apresentou aumento de massa, temperatura e do nível de emissões de raios X.

"Acreditamos que a atividade magnétida na superfície estelar e em volta dela cria um plasma muito quente", diz o autor do estudo Kenji Hamaguchi. Esse comportamento se sustenta com a constante torção, quebra e reconexão dos campos magnéticos, que conectam o núcleo com o disco", explica.

Os astrônomos também identificaram uma variação singular de emissões, que se repetia regularmente, mas pelo período de apenas um dia. Para uma estrela do tamanho da V1647 Ori, isso significa que ela está girando o mais rápido que pode sem se despedaçar.

"Acreditamos que o plasma se localiza na superfície da estrela. O aumento e a diminuição do fluxo que identificamos é provavelmente o ponto brilhante que aparece e desaparece nas imagens que capturamos", completa o astrônomo japonês.

Ainda assim, as emissões analisadas desde 2004 sugerem que, apesar do comportamento caótico, a configuração de larga escala da estrela se mantém estável em relação à escala temporal. "As observações da V1647 Ori por esses três telescópios dão novas informações sobre o que pode estar acontecendo dentro dos discos nebulosos dessas estrelas em formação", disse Norbert Schartel, da ESA.

Fonte: ESA e Astrophysical Journal

Matéria escura interliga aglomerados de galáxias

Uma descoberta expressiva no campo da cosmologia, foi realizada por Jörg Dietrich e seus colegas da Universidade de Munique, na Alemanha.

galáxias constituídas de matéria escura

© U. Michigan (galáxias constituídas de matéria escura)

Foram detectados componentes de matéria escura entre dois super-aglomerados de galáxias a 2,7 bilhões de anos-luz de distância da Terra. É a primeira vez que se detecta claramente a estrutura de matéria escura que permeia a teia cósmica de matéria no Universo.

E, o que é mais interessante, essa estrutura aparece justaposta com a distribuição de matéria comum, permitindo uma comparação sem precedentes entre as duas fontes de gravidade.

A matéria comum forma uma teia no espaço, com galáxias e aglomerados de galáxias interligados por filamentos de gases quentes muito tênues, mas formados por átomos de matéria comum.

O Universo é um imenso espaço vazio apesar de aglomerados de galáxias serem estruturas descomunais. Como esses filamentos se espalham por distâncias imensas, os cálculos indicam que eles contêm mais da metade de toda a matéria do Universo.

Assim, um espaço aparentemente vazio ganha uma estrutura graças à presença desses filamentos.

A gravidade produzida por eles, contudo, indica que esses filamentos não podem ser feitos apenas de matéria bariônica, ou seja a matéria comum, que compõe 4% da massa do Universo.

Até hoje não havia sido identificado o componente de matéria escura de um filamento.

Dietrich e seus colegas encontraram-no no filamento que une os aglomerados Abell 222 e Abell 223, que são dois aglomerados de galáxias pertencentes ao catálogo criado pelo astrônomo George Abell em 1958, que contém 2.712 enxames de galáxias.

A forte gravidade do filamento que une os dois aglomerados funciona como uma lente para a luz que vem de galáxias mais distantes em direção à Terra.

Os pesquisadores usaram essa luz para calcular a massa e o formato do filamento.

Os raios X emitidos pelo gás quente de matéria comum mostram que essa matéria está distribuída ao longo de todo o filamento, mas compondo apenas cerca de 9% de sua massa.

Simulações em computador mostraram que outros 10% de massa podem ser atribuídos às estrelas e galáxias visíveis. O resto só pode ser parte de uma rede de matéria escura que conecta aglomerados de galáxias através do Universo.

Astrônomos já haviam usado uma técnica semelhante para traçar um mapa da distribuição da matéria escura no interior de um outro aglomerado de galáxias, o Abell 1689. Mas, esta é a primeira vez que se detecta a matéria escura nas interligações de matéria comum.

filamentos que unem os aglomerados de galáxia

©  Nature (filamentos que unem os aglomerados de galáxia)

A possibilidade de fazer um mapa mostrando matéria comum e matéria escura juntas pode mostrar a relação entre as duas e ajudar a determinar como a matéria escura é formada. Esta observação pode ajudar os astrofísicos a entender a estrutura do Universo e, usando a mesma técnica, tentar descobrir o que compõe essa substância invisível conhecida como matéria escura.

Fonte: Nature

terça-feira, 3 de julho de 2012

Gigante vermelha infla uma bolha de gás

Uma estrela brilhante é circundada por uma tênue concha de gás nessa incomum imagem feita pelo telescópio espacial Hubble.

gigante vermelha U Camelopardalis

© Hubble (gigante vermelha U Camelopardalis)

A estrela U Camelopardalis, ou simplesmente U Cam, é uma estrela que está perto do fim da sua vida. À medida que seu combustível começa a acabar, ela se torna instável. A cada poucos milhares de anos, ela expele uma concha esférica de gás enquanto que uma camada de hélio ao redor de seu núcleo começa a fundir. O gás ejetado na última erupção da estrela é claramente visível nessa imagem como uma apagada bolha de gás ao redor da estrela.

A U Cam é um exemplo de uma estrela de carbono. Esse é um tipo bem raro de estrela que tem como característica ter uma atmosfera  que contém mais carbono do que oxigênio. Devido à sua baixa gravidade superficial, normalmente metade da massa total de uma estrela de carbono pode ser perdida por meio de poderosos ventos estelares.

Localizada na constelação de Camelopardalis, A Girafa, perto do Polo Celeste Norte, a U Cam por si só é na verdade muito menor do que aparece nessa imagem do Hubble. De fato, a estrela cabe perfeitamente dentro de um único pixel no centro da imagem. Seu brilho, contudo, é suficiente para oprimir a capacidade da Advanced Camera for Surveys do Hubble a fazer a estrela parecer bem maior do que ela realmente é.

A concha de gás, que é tanto muito maior e muito mais apagada do que a sua estrela progenitora, é visível com detalhes impressionantes nessa bela imagem do Hubble. Embora esse fenômeno que ocorre no final da vida de uma estrela seja irregular e instável, a concha de gás expelida pela U Cam é quase uma esfera perfeita.

Fonte: ESA

segunda-feira, 2 de julho de 2012

O mistério da ausência de oxigênio molecular

A procura por oxigênio molecular interestelar (O2), têm uma longa história, e a motivação para essas pesquisas evoluiu.

nebulosa de Órion

© Robert Gendler (nebulosa de Órion)

Antes do final de 1990, os esforços para detectar O2 foram impulsionados por um desejo de confirmar o seu papel previsto como um importante reservatório de oxigênio elementar dentro de densas nuvens moleculares e como o refrigerante de gás mais importante de nuvens típicas após o monóxido de carbono (CO). Mas o O2 nunca foi encontrado. A satélite SWAS (Submillimeter Wave Astronomy Satellite), em 1998, e o satélite Odin, em 2001, ambos não conseguiram detectar O2 num grande número de fontes níveis com uma pequena percentagem das abundâncias previstas por modelos químicos em equilíbrio na fase gasosa.

A conclusão forçou uma mudança na ênfase das buscas. Hoje, o interesse no O2 já não reside no fato de ser um importante reservatório de oxigênio elementar ou em seu poder de arrefecimento. Em vez disso, as pesquisas tornaram-se um meio importante para testar a nossa compreensão atual da química interestelar e os diversos processos de formação, destruição, e esgotamento de O2 e do equilíbrio entre eles.
Os astrônomos Gary Melnick e Sinos Volker do CfA (Harvard Center for Astrophysics0 lideraram uma equipe de dezenove astrônomos usando o observatório espacial Herschel, no estudo da presença de oxigênio molecular na nebulosa de Órion, um local bem conhecido por sua rica química. Os instrumentos do Herschel possuem tanto  sensibilidade elevada como a cobertura de comprimento de onda amplo necessário para pesquisar a molécula em várias das suas linhas de emissão.

Os cientistas relatam que ainda não encontraram a molécula de O2.

As conclusões preliminares aborda quatro questões: a forma de como o oxigênio se agarra ao gelo no meio interestelar (talvez mais forte do que se suspeitava anteriormente), a quantidade de material total na região de Órion (menos do que havia sido pensado), a maneira como o O2 se junta (aglomerados mais pequenos), bem como a localização destas moléculas nas nuvens (enterrado mais profundo do que as estimativas anteriores).

A imagem no topo  mostra o gás brilhante da nebulosa circundante às estrelas quentes e jovens à beira de uma nuvem molecular interestelar imensa com cerca de 1.500 anos-luz de distância. Simultaneamente, são visíveis as estrelas brilhantes do Trapézio no coração de Órion, as faixas amplas de poeira escura que atravessam o centro, o gás hidrogênio vermelho brilhante, e o pó azul colorido que reflete a luz de estrelas recém-nascidas. A complexa nebulosa de Órion inclui a nebulosa Horsehead, que lentamente se dispersará durante os próximos 100.000 anos.

Fonte: The Astrophysical Journal

domingo, 1 de julho de 2012

Espetacular grupo compacto de galáxias

Escaneando os céus, o canadense astrônomo Paul Hickson e colegas identificaram cerca de 100 grupos compactos de galáxias, agora apropriadamente chamados de Hickson Compact Groups (HCGs).

HCG 62

© Chandra (HCG 62)

Com apenas alguns poucos membros de galáxias por grupo, os HCGs são muito menores do que os imensos aglomerados de galáxias que se escondem no cosmos, mas como os grandes aglomerados de galáxias, alguns HCGs parecem serem preenchidos com gás quente emissor de raios X.

Na verdade, os grupos de galáxias como os HCGs podem ser os blocos de construção dos grandes aglomerados. Esta imagem em cor falsa obtida através do Chandra revela emissões de raios X do gás em um desses grupos, o HCG 62, acima, em detalhe surpreendente.
Na imagem, as cores preto e verde representam intensidades baixas, enquanto tons de vermelho e roxo indicam altas intensidades de raios X. Características marcantes da imagem em raios X são as bolhas de baixa luminosidade no canto superior esquerdo e inferior direito no flanco simetricamente à intensa região central de raios X. O HCG 62 está na constelação de Virgem, perto do centro do grupo que reside a galáxia elíptica NGC 4761.

Em comprimentos de onda ópticos, alguns HCGs perfazem uma visualização gratificante, mesmo com modestos telescópios.

HCG 87

© Hubble (HCG 87)

O HCG 87 mostrado acima, é interessante em parte porque ele lentamente está se autodestruindo, porque as galáxias são gravitacionalmente esticadas durante suas órbitas de 100 milhões de anos em torno de um centro comum. O puxão durante a colisão provoca lampejos de formação de estrelas.

O HCG 87 é composto de uma galáxia espiral visível na parte inferior esquerda, uma galáxia elíptica visível na parte inferior direita, e uma galáxia espiral visível perto do topo. Várias estrelas de nossa galáxia também são visíveis em primeiro plano. Estudos como do HCG 87 permitem uma visão sobre como todas as galáxias se formam e evoluem.

Fonte: Daily Galaxy

Previsão de explosão de supernovas maciças

Por que é que algumas estrelas velhas de grande massa longe da Via Láctea não explodem em um fenômeno supernova?

remanescente de supernova DEM L316

© Chandra (remanescente de supernova DEM L316)

Por intermédio do recém-lançado NuSTAR (Nuclear Spectroscopic Telescope Array) será possível efetuar uma varredura do entulho de supernovas após a explosão captando raios X de alta energia.
A distribuição do material em um remanescente de supernova informa muito a respeito da explosão original. Um elemento de interesse particular é de titânio-44. A criação deste isótopo de titânio através da fusão nuclear requer uma certa combinação de energia, pressão, e matérias-primas. Dentro da estrela em colapso, onde a combinação ocorre a uma profundidade que é muito especial. Tudo abaixo sucumbe à gravidade e colapsa para formar um buraco negro. Tudo acima será soprado para fora na explosão. O Titanium-44 é criado nesta ejeção. O NuSTAR irá mapear a distribuição de titânio-44 em remanescentes de supernovas, em busca de evidências de assimetrias.

Assim, o padrão de como o titânio-44 está espalhado ao longo de um remanescente de supernova pode revelar muito sobre o que aconteceu naquele limiar crucial durante a explosão. E com essa informação, os cientistas podem ser capazes de descobrir o que há de errado em simulações por computador.

Alguns pesquisadores acreditam que os modelos computacionais são muito simétricos. Até recentemente, mesmo com poderosos supercomputadores, apenas foi possível simular um pedaço unidimensional de uma estrela, assumindo que o resto da estrela se comporta de forma semelhante, fazendo com que a implosão simulada é a mesma em todas as direções radiais.

Em um colapso assimétrico, as forças externas podem romper em alguns lugares, mesmo que a queda da gravidade é avassaladora em outros. Na verdade, simulações bidimensionais recentes sugerem que as assimetrias poderiam ajudar a resolver o mistério da supernova não explodir. Se o NuSTAR encontrar titânio-44 espalhado de maneira desigual, isso seria uma evidência de que as explosões foram também assimétricas.

Para detectar titânio-44, o NuSTAR precisa de ser capaz de concentrar a energia muito elevada dos raios X. O Titanium-44 é radioativo, e quando ele decai libera fótons com uma energia de 68 keV (mil elétron-volts). Existente telescópios de raios X espaciais, tais como o Chandra da NASA que pode focar os raios X somente até cerca de 15 keV.

A equipe do NuSTAR passou anos aperfeiçoando técnicas de fabricação delicadas necessárias para fazer a óptica de alta precisão de raios X para operarem com energias tão elevadas em torno de 79 keV.

simulação do núcleo colapsando de uma supernova

© NASA (simulação do núcleo colapsando de uma supernova)

A imagem acima é um modelo de supercomputador do núcleo colapsando de uma supernova. Observações NUSTAR de remanescentes de supernovas reais fornecerá dados vitais para esses modelos.

Fonte: Harvard-Smithsonian Center for Astrophysics

Pulsar perfaz novo recorde de velocidade

Um pulsar pode ter sido visto percorrendo pelo espaço com velocidade que estabelece um novo recorde de velocidade para estes objetos cósmicos.

composição no óptico-infravermelho-raios X

©  NASA/ESA (composição no óptico, infravermelho e raios X)

O IGR J11014 está se movendo a uma velocidade entre 8,7 milhões e 10,5 milhões de quilômetros por hora. A única estrela de nêutrons que pode rivalizar com esta velocidade é o candidato encontrado no remanescente de supernova conhecido como G350.1-0.3. A velocidade desta estrela no presente sistema é estimada entre 4,8 e 9,6 milhões de quilômetros por hora.
Se as observações são o que parecem ser, os astrônomos terão de recalcular as incríveis forças criadas por explosões de supernovas.
Visto em observações feitas com 3 telescópios diferentes: o observatório de raios X Chandra da NASA, o XMM-Newton da ESA, e o radiotelescópio Parkes, na Austrália, o objeto emissor de raios X denominado IGR J11014-6103 parece estar fugindo dos restos de uma supernova na constelação de Carina, a 30.000 anos-luz da Terra. A fonte de raios X foi descoberto pelo INTEGRAL (International Gamma-Ray Astrophysics Laboratory). A evidência para esta velocidade potencialmente recordista vem, em parte, das características destacadas nesta imagem composta. As observações do Chandra (verde) e do XMM-Newton (roxo) foram combinados com os dados infravermelhos do projeto 2MASS e dados ópticos do Digitized Sky Survey (vermelho, verde e azul, mas que aparece na imagem como branco).
O objeto em forma de cometa, possui uma “cauda” de cerca de 3 anos-luz, é provavelmente um pulsar, apresentando rápida rotação, sendo restos superdensos de um remanescente de supernova conhecido como SNR MSH 11-61A, cuja idade é estimada em aproximadamente 15.000 anos. Ondas de choque da supernova têm aquecido o gás circundante a vários milhões de Kelvin, fazendo com que o remanescente brilhe intensamente na frequência dos raios X.
Os fatos indicam que ele está fraco em comprimentos de onda ópticos e infravermelhos e não mudou o brilho em observações em raios X entre 2003 através do XMM-Newton e 2011 através do Chandra, sustentando que objeto seje um pulsar.

O formato do IGR J11014-6103 pode ser o resultado de sua grande velocidade através do espaço, onde o vento no pulsar retorna pela onda de choque de alta energia criada na vanguarda de sua passagem. Um caso semelhante foi observado em outro objeto conhecido como PSR B1957+20.

Estes resultados foram publicados na edição de maio de 2012 no periódico The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

Imagem da primeira luz do NuSTAR

Aqui está a primeira imagem tomada pela missão espacial NuSTAR (Nuclear Spectroscopic Telescope Array), o primeiro telescópio espacial com a capacidade de explorar a região dos raios X de alta energia em nosso Universo.

imagem da primeira luz do NuSTAR

© NuSTAR (imagem da primeira luz do NuSTAR)

Com o sucesso das imagens iniciais, a missão começará a exploração dos buracos negros mais energéticos, assim como outras áreas da física extrema em nosso cosmos, para ajudar na nossa compreensão da estrutura do Universo.
As primeiras imagens mostram o Cygnus X-1, um buraco negro em nossa galáxia que absorvendo gás de uma estrela companheira gigante. Este buraco negro em particular foi escolhido como o primeiro alvo, pois é extremamente brilhante em raios X, permitindo que a equipe NUSTAR focalize facilmente onde os raios X estão sendo captados pelos detectores do telescópio.
O NuSTAR foi lançado em 13 de junho e seu mastro longo, que sustenta os espelhos do telescópio e os detectores com a distância necessária para concentrar os raios X, foi implantado em 21 de junho. A equipe NUSTAR está verificando as capacidades de focalização e movimento do satélite, e ajustando o alinhamento do mastro.
O programa da missão de observação primária está prevista para começar em aproximadamente duas semanas. Mas antes de isso acontecer, a equipe vai continuar os testes e apontar o NUSTAR para calibração em outros alvos brilhantes: o G21.5-0.9, o remanescente de uma explosão de supernova ocorrida há milhares de anos em nossa galáxia, a Via Láctea, e o 3C273, um buraco negro ativo, ou quasar, localizado a 2 bilhões de anos-luz no centro de outra galáxia. Estes objetos serão utilizados para fazer um pequeno ajuste para colocar a luz de raios X no ponto focal do detector, e ainda mais para calibrar e compreender o telescópio, em preparação para observações científicas futuras.
Outros alvos da missão incluem os restos de estrelas mortas, como as que explodiram como supernovas; jatos em alta velocidade, a superfície temperamental do nosso Sol, e os aglomerados de galáxias.

Fonte: Universe Today

Sinais de oceano são encontrados em Titã

As medições do campo gravitacional de Titã, uma das luas de Saturno, obtidas pela sonda Cassini, sinalizam a existência de um oceano de água sob a superfície, como vem sendo sugerido por pesquisadores há vários anos.

Titã passando em torno de Saturno

© Cassini (Titã passando em torno de Saturno)

A Cassini vem recolhendo dados sobre Saturno e suas luas desde que a sonda entrou em sua órbita, em 2004.

Ela efetuou medições da gravidade durante seis sobrevoos realizados sobre Titã, entre 2006 e 2011, o suficiente para evidenciar detalhes sobre a estrutura interior de Titã.

O pesquisador Luciano Iess, da Universidade La Sapienza, na Itália, analisou os novos dados e descobriu que eles revelam o interior de Titã como muito flexível, deformando-se de tal maneira que só seria compatível com um enorme corpo liquefeito mexendo-se no interior da lua.

Ele e seus colegas dos EUA e da Itália identificaram oscilações de maré muito fortes conforme a lua orbitava em torno de Saturno.

Se Titã fosse composta inteiramente de rocha sólida, a atração gravitacional de Saturno poderia causar protuberâncias, ou "marés sólidas", de não mais do que 1 metro de altura.

Mas os dados mostram que Saturno cria marés sólidas de aproximadamente 10 metros de altura, o que sugere que Titã não é inteiramente formada por material rochoso sólido.

Na Terra, as marés resultantes da atração gravitacional da Lua e do Sol puxam nossos oceanos superficiais. No mar aberto, essas marés podem atingir 60 centímetros.

Embora a água seja mais fácil de se mover, o puxão gravitacional também faz com que a crosta da Terra apresente protuberâncias, com marés sólidas de cerca de 50 centímetros.

A presença de uma camada subsuperficial de água líquida em Titã não é em si um indicador para a vida.

Os cientistas acreditam seja mais provável que a vida surja quando água líquida entra em contato com rochas, e essas novas medições não permitem concluir se o fundo do oceano de subsuperfície é feito de rocha ou de gelo.

Mas os resultados têm uma grande importância para o mistério da reposição de metano em Titã.

"A presença de uma camada de água líquida em Titã é importante porque queremos compreender como o metano é armazenado no interior de Titã, e como ele pode vazar até a superfície," disse Jonathan Lunine, da Universidade de Cornell.

"Isso é importante porque tudo o que é único sobre Titã deriva da presença de metano em abundância, mas o metano na atmosfera é instável e destruído em escalas de tempo geologicamente muito curtas," completa.

Um oceano de água líquida, "salgado" com amônia, poderia produzir líquidos que borbulham através da crosta, liberando metano do gelo e reabastecendo o metano que se degrada na atmosfera.

Assim, o eventual oceano de subsuperfície funcionaria também como um reservatório profundo de metano.

Fonte: NASA

sábado, 30 de junho de 2012

Evaporação da atmosfera de um exoplaneta

O telescópio espacial Hubble captou a evaporação da atmosfera de um planeta distante.

ilustração da evaporação da atmosfera do HD 189733b

© NASA (ilustração da evaporação da atmosfera do HD 189733b)

O planeta, situado a cerca de 60 anos-luz de distância da Terra, recebeu um brilho tão intenso de sua estrela que perdeu pelo menos mil toneladas de gás por segundo.

Os cientistas, liderados por Alain Lecavelier des Etangs, do Instituto de Astrofísica de Paris, observaram a atmosfera do planeta HD 189733b, similar a Júpiter, que orbita ao redor da estrela HD 189733A, em dois momentos diferentes, no início de 2010 e no final de 2011.

vista do HD 189733b no óptico e ultravioleta

© Hubble/Swift (vista do HD 189733b no óptico e ultravioleta)

Cerca de cinco milhões de quilômetros, uma distância 30 vezes menor do que da Terra ao Sol, separam o planeta de sua estrela.

É por isso que o exoplaneta se aquece em torno de 1.030ºC, embora esse calor não chegue a ser suficiente para provocar a evaporação de sua atmosfera.

A estrela do distante planeta apresentava uma radiação de raios X que quadruplicava sua luminosidade.

Os pesquisadores, além de confirmar que algumas atmosferas de planetas se evaporam, observaram como variaram as condições físicas da evaporação com a passagem do tempo. Ninguém tinha conseguido isso até então.

Os cientistas calculam que o exoplaneta recebeu uma radiação de raios X três milhões de vezes superior a que a Terra recebe do Sol.

"Foi o brilho de raios X da HD 189733A mais brilhante já observado até agora e parece muito possível que o impacto do calor sobre o planeta possa ter provocado a evaporação observada horas mais tarde através do Hubble", explicou Peter Wheatley, da Universidade Britânica de Warwick.

emissão de raios X da estrela HD 189733A

© Swift (emissão de raios X da estrela HD 189733A)

A equipe também acompanhou a estrela com o telescópio Swift de raios X. Em 7 de setembro de 2011, apenas oito horas antes do Hubble foi agendada para observar o trânsito, o Swift estava monitorando a estrela quando se desencadeou uma emissão poderosa. Um pico 3,6 vezes em raios X ocorreu acima dos níveis de emissões emanados pelo Sol.

Este estudo, cujas conclusões serão publicadas no próximo número da revista Astronomy & Astrophysics, tem importância não só para a análise dos planetas similares a Júpiter. Os cientistas pensam que as "super-Terras" rochosas descobertas recentemente poderiam ser restos de planetas como HD 189733b depois da evaporação total de suas atmosferas.

Fonte: NASA

sexta-feira, 29 de junho de 2012

Nuvens escuras em Aquila

Parte de uma expansão escura que cruza o plano conturbado da Via Láctea, o chamado Aquila Rift arqueia através dos céus de verão do hemisfério norte perto da brilhante estrela Altair e do Triângulo do Verão.

LDN 673-Aquila

© Adam Block (nuvens escuras em Aquila)

Com a sua silhueta marcada contra a luz das estrelas apagadas da Via Láctea, essas nuvens moleculares empoeiradas provavelmente contêm material bruto para formar centenas de milhares de estrelas e os astrônomos vasculham essas nuvens atrás de sinais de nascimento de estrelas. Essa paisagem telescópica foi feita através de uma observação em direção à fragmentada nuvem escura complexa de Aquila identificada como LDN 673, que se espalha através do campo de visão numa distância um pouco maior do que a Lua Cheia. Nessa cena, pode-se observar indicações de fluxos energéticos associados com jovens estrelas que inclui a pequena e avermelhada nebulosidade RNO 109 na parte superior esquerda e o objeto Herbig-Haro HH32 acima e a direita do centro. Estima-se que as nuvens escuras de Aquila estejam localizadas a aproximadamente 6.000 anos-luz de distância. Considerando essa distância a imagem acima se espalha por aproximadamente 7 anos-luz.

Aquila Rift

© Herschel (Aquila Rift)

A imagem acima em cores do Aquila Rift mostra a estrutura filamentosa estendida dessa nuvem de formação de estrelas. Um estudo detalhado deste complexo demonstrou que todos os 32 filamentos parecem ter larguras muito semelhantes, com um valor de cerca de 0,3 anos-luz.
Mais de 500 núcleos compactos foram detectados incorporados nos filamentos na região: cerca de 60% destes são gravitacionalmente ligados e as sementes de futuras estrelas. Todos os núcleos de formação estelar estão localizados em filamentos mais densos e instáveis ​​da nuvem, principalmente ao longo das duas principais correntes filamentares que atravessam a imagem na diagonalmente. Cerca de 200 proto-estrelas também têm sido detectadas, algumas delas são visíveis como brilhantes 'manchas' ao longo dos filamentos principais.
As duas cavidades brilhantes em lados opostos da imagem são regiões HII, onde estrelas jovens e brilhantes iluminam o gás de hidrogênio ionizado, fazendo-a brilhar.
Localizado a uma distância de cerca de 850 anos-luz, o Aquila Rift pertence ao Cinturão de Gould, um anel gigante de estrelas e nuvens de formação estelar na vizinhança do Sol.
Esta imagem é baseada em observações efectuadas pelo SPIRE (Spectral and Photometric Imaging Receiver) em 500 μm e por PACS (Photodetector Array Camera and Spectrometer) a 160 e 70 μm. Estas observações do Aquila Rift são parte de um extenso levantamento do Cinturão de Gould atualmente realizado com observatório espacial Herschel, que explora a região do infravermelho longínquo e do comprimento de onda submilimétrico.

Fonte: NASA e ESA

quinta-feira, 28 de junho de 2012

O brilho de Alpha Centauri

O brilho da Alpha Centauri, uma das estrelas mais brilhantes do céu noturno da Terra, invade o lado esquerdo dessa paisagem cósmica do hemisfério sul.

Alpha Centauri

© Marco Lorenzi (Alpha Centauri)

Localizada a apenas 4,3 anos-luz de distância da Terra, a Alpha Centauri na verdade consiste de duas componentes estelares com tamanho similar ao do Sol, confinadas em uma órbita mútua. Muito menor e mais frio, um terceiro membro do mesmo sistema estelar, a Proxima Centauri, não aparece nesse campo de visão. Ainda assim, essa cena telescópica revela boa parte do plano da Via Láctea que localiza-se além do brilho da Alpha Centauri, incluindo uma nebulosa planetária catalogada como Hen 2-111, e a uma distância estimada de 7.800 anos-luz. A mortalha gasosa de uma estrela moribunda, o núcleo brilhante da nebulosa e o halo mais apagado de gás ionizado avermelhado se expande por mais de vinte anos-luz, e pode ser visto um pouco à direita do centro da imagem. Mais a direita estão dois notáveis aglomerados abertos de estrelas, o compacto Pismis 19 localizado a 8.000 anos-luz de distância e que tem sua luz avermelhada pela poeira, e o mais próximo, o NGC 5617. Visível no brilho da Alpha Centauri está o apagado brilho de uma remanescente de supernova na forma de uma concha, acima e a direita da estrela mais próxima do núcleo brilhante do sistema.

Fonte: NASA

Raro arco gravitacional em aglomerado de galáxias

Astrônomos da NASA usando o telescópio espacial Hubble descobriram um arco de luz desafiador atrás de um aglomerado de galáxias extremamente massivo residindo a 10 bilhões de anos-luz de distância.

aglomerado de galáxias IDCS J1426.5 3508

© Hubble (aglomerado de galáxias IDCS J1426.5+3508)

O agrupamento galáctico, descoberto pelo telescópio espacial Spitzer da NASA, foi observado quando o Universo tinha aproximadamente um quarto da sua idade atual de 13,7 bilhões de anos. O gigantesco arco é a forma esticada de uma galáxia mais distante que tem sua luz distorcida pela gravidade poderosa do monstruoso aglomerado, um efeito conhecido como lente gravitacional.

O problema é que o arco não deveria existir.

“Quando eu o vi pela primeira vez, eu fiquei olhando para ele e pensando que em algum momento ele iria embora”, disse o líder do estudo Anthony Gonzalez da Universidade da Flórida em Gainesville. “De acordo com as análises estatísticas, os arcos deveriam ser extremamente raros nessa distância. No início do Universo, a expectativa é que não existiam galáxias o suficiente atrás do aglomerado brilhantes o suficiente para serem observadas, mesmo se elas fossem distorcidas pelo aglomerado. O outro problema é que os aglomerados de galáxias tornam-se menos massivos à medida que se vai mais distante no tempo. Isso quer dizer que é mais difícil encontrar um aglomerado com massa o suficiente para ser uma lente razoável para gravitacionalmente curvar a luz de uma galáxia distante”.

Aglomerados de galáxias são coleções de centenas a milhares de galáxias unidas pela gravidade. Eles são as estruturas mais massivas do Universo. Os astrônomos normalmente estudam aglomerados de galáxias procurando por galáxias muito mais distantes amplificadas atrás deles que caso contrário seriam muito apagadas para serem observadas com os telescópios. Muitas dessas galáxias gravitacionalmente amplificadas têm sido encontradas atrás de aglomerados de galáxias mais perto da Terra.

A surpresa nessa observação do Hubble é o registro de uma galáxia amplificada por um aglomerado extremamente distante. Denominado de IDCS J1426.5+3508, o aglomerado é o mais massivo encontrado nessa época do Universo, pesando algo em torno de 500 trilhões de sóis. Ele é entre 5 a 10 vezes maior do que outros aglomerados encontrados nesse momento inicial do Universo. A equipe registrou o aglomerado numa pesquisa usando o telescópio espacial Spitzer em combinação com imagens ópticas de arquivo feitas como parte do National Optical Astronomy Observatory’s Deep Wide Field Survey no Kitt Peak National Observatory em Tucson no Arizona. As imagens combinadas permitiram que eles pudessem ver o aglomerado  como um agrupamento de galáxias bem vermelhas indicando que elas são bem distantes.

Esse sistema único constitui o aglomerado mais distante conhecido a hospedar um gigantesco arco de lente gravitacional. A descoberta desse antigo arco gravitacional pode levar os pesquisadores a descobrirem como, durante os primeiros momentos depois do Big Bang, as condições foram ajustadas para o crescimento de aglomerados no Universo primordial.

O arco foi registrado em imagens ópticas do aglomerado feitas em 2010 pela Advanced Camera for Surveys do Hubble. As capacidades infravermelhas da Wide Field Camera 3 (WFC3) do Hubble, ajudaram a fornecer a distância precisa, confirmando que ele é um dos aglomerados mais distantes já descoberto.

Uma vez que os astrônomos determinaram a distância do aglomerado, eles usaram o Hubble, o rádio telescópio Combined Array for Research in Millimeter-wave Astronomy (CARMA), e o Observatório de Raios X Chandra da NASA para mostrar de forma independente que o agrupamento galáctico é muito massivo.

O CARMA ajudou os astrônomos a determinarem a massa do aglomerado medindo como a luz primordial do Big Bang foi afetada à medida que ela passava através do gás extremamente quente e tênue que permeia o agrupamento. Os astrônomos então usaram as observações com a WFC3 para mapear a massa do aglomerado calculando quanta massa do aglomerado seria necessária para produzir o arco gravitacional. Os dados do Chandra que revelaram o brilho do aglomerado em raios X, foi também usado para medir a massa do aglomerado.

“A chance de se encontrar um gigantesco aglomerado como esse no início do Universo é menor que um por cento na pequena área pesquisada”, disse um membro da equipe, Mark Brodwin da Universidade do Missouri em Kansas City. “Ele compartilha um caminho evolucionário com alguns dos mais massivos aglomerados que nós observamos hoje, como o Aglomerado Coma e o recentemente descoberto Aglomerado El Gordo”.

Uma análise do arco revelou que o objeto por ele amplificado é uma galáxia de formação de estrelas que existia entre 10 e 13 bilhões de anos atrás. A equipe espera usar o Hubble novamente para obter uma medida mais precisa da distância da galáxia que é amplificada pelo arco.

Gonzalez tem considerado algumas possibilidades para explicar o arco.

Uma explicação é que os distantes aglomerados de galáxias, diferente dos próximos, têm concentrações mais densas de galáxias em seus núcleos, fazendo com que eles sejam uma lente mais eficiente. Contudo, mesmo se os distantes núcleos fossem mais densos, essa massa adicional ainda não deveria fornecer massa gravitacional suficiente para produzir um gigantesco arco como o visto nas observações de Gonzalez de acordo com análises estatísticas.

Outra possibilidade é que flutuações microscópicas iniciais na matéria ocorridas logo depois do Big Bang foram diferentes daquelas previstas pelas simulações do modelo cosmológico, e então produziram aglomerados de galáxias mais massivos do que se esperava.

“Eu não estou convencido por nenhuma das explicações”, disse o próprio Gonzalez. “Além do mais só encontramos um exemplo. Nós realmente precisamos estudar os aglomerados de galáxias extremamente massivos que existiram entre 8 e 10 bilhões de anos atrás para ver quantos mais objetos distorcidos gravitacionalmente poderão ser encontrados”.

Os resultados da equipe serão publicados na edição de Julho de 2012 do The Astrophysical Journal.

Fonte: NASA

quarta-feira, 27 de junho de 2012

Nova maneira de estudar atmosferas de exoplanetas

Uma nova técnica permitiu aos astrônomos estudarem pela primeira vez a atmosfera de um exoplaneta em detalhe, embora este não passe em frente da sua estrela hospedeira.

ilustração do exoplaneta Tau Boötis b

© ESO (ilustração do exoplaneta Tau Boötis b)

Uma equipe internacional utilizou o Very Large Telescope (VLT) do ESO para captar diretamente o fraco brilho do planeta Tau Boötis b. A equipe estudou a atmosfera do planeta e determinou pela primeira vez a sua órbita e massa de forma precisa; resolvendo assim um velho problema de 15 anos. Surpreendentemente, a equipe também descobriu que a atmosfera do planeta parece ser mais fria a maior altitude, o contrário do que se esperava. Os resultados serão publicados amanhã na revista Nature.

O planeta Tau Boötis b foi um dos primeiros exoplanetas a ser descoberto em 1996 e continua a ser um dos sistemas planetários mais próximos que se conhece. Embora a sua estrela hospedeira seja facilmente visível a olho nu, o planeta propriamente dito não o é, e até agora conseguia apenas detectar-se pelo efeito gravitacional que exerce sob a estrela. Tau Boötis b é um planeta grande e quente do tipo de Júpiter que orbita muito próximo da estrela hospedeira.

Tal como a maioria dos exoplanetas, este planeta não transita o disco da sua estrela (como o recente trânsito de Vênus). Até agora estes trânsitos eram essenciais para o estudo das atmosferas dos exoplanetas: quando um planeta passa em frente da sua estrela deixa uma marca das características da atmosfera na radiação estelar. Como nenhuma radiação estelar atravessa a atmosfera de Tau Boötis b em nossa direção, isso implicava que até agora a atmosfera do planeta não podia ser estudada.

No entanto, depois de 15 anos tentando estudar o fraco brilho emitido por exoplanetas quentes do tipo de Júpiter, os astrônomos conseguiram pela primeira vez determinar a estrutura da atmosfera de Tau Boötis b e deduzir a sua massa de forma precisa. A equipe utilizou o instrumento CRICES (CRyogenic InfraRed Echelle Spectrometer) montado no VLT, instalado no Observatório do Paranal do ESO, no Chile. Os astrônomos combinaram observações infravermelhas de alta qualidade (em comprimentos de onda da ordem dos 2,3 microns) com uma técnica nova que consegue extrair o fraco sinal emitido pelo planeta, da radiação muito mais forte emitida pela estrela hospedeira. Em comprimentos de onda infravermelhos, a estrela hospedeira emite menos radiação que no regime óptico, por isso este é o comprimento de onda favorável para separar o fraco sinal emitido pelo planeta. Este método utiliza a velocidade do planeta em órbita da sua estrela hospedeira para separar a emissão planetária da emissão estelar e também da emissão vinda da própria atmosfera terrestre. A mesma equipe de astrônomos testou esta técnica anteriormente num planeta que transita, medindo a velocidade orbital durante a sua passagem em frente ao disco estelar.

O autor principal do estudo Matteo Brogi (Observatório de Leiden, Holanda) explica: "Graças à elevada qualidade das observações fornecidas pelo VLT e pelo CRICES conseguimos estudar o espectro do sistema com muito mais detalhe do que o que era possível até agora. Apenas 0,01% da radiação observada é emitida pelo planeta, enquanto que o resto vem da estrela, por isso não foi nada fácil separar esta contribuição".

A maioria dos planetas que orbitam outras estrelas foram descobertos pelo efeito gravitacional que exercem nas estrelas hospedeiras, o que limita a informação que podemos retirar sobre a sua massa: apenas podemos calcular um limite inferior para a massa do planeta. Isto deve-se ao fato da inclinação da órbita ser geralmente desconhecida. Se a órbita do planeta está inclinada relativamente à linha de visão entre a Terra e a estrela, então um planeta com maior massa causa o mesmo efeito de movimento para trás e para a frente da estrela que um planeta mais leve numa órbita menos inclinada, não sendo possível separar os dois efeitos. Esta nova técnica é muito mais poderosa. Conseguir observar a radiação que vem diretamente do planeta permitiu aos astrônomos medir o ângulo da órbita do planeta e consequentemente determinar a sua massa de forma precisa. Ao traçar as variações do movimento do planeta à medida que este orbita a estrela, a equipe pôde determinar, pela primeira vez, que Tau Boötis b orbita a sua estrela hospedeira com um ângulo de 44 graus e tem uma massa igual a seis vezes a massa do planeta Júpiter no nosso Sistema Solar.

Wide-field view of the parent star of the famous exoplanet Tau Boötis b

© ESO (visão de campo amplo da estrela hospedeira)

"As novas observações do VLT solucionam o problema, presente há 15 anos, da massa de Tau Boötis b. E a nova técnica significa também que agora podemos estudar as atmosferas de exoplanetas que não transitam as suas estrelas, e também medir as suas massas de forma precisa, o que era impossível antes", diz Ignas Snellen (Observatório de Leiden, Holanda), co-autor do artigo científico que descreve o trabalho.

Além de detectar o brilho da atmosfera e medir a massa de Tau Boötis b, a equipe estudou a atmosfera e mediu a quantidade de monóxido de carbono presente, assim como a temperatura a diferentes altitudes por meio da comparação entre as observações e modelos teóricos. Um resultado surpreendente deste trabalho é de que as novas observações indicam que a temperatura da atmosfera decresce com a altitude. Este resultado é o oposto do esperado da inversão de temperatura - um aumento da temperatura com a altitude - encontrada em outros exoplanetas quentes do tipo de Júpiter. Pensa-se que as inversões térmicas são caracterizadas pelas bandas moleculares em emissão no espectro, em vez das em absorção, tal como observado na fotometria de exoplanetas quentes do tipo de Júpiter com o telescópio espacial Spitzer. O exoplaneta HD209458b é o melhor exemplo de inversões térmicas em atmosferas de exoplanetas. Esta observação apoia modelos nos quais a emissão ultravioleta forte associada a atividade cromosférica, semelhante à exibida pela estrela hospedeira de Tau Boötis b - é responsável pela inibição da inversão térmica.

As observações do VLT mostram que a espectroscopia de alta resolução obtida por telescópios terrestres é uma ferramenta valiosa na análise detalhada das atmosferas de exoplanetas que não transitam. A detecção de diferentes moléculas no futuro permitirá aos astrônomos aprender mais sobre as condições atmosféricas do planeta. Ao medir estas condições atmosféricas ao longo da órbita do planeta, os astrônomos poderão até ser capazes de encontrar variações atmosféricas entre as manhãs e as tardes do planeta.

Fonte: ESO